Commit 011a5804 authored by miguelCalado's avatar miguelCalado
Browse files

Added: VGG-16 configurations and model

parent d58be675
......@@ -36,6 +36,7 @@ from official.vision.image_classification.configs import configs
from official.vision.image_classification.efficientnet import efficientnet_model
from official.vision.image_classification.resnet import common
from official.vision.image_classification.resnet import resnet_model
from official.vision.image_classification.vgg16 import vgg_model
def get_models() -> Mapping[str, tf.keras.Model]:
......@@ -43,6 +44,7 @@ def get_models() -> Mapping[str, tf.keras.Model]:
return {
'efficientnet': efficientnet_model.EfficientNet.from_name,
'resnet': resnet_model.resnet50,
'vgg': vgg_model.vgg16,
}
......
......@@ -53,6 +53,7 @@ def distribution_strategy_combinations() -> Iterable[Tuple[Any, ...]]:
model=[
'efficientnet',
'resnet',
'vgg',
],
dataset=[
'imagenet',
......@@ -149,6 +150,7 @@ class ClassifierTest(tf.test.TestCase, parameterized.TestCase):
model=[
'efficientnet',
'resnet',
'vgg',
],
dataset='imagenet',
dtype='float16',
......@@ -193,6 +195,7 @@ class ClassifierTest(tf.test.TestCase, parameterized.TestCase):
model=[
'efficientnet',
'resnet',
'vgg',
],
dataset='imagenet',
dtype='bfloat16',
......
......@@ -91,6 +91,36 @@ class ResNetImagenetConfig(base_configs.ExperimentConfig):
epochs_between_evals=1, steps=None)
model: base_configs.ModelConfig = resnet_config.ResNetModelConfig()
@dataclasses.dataclass
class VGGImagenetConfig(base_configs.ExperimentConfig):
"""Base configuration to train vgg-16 on ImageNet."""
export: base_configs.ExportConfig = base_configs.ExportConfig()
runtime: base_configs.RuntimeConfig = base_configs.RuntimeConfig()
train_dataset: dataset_factory.DatasetConfig = \
dataset_factory.ImageNetConfig(split='train',
one_hot=False,
mean_subtract=True,
standardize=True)
validation_dataset: dataset_factory.DatasetConfig = \
dataset_factory.ImageNetConfig(split='validation',
one_hot=False,
mean_subtract=True,
standardize=True)
train: base_configs.TrainConfig = base_configs.TrainConfig(
resume_checkpoint=True,
epochs=90,
steps=None,
callbacks=base_configs.CallbacksConfig(
enable_checkpoint_and_export=True, enable_tensorboard=True),
metrics=['accuracy', 'top_5'],
time_history=base_configs.TimeHistoryConfig(log_steps=100),
tensorboard=base_configs.TensorBoardConfig(
track_lr=True, write_model_weights=False),
set_epoch_loop=False)
evaluation: base_configs.EvalConfig = base_configs.EvalConfig(
epochs_between_evals=1, steps=None)
model: base_configs.ModelConfig = vgg_config.VGGModelConfig()
def get_config(model: str, dataset: str) -> base_configs.ExperimentConfig:
"""Given model and dataset names, return the ExperimentConfig."""
......@@ -98,6 +128,7 @@ def get_config(model: str, dataset: str) -> base_configs.ExperimentConfig:
'imagenet': {
'efficientnet': EfficientNetImageNetConfig(),
'resnet': ResNetImagenetConfig(),
'vgg': VGGImagenetConfig()
}
}
try:
......
# Training configuration for VGG-16 trained on ImageNet on GPUs.
# Reaches > 72.8% within 90 epochs.
# Note: This configuration uses a scaled per-replica batch size based on the number of devices.
runtime:
distribution_strategy: 'mirrored'
num_gpus: 1
batchnorm_spatial_persistent: True
train_dataset:
name: 'imagenet2012'
data_dir: null
builder: 'records'
split: 'train'
image_size: 224
num_classes: 1000
num_examples: 1281167
batch_size: 128
use_per_replica_batch_size: True
dtype: 'float32'
mean_subtract: True
standardize: True
validation_dataset:
name: 'imagenet2012'
data_dir: null
builder: 'records'
split: 'validation'
image_size: 224
num_classes: 1000
num_examples: 50000
batch_size: 128
use_per_replica_batch_size: True
dtype: 'float32'
mean_subtract: True
standardize: True
model:
name: 'vgg'
optimizer:
name: 'momentum'
momentum: 0.9
epsilon: 0.001
loss:
label_smoothing: 0.0
train:
resume_checkpoint: True
epochs: 90
evaluation:
epochs_between_evals: 1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Configuration definitions for VGG losses, learning rates, and optimizers."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import dataclasses
from official.modeling.hyperparams import base_config
from official.vision.image_classification.configs import base_configs
@dataclasses.dataclass
class VGGModelConfig(base_configs.ModelConfig):
"""Configuration for the VGG model."""
name: str = 'VGG'
num_classes: int = 1000
model_params: base_config.Config = dataclasses.field(
default_factory=lambda: {
'num_classes': 1000,
'batch_size': None,
'use_l2_regularizer': True
})
loss: base_configs.LossConfig = base_configs.LossConfig(
name='sparse_categorical_crossentropy')
optimizer: base_configs.OptimizerConfig = base_configs.OptimizerConfig(
name='momentum',
epsilon=0.001,
momentum=0.9,
moving_average_decay=None)
learning_rate: base_configs.LearningRateConfig = (
base_configs.LearningRateConfig(
name='stepwise',
initial_lr=0.01,
examples_per_epoch=1281167,
boundaries=[30, 60],
warmup_epochs=0,
scale_by_batch_size=1. / 128.,
multipliers=[0.01 / 256, 0.001 / 256, 0.0001 / 256]))
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
layers = tf.keras.layers
def _gen_l2_regularizer(use_l2_regularizer=True, l2_weight_decay=1e-4):
return tf.keras.regularizers.L2(
l2_weight_decay) if use_l2_regularizer else None
def vgg16(num_classes,
batch_size=None,
use_l2_regularizer=True,
batch_norm_decay=0.9,
batch_norm_epsilon=1e-5):
input_shape = (224, 224, 3)
img_input = layers.Input(shape=input_shape, batch_size=batch_size)
x = img_input
if tf.keras.backend.image_data_format() == 'channels_first':
x = layers.Permute((3, 1, 2))(x)
bn_axis = 1
else: # channels_last
bn_axis = 3
# Block 1
x = layers.Conv2D(64, (3, 3),
padding='same',
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
name='block1_conv1')(x)
x = layers.BatchNormalization(
axis=bn_axis,
momentum=batch_norm_decay,
epsilon=batch_norm_epsilon,
name='bn_conv1')(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(64, (3, 3),
padding='same',
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
name='block1_conv2')(x)
x = layers.BatchNormalization(
axis=bn_axis,
momentum=batch_norm_decay,
epsilon=batch_norm_epsilon,
name='bn_conv2')(x)
x = layers.Activation('relu')(x)
x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)
# Block 2
x = layers.Conv2D(128, (3, 3),
padding='same',
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
name='block2_conv1')(x)
x = layers.BatchNormalization(
axis=bn_axis,
momentum=batch_norm_decay,
epsilon=batch_norm_epsilon,
name='bn_conv3')(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(128, (3, 3),
padding='same',
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
name='block2_conv2')(x)
x = layers.BatchNormalization(
axis=bn_axis,
momentum=batch_norm_decay,
epsilon=batch_norm_epsilon,
name='bn_conv4')(x)
x = layers.Activation('relu')(x)
x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)
# Block 3
x = layers.Conv2D(256, (3, 3),
padding='same',
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
name='block3_conv1')(x)
x = layers.BatchNormalization(
axis=bn_axis,
momentum=batch_norm_decay,
epsilon=batch_norm_epsilon,
name='bn_conv5')(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(256, (3, 3),
padding='same',
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
name='block3_conv2')(x)
x = layers.BatchNormalization(
axis=bn_axis,
momentum=batch_norm_decay,
epsilon=batch_norm_epsilon,
name='bn_conv6')(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(256, (3, 3),
padding='same',
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
name='block3_conv3')(x)
x = layers.BatchNormalization(
axis=bn_axis,
momentum=batch_norm_decay,
epsilon=batch_norm_epsilon,
name='bn_conv7')(x)
x = layers.Activation('relu')(x)
x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)
# Block 4
x = layers.Conv2D(512, (3, 3),
padding='same',
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
name='block4_conv1')(x)
x = layers.BatchNormalization(
axis=bn_axis,
momentum=batch_norm_decay,
epsilon=batch_norm_epsilon,
name='bn_conv8')(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(512, (3, 3),
padding='same',
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
name='block4_conv2')(x)
x = layers.BatchNormalization(
axis=bn_axis,
momentum=batch_norm_decay,
epsilon=batch_norm_epsilon,
name='bn_conv9')(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(512, (3, 3),
padding='same',
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
name='block4_conv3')(x)
x = layers.BatchNormalization(
axis=bn_axis,
momentum=batch_norm_decay,
epsilon=batch_norm_epsilon,
name='bn_conv10')(x)
x = layers.Activation('relu')(x)
x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)
# Block 5
x = layers.Conv2D(512, (3, 3),
padding='same',
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
name='block5_conv1')(x)
x = layers.BatchNormalization(
axis=bn_axis,
momentum=batch_norm_decay,
epsilon=batch_norm_epsilon,
name='bn_conv11')(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(512, (3, 3),
padding='same',
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
name='block5_conv2')(x)
x = layers.BatchNormalization(
axis=bn_axis,
momentum=batch_norm_decay,
epsilon=batch_norm_epsilon,
name='bn_conv12')(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(512, (3, 3),
padding='same',
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
name='block5_conv3')(x)
x = layers.BatchNormalization(
axis=bn_axis,
momentum=batch_norm_decay,
epsilon=batch_norm_epsilon,
name='bn_conv13')(x)
x = layers.Activation('relu')(x)
x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)
x = layers.Flatten(name='flatten')(x)
x = layers.Dense(4096,
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
name='fc1')(x)
x = layers.Activation('relu')(x)
x = layers.Dropout(0.5)(x)
x = layers.Dense(4096,
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
name='fc2')(x)
x = layers.Activation('relu')(x)
x = layers.Dropout(0.5)(x)
x = layers.Dense(num_classes,
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
name='fc1000')(x)
# A softmax that is followed by the model loss must be done cannot be done
# in float16 due to numeric issues. So we pass dtype=float32.
x = layers.Activation('softmax', dtype='float32')(x)
# Create model.
return tf.keras.Model(img_input, x, name='vgg16')
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment