Unverified Commit 0225b135 authored by Srihari Humbarwadi's avatar Srihari Humbarwadi Committed by GitHub
Browse files

Merge branch 'tensorflow:master' into panoptic-deeplab-modeling

parents 7479dbb8 4c571a3c
# ResNet-50 ImageNet classification. 78.1% top-1 and 93.9% top-5 accuracy.
runtime:
distribution_strategy: 'tpu'
mixed_precision_dtype: 'bfloat16'
task:
model:
num_classes: 1001
input_size: [224, 224, 3]
backbone:
type: 'resnet'
resnet:
model_id: 50
norm_activation:
activation: 'swish'
losses:
l2_weight_decay: 0.0001
one_hot: true
label_smoothing: 0.1
train_data:
input_path: ''
tfds_name: 'imagenet2012'
tfds_split: 'train'
sharding: true
is_training: true
global_batch_size: 4096
dtype: 'bfloat16'
validation_data:
input_path: ''
tfds_name: 'imagenet2012'
tfds_split: 'validation'
sharding: true
is_training: false
global_batch_size: 4096
dtype: 'bfloat16'
drop_remainder: false
trainer:
train_steps: 62400
validation_steps: 13
validation_interval: 312
steps_per_loop: 312
summary_interval: 312
checkpoint_interval: 312
optimizer_config:
optimizer:
type: 'sgd'
sgd:
momentum: 0.9
learning_rate:
type: 'cosine'
cosine:
initial_learning_rate: 1.6
decay_steps: 62400
warmup:
type: 'linear'
linear:
warmup_steps: 1560
runtime:
distribution_strategy: 'tpu'
mixed_precision_dtype: 'bfloat16'
task:
model:
num_classes: 1001
input_size: [224, 224, 3]
backbone:
type: 'resnet'
resnet:
model_id: 50
losses:
l2_weight_decay: 0.0001
one_hot: true
label_smoothing: 0.1
train_data:
input_path: 'imagenet-2012-tfrecord/train*'
is_training: true
global_batch_size: 4096
dtype: 'bfloat16'
validation_data:
input_path: 'imagenet-2012-tfrecord/valid*'
is_training: false
global_batch_size: 4096
dtype: 'bfloat16'
drop_remainder: false
trainer:
train_steps: 28080
validation_steps: 13
validation_interval: 312
steps_per_loop: 312
summary_interval: 312
checkpoint_interval: 312
optimizer_config:
optimizer:
type: 'sgd'
sgd:
momentum: 0.9
learning_rate:
type: 'stepwise'
stepwise:
boundaries: [9360, 18720, 24960]
values: [1.6, 0.16, 0.016, 0.0016]
warmup:
type: 'linear'
linear:
warmup_steps: 1560
# ResNet-RS-101 ImageNet classification. 80.2% top-1 accuracy.
runtime:
distribution_strategy: 'tpu'
mixed_precision_dtype: 'bfloat16'
task:
model:
num_classes: 1001
input_size: [160, 160, 3]
backbone:
type: 'resnet'
resnet:
model_id: 101
replace_stem_max_pool: true
resnetd_shortcut: true
se_ratio: 0.25
stem_type: 'v1'
stochastic_depth_drop_rate: 0.0
norm_activation:
activation: 'swish'
norm_momentum: 0.0
use_sync_bn: false
dropout_rate: 0.25
losses:
l2_weight_decay: 0.00004
one_hot: true
label_smoothing: 0.1
train_data:
input_path: 'imagenet-2012-tfrecord/train*'
is_training: true
global_batch_size: 4096
dtype: 'bfloat16'
aug_type:
type: 'randaug'
randaug:
magnitude: 15
validation_data:
input_path: 'imagenet-2012-tfrecord/valid*'
is_training: false
global_batch_size: 4096
dtype: 'bfloat16'
drop_remainder: false
trainer:
train_steps: 109200
validation_steps: 13
validation_interval: 312
steps_per_loop: 312
summary_interval: 312
checkpoint_interval: 312
optimizer_config:
ema:
average_decay: 0.9999
optimizer:
type: 'sgd'
sgd:
momentum: 0.9
learning_rate:
type: 'cosine'
cosine:
initial_learning_rate: 1.6
decay_steps: 109200
warmup:
type: 'linear'
linear:
warmup_steps: 1560
# ResNet-RS-101 ImageNet classification. 81.3% top-1 accuracy.
runtime:
distribution_strategy: 'tpu'
mixed_precision_dtype: 'bfloat16'
task:
model:
num_classes: 1001
input_size: [192, 192, 3]
backbone:
type: 'resnet'
resnet:
model_id: 101
replace_stem_max_pool: true
resnetd_shortcut: true
se_ratio: 0.25
stem_type: 'v1'
stochastic_depth_drop_rate: 0.0
norm_activation:
activation: 'swish'
norm_momentum: 0.0
use_sync_bn: false
dropout_rate: 0.25
losses:
l2_weight_decay: 0.00004
one_hot: true
label_smoothing: 0.1
train_data:
input_path: 'imagenet-2012-tfrecord/train*'
is_training: true
global_batch_size: 4096
dtype: 'bfloat16'
aug_type:
type: 'randaug'
randaug:
magnitude: 15
validation_data:
input_path: 'imagenet-2012-tfrecord/valid*'
is_training: false
global_batch_size: 4096
dtype: 'bfloat16'
drop_remainder: false
trainer:
train_steps: 109200
validation_steps: 13
validation_interval: 312
steps_per_loop: 312
summary_interval: 312
checkpoint_interval: 312
optimizer_config:
ema:
average_decay: 0.9999
optimizer:
type: 'sgd'
sgd:
momentum: 0.9
learning_rate:
type: 'cosine'
cosine:
initial_learning_rate: 1.6
decay_steps: 109200
warmup:
type: 'linear'
linear:
warmup_steps: 1560
# ResNet-RS-152 ImageNet classification. 81.9% top-1 accuracy.
runtime:
distribution_strategy: 'tpu'
mixed_precision_dtype: 'bfloat16'
task:
model:
num_classes: 1001
input_size: [192, 192, 3]
backbone:
type: 'resnet'
resnet:
model_id: 152
replace_stem_max_pool: true
resnetd_shortcut: true
se_ratio: 0.25
stem_type: 'v1'
stochastic_depth_drop_rate: 0.0
norm_activation:
activation: 'swish'
norm_momentum: 0.0
use_sync_bn: false
dropout_rate: 0.25
losses:
l2_weight_decay: 0.00004
one_hot: true
label_smoothing: 0.1
train_data:
input_path: 'imagenet-2012-tfrecord/train*'
is_training: true
global_batch_size: 4096
dtype: 'bfloat16'
aug_type:
type: 'randaug'
randaug:
magnitude: 15
validation_data:
input_path: 'imagenet-2012-tfrecord/valid*'
is_training: false
global_batch_size: 4096
dtype: 'bfloat16'
drop_remainder: false
trainer:
train_steps: 109200
validation_steps: 13
validation_interval: 312
steps_per_loop: 312
summary_interval: 312
checkpoint_interval: 312
optimizer_config:
ema:
average_decay: 0.9999
optimizer:
type: 'sgd'
sgd:
momentum: 0.9
learning_rate:
type: 'cosine'
cosine:
initial_learning_rate: 1.6
decay_steps: 109200
warmup:
type: 'linear'
linear:
warmup_steps: 1560
# ResNet-RS-152 ImageNet classification. 82.5% top-1 accuracy.
runtime:
distribution_strategy: 'tpu'
mixed_precision_dtype: 'bfloat16'
task:
model:
num_classes: 1001
input_size: [224, 224, 3]
backbone:
type: 'resnet'
resnet:
model_id: 152
replace_stem_max_pool: true
resnetd_shortcut: true
se_ratio: 0.25
stem_type: 'v1'
stochastic_depth_drop_rate: 0.0
norm_activation:
activation: 'swish'
norm_momentum: 0.0
use_sync_bn: false
dropout_rate: 0.25
losses:
l2_weight_decay: 0.00004
one_hot: true
label_smoothing: 0.1
train_data:
input_path: 'imagenet-2012-tfrecord/train*'
is_training: true
global_batch_size: 4096
dtype: 'bfloat16'
aug_type:
type: 'randaug'
randaug:
magnitude: 15
validation_data:
input_path: 'imagenet-2012-tfrecord/valid*'
is_training: false
global_batch_size: 4096
dtype: 'bfloat16'
drop_remainder: false
trainer:
train_steps: 109200
validation_steps: 13
validation_interval: 312
steps_per_loop: 312
summary_interval: 312
checkpoint_interval: 312
optimizer_config:
ema:
average_decay: 0.9999
optimizer:
type: 'sgd'
sgd:
momentum: 0.9
learning_rate:
type: 'cosine'
cosine:
initial_learning_rate: 1.6
decay_steps: 109200
warmup:
type: 'linear'
linear:
warmup_steps: 1560
# ResNet-RS-152 ImageNet classification. 83.1% top-1 accuracy.
runtime:
distribution_strategy: 'tpu'
mixed_precision_dtype: 'bfloat16'
task:
model:
num_classes: 1001
input_size: [256, 256, 3]
backbone:
type: 'resnet'
resnet:
model_id: 152
replace_stem_max_pool: true
resnetd_shortcut: true
se_ratio: 0.25
stem_type: 'v1'
stochastic_depth_drop_rate: 0.0
norm_activation:
activation: 'swish'
norm_momentum: 0.0
use_sync_bn: false
dropout_rate: 0.25
losses:
l2_weight_decay: 0.00004
one_hot: true
label_smoothing: 0.1
train_data:
input_path: 'imagenet-2012-tfrecord/train*'
is_training: true
global_batch_size: 4096
dtype: 'bfloat16'
aug_type:
type: 'randaug'
randaug:
magnitude: 15
validation_data:
input_path: 'imagenet-2012-tfrecord/valid*'
is_training: false
global_batch_size: 4096
dtype: 'bfloat16'
drop_remainder: false
trainer:
train_steps: 109200
validation_steps: 13
validation_interval: 312
steps_per_loop: 312
summary_interval: 312
checkpoint_interval: 312
optimizer_config:
ema:
average_decay: 0.9999
optimizer:
type: 'sgd'
sgd:
momentum: 0.9
learning_rate:
type: 'cosine'
cosine:
initial_learning_rate: 1.6
decay_steps: 109200
warmup:
type: 'linear'
linear:
warmup_steps: 1560
# ResNet-RS-200 ImageNet classification. 83.5% top-1 accuracy.
runtime:
distribution_strategy: 'tpu'
mixed_precision_dtype: 'bfloat16'
task:
model:
num_classes: 1001
input_size: [256, 256, 3]
backbone:
type: 'resnet'
resnet:
model_id: 200
replace_stem_max_pool: true
resnetd_shortcut: true
se_ratio: 0.25
stem_type: 'v1'
stochastic_depth_drop_rate: 0.1
norm_activation:
activation: 'swish'
norm_momentum: 0.0
use_sync_bn: false
dropout_rate: 0.25
losses:
l2_weight_decay: 0.00004
one_hot: true
label_smoothing: 0.1
train_data:
input_path: 'imagenet-2012-tfrecord/train*'
is_training: true
global_batch_size: 4096
dtype: 'bfloat16'
aug_type:
type: 'randaug'
randaug:
magnitude: 15
validation_data:
input_path: 'imagenet-2012-tfrecord/valid*'
is_training: false
global_batch_size: 4096
dtype: 'bfloat16'
drop_remainder: false
trainer:
train_steps: 109200
validation_steps: 13
validation_interval: 312
steps_per_loop: 312
summary_interval: 312
checkpoint_interval: 312
optimizer_config:
ema:
average_decay: 0.9999
optimizer:
type: 'sgd'
sgd:
momentum: 0.9
learning_rate:
type: 'cosine'
cosine:
initial_learning_rate: 1.6
decay_steps: 109200
warmup:
type: 'linear'
linear:
warmup_steps: 1560
# ResNet-RS-270 ImageNet classification. 83.6% top-1 accuracy.
runtime:
distribution_strategy: 'tpu'
mixed_precision_dtype: 'bfloat16'
task:
model:
num_classes: 1001
input_size: [256, 256, 3]
backbone:
type: 'resnet'
resnet:
model_id: 270
replace_stem_max_pool: true
resnetd_shortcut: true
se_ratio: 0.25
stem_type: 'v1'
stochastic_depth_drop_rate: 0.1
norm_activation:
activation: 'swish'
norm_momentum: 0.0
use_sync_bn: false
dropout_rate: 0.25
losses:
l2_weight_decay: 0.00004
one_hot: true
label_smoothing: 0.1
train_data:
input_path: 'imagenet-2012-tfrecord/train*'
is_training: true
global_batch_size: 4096
dtype: 'bfloat16'
aug_type:
type: 'randaug'
randaug:
magnitude: 15
validation_data:
input_path: 'imagenet-2012-tfrecord/valid*'
is_training: false
global_batch_size: 4096
dtype: 'bfloat16'
drop_remainder: false
trainer:
train_steps: 109200
validation_steps: 13
validation_interval: 312
steps_per_loop: 312
summary_interval: 312
checkpoint_interval: 312
optimizer_config:
ema:
average_decay: 0.9999
optimizer:
type: 'sgd'
sgd:
momentum: 0.9
learning_rate:
type: 'cosine'
cosine:
initial_learning_rate: 1.6
decay_steps: 109200
warmup:
type: 'linear'
linear:
warmup_steps: 1560
# ResNet-RS-350 ImageNet classification. 83.7% top-1 accuracy.
runtime:
distribution_strategy: 'tpu'
mixed_precision_dtype: 'bfloat16'
task:
model:
num_classes: 1001
input_size: [256, 256, 3]
backbone:
type: 'resnet'
resnet:
model_id: 350
replace_stem_max_pool: true
resnetd_shortcut: true
se_ratio: 0.25
stem_type: 'v1'
stochastic_depth_drop_rate: 0.1
norm_activation:
activation: 'swish'
norm_momentum: 0.0
use_sync_bn: false
dropout_rate: 0.25
losses:
l2_weight_decay: 0.00004
one_hot: true
label_smoothing: 0.1
train_data:
input_path: 'imagenet-2012-tfrecord/train*'
is_training: true
global_batch_size: 4096
dtype: 'bfloat16'
aug_type:
type: 'randaug'
randaug:
magnitude: 15
validation_data:
input_path: 'imagenet-2012-tfrecord/valid*'
is_training: false
global_batch_size: 4096
dtype: 'bfloat16'
drop_remainder: false
trainer:
train_steps: 109200
validation_steps: 13
validation_interval: 312
steps_per_loop: 312
summary_interval: 312
checkpoint_interval: 312
optimizer_config:
ema:
average_decay: 0.9999
optimizer:
type: 'sgd'
sgd:
momentum: 0.9
learning_rate:
type: 'cosine'
cosine:
initial_learning_rate: 1.6
decay_steps: 109200
warmup:
type: 'linear'
linear:
warmup_steps: 1560
# ResNet-RS-350 ImageNet classification. 84.2% top-1 accuracy.
runtime:
distribution_strategy: 'tpu'
mixed_precision_dtype: 'bfloat16'
task:
model:
num_classes: 1001
input_size: [320, 320, 3]
backbone:
type: 'resnet'
resnet:
model_id: 350
replace_stem_max_pool: true
resnetd_shortcut: true
se_ratio: 0.25
stem_type: 'v1'
stochastic_depth_drop_rate: 0.1
norm_activation:
activation: 'swish'
norm_momentum: 0.0
use_sync_bn: false
dropout_rate: 0.4
losses:
l2_weight_decay: 0.00004
one_hot: true
label_smoothing: 0.1
train_data:
input_path: 'imagenet-2012-tfrecord/train*'
is_training: true
global_batch_size: 4096
dtype: 'bfloat16'
aug_type:
type: 'randaug'
randaug:
magnitude: 15
validation_data:
input_path: 'imagenet-2012-tfrecord/valid*'
is_training: false
global_batch_size: 4096
dtype: 'bfloat16'
drop_remainder: false
trainer:
train_steps: 109200
validation_steps: 13
validation_interval: 312
steps_per_loop: 312
summary_interval: 312
checkpoint_interval: 312
optimizer_config:
ema:
average_decay: 0.9999
optimizer:
type: 'sgd'
sgd:
momentum: 0.9
learning_rate:
type: 'cosine'
cosine:
initial_learning_rate: 1.6
decay_steps: 109200
warmup:
type: 'linear'
linear:
warmup_steps: 1560
runtime:
distribution_strategy: 'tpu'
mixed_precision_dtype: 'bfloat16'
task:
model:
num_classes: 1001
input_size: [320, 320, 3]
backbone:
type: 'resnet'
resnet:
model_id: 420
replace_stem_max_pool: true
resnetd_shortcut: true
se_ratio: 0.25
stem_type: 'v1'
stochastic_depth_drop_rate: 0.1
norm_activation:
activation: 'swish'
norm_momentum: 0.0
use_sync_bn: false
dropout_rate: 0.4
losses:
l2_weight_decay: 0.00004
one_hot: true
label_smoothing: 0.1
train_data:
input_path: 'imagenet-2012-tfrecord/train*'
is_training: true
global_batch_size: 4096
dtype: 'bfloat16'
aug_type:
type: 'randaug'
randaug:
magnitude: 15
validation_data:
input_path: 'imagenet-2012-tfrecord/valid*'
is_training: false
global_batch_size: 4096
dtype: 'bfloat16'
drop_remainder: false
trainer:
train_steps: 109200
validation_steps: 13
validation_interval: 312
steps_per_loop: 312
summary_interval: 312
checkpoint_interval: 312
optimizer_config:
ema:
average_decay: 0.9999
optimizer:
type: 'sgd'
sgd:
momentum: 0.9
learning_rate:
type: 'cosine'
cosine:
initial_learning_rate: 1.6
decay_steps: 109200
warmup:
type: 'linear'
linear:
warmup_steps: 1560
# ResNet-RS-50 ImageNet classification. 79.1% top-1 accuracy.
runtime:
distribution_strategy: 'tpu'
mixed_precision_dtype: 'bfloat16'
task:
model:
num_classes: 1001
input_size: [160, 160, 3]
backbone:
type: 'resnet'
resnet:
model_id: 50
replace_stem_max_pool: true
resnetd_shortcut: true
se_ratio: 0.25
stem_type: 'v1'
stochastic_depth_drop_rate: 0.0
norm_activation:
activation: 'swish'
norm_momentum: 0.0
use_sync_bn: false
dropout_rate: 0.25
losses:
l2_weight_decay: 0.00004
one_hot: true
label_smoothing: 0.1
train_data:
input_path: 'imagenet-2012-tfrecord/train*'
is_training: true
global_batch_size: 4096
dtype: 'bfloat16'
aug_type:
type: 'randaug'
randaug:
magnitude: 10
validation_data:
input_path: 'imagenet-2012-tfrecord/valid*'
is_training: false
global_batch_size: 4096
dtype: 'bfloat16'
drop_remainder: false
trainer:
train_steps: 109200
validation_steps: 13
validation_interval: 312
steps_per_loop: 312
summary_interval: 312
checkpoint_interval: 312
optimizer_config:
ema:
average_decay: 0.9999
optimizer:
type: 'sgd'
sgd:
momentum: 0.9
learning_rate:
type: 'cosine'
cosine:
initial_learning_rate: 1.6
decay_steps: 109200
warmup:
type: 'linear'
linear:
warmup_steps: 1560
# --experiment_type=cascadercnn_spinenet_coco
# Expect to reach: box mAP: 51.9%, mask mAP: 45.0% on COCO
runtime:
distribution_strategy: 'tpu'
mixed_precision_dtype: 'bfloat16'
task:
init_checkpoint: null
train_data:
global_batch_size: 256
parser:
aug_rand_hflip: true
aug_scale_min: 0.1
aug_scale_max: 2.5
losses:
l2_weight_decay: 0.00004
model:
anchor:
anchor_size: 4.0
num_scales: 3
min_level: 3
max_level: 7
input_size: [1280, 1280, 3]
backbone:
spinenet:
stochastic_depth_drop_rate: 0.2
model_id: '143'
type: 'spinenet'
decoder:
type: 'identity'
detection_head:
cascade_class_ensemble: true
class_agnostic_bbox_pred: true
rpn_head:
num_convs: 2
num_filters: 256
roi_sampler:
cascade_iou_thresholds: [0.7]
foreground_iou_threshold: 0.6
norm_activation:
norm_epsilon: 0.001
norm_momentum: 0.99
use_sync_bn: true
activation: 'swish'
detection_generator:
pre_nms_top_k: 1000
trainer:
train_steps: 231000
optimizer_config:
learning_rate:
type: 'stepwise'
stepwise:
boundaries: [219450, 226380]
values: [0.32, 0.032, 0.0032]
warmup:
type: 'linear'
linear:
warmup_steps: 2000
warmup_learning_rate: 0.0067
# Expect to reach: box mAP: 49.3%, mask mAP: 43.4% on COCO
runtime:
distribution_strategy: 'tpu'
mixed_precision_dtype: 'bfloat16'
task:
init_checkpoint: null
train_data:
global_batch_size: 256
parser:
aug_rand_hflip: true
aug_scale_min: 0.1
aug_scale_max: 2.0
losses:
l2_weight_decay: 0.00004
model:
anchor:
anchor_size: 4.0
num_scales: 3
min_level: 3
max_level: 7
input_size: [1280, 1280, 3]
backbone:
spinenet:
stochastic_depth_drop_rate: 0.2
model_id: '143'
type: 'spinenet'
decoder:
type: 'identity'
norm_activation:
norm_epsilon: 0.001
norm_momentum: 0.99
use_sync_bn: true
detection_generator:
pre_nms_top_k: 1000
trainer:
train_steps: 231000
optimizer_config:
learning_rate:
type: 'stepwise'
stepwise:
boundaries: [219450, 226380]
values: [0.32, 0.032, 0.0032]
warmup:
type: 'linear'
linear:
warmup_steps: 2000
warmup_learning_rate: 0.0067
# --experiment_type=cascadercnn_spinenet_coco
# Expect to reach: box mAP: 46.4%, mask mAP: 40.0% on COCO
runtime:
distribution_strategy: 'tpu'
mixed_precision_dtype: 'bfloat16'
task:
init_checkpoint: null
train_data:
global_batch_size: 256
parser:
aug_rand_hflip: true
aug_scale_min: 0.1
aug_scale_max: 2.0
losses:
l2_weight_decay: 0.00004
model:
anchor:
anchor_size: 3.0
num_scales: 3
min_level: 3
max_level: 7
input_size: [640, 640, 3]
backbone:
spinenet:
stochastic_depth_drop_rate: 0.2
model_id: '49'
type: 'spinenet'
decoder:
type: 'identity'
detection_head:
cascade_class_ensemble: true
class_agnostic_bbox_pred: true
rpn_head:
num_convs: 2
num_filters: 256
roi_sampler:
cascade_iou_thresholds: [0.7]
foreground_iou_threshold: 0.6
norm_activation:
norm_epsilon: 0.001
norm_momentum: 0.99
use_sync_bn: true
activation: 'swish'
detection_generator:
pre_nms_top_k: 1000
trainer:
train_steps: 231000
optimizer_config:
learning_rate:
type: 'stepwise'
stepwise:
boundaries: [219450, 226380]
values: [0.32, 0.032, 0.0032]
warmup:
type: 'linear'
linear:
warmup_steps: 2000
warmup_learning_rate: 0.0067
# Expect to reach: box mAP: 43.2%, mask mAP: 38.3% on COCO
runtime:
distribution_strategy: 'tpu'
mixed_precision_dtype: 'bfloat16'
task:
init_checkpoint: null
train_data:
global_batch_size: 256
parser:
aug_rand_hflip: true
aug_scale_min: 0.1
aug_scale_max: 2.0
losses:
l2_weight_decay: 0.00004
model:
anchor:
anchor_size: 3.0
num_scales: 3
min_level: 3
max_level: 7
input_size: [640, 640, 3]
backbone:
spinenet:
stochastic_depth_drop_rate: 0.2
model_id: '49'
type: 'spinenet'
decoder:
type: 'identity'
norm_activation:
norm_epsilon: 0.001
norm_momentum: 0.99
use_sync_bn: true
detection_generator:
pre_nms_top_k: 1000
trainer:
train_steps: 231000
optimizer_config:
learning_rate:
type: 'stepwise'
stepwise:
boundaries: [219450, 226380]
values: [0.32, 0.032, 0.0032]
warmup:
type: 'linear'
linear:
warmup_steps: 2000
warmup_learning_rate: 0.0067
# --experiment_type=cascadercnn_spinenet_coco
# Expect to reach: box mAP: 51.9%, mask mAP: 45.0% on COCO
runtime:
distribution_strategy: 'tpu'
mixed_precision_dtype: 'bfloat16'
task:
init_checkpoint: null
train_data:
global_batch_size: 256
parser:
aug_rand_hflip: true
aug_scale_min: 0.1
aug_scale_max: 2.5
losses:
l2_weight_decay: 0.00004
model:
anchor:
anchor_size: 4.0
num_scales: 3
min_level: 3
max_level: 7
input_size: [1024, 1024, 3]
backbone:
spinenet:
stochastic_depth_drop_rate: 0.2
model_id: '96'
type: 'spinenet'
decoder:
type: 'identity'
detection_head:
cascade_class_ensemble: true
class_agnostic_bbox_pred: true
rpn_head:
num_convs: 2
num_filters: 256
roi_sampler:
cascade_iou_thresholds: [0.7]
foreground_iou_threshold: 0.6
norm_activation:
norm_epsilon: 0.001
norm_momentum: 0.99
use_sync_bn: true
activation: 'swish'
detection_generator:
pre_nms_top_k: 1000
trainer:
train_steps: 231000
optimizer_config:
learning_rate:
type: 'stepwise'
stepwise:
boundaries: [219450, 226380]
values: [0.32, 0.032, 0.0032]
warmup:
type: 'linear'
linear:
warmup_steps: 2000
warmup_learning_rate: 0.0067
# Expect to reach: box mAP: 48.1%, mask mAP: 42.4% on COCO
runtime:
distribution_strategy: 'tpu'
mixed_precision_dtype: 'bfloat16'
task:
init_checkpoint: null
train_data:
global_batch_size: 256
parser:
aug_rand_hflip: true
aug_scale_min: 0.1
aug_scale_max: 2.0
losses:
l2_weight_decay: 0.00004
model:
anchor:
anchor_size: 3.0
num_scales: 3
min_level: 3
max_level: 7
input_size: [1024, 1024, 3]
backbone:
spinenet:
stochastic_depth_drop_rate: 0.2
model_id: '96'
type: 'spinenet'
decoder:
type: 'identity'
norm_activation:
norm_epsilon: 0.001
norm_momentum: 0.99
use_sync_bn: true
detection_generator:
pre_nms_top_k: 1000
trainer:
train_steps: 231000
optimizer_config:
learning_rate:
type: 'stepwise'
stepwise:
boundaries: [219450, 226380]
values: [0.32, 0.032, 0.0032]
warmup:
type: 'linear'
linear:
warmup_steps: 2000
warmup_learning_rate: 0.0067
# Expect to reach: box mAP: 42.3%, mask mAP: 37.6% on COCO
task:
init_checkpoint: null
train_data:
global_batch_size: 256
parser:
aug_rand_hflip: true
aug_scale_min: 0.5
aug_scale_max: 2.0
losses:
l2_weight_decay: 0.00008
model:
anchor:
anchor_size: 3.0
min_level: 3
max_level: 7
input_size: [640, 640, 3]
norm_activation:
norm_epsilon: 0.001
norm_momentum: 0.99
use_sync_bn: true
detection_generator:
pre_nms_top_k: 1000
trainer:
train_steps: 162050
optimizer_config:
learning_rate:
type: 'stepwise'
stepwise:
boundaries: [148160, 157420]
values: [0.32, 0.032, 0.0032]
warmup:
type: 'linear'
linear:
warmup_steps: 2000
warmup_learning_rate: 0.0067
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment