"megatron/vscode:/vscode.git/clone" did not exist on "a41e47812057169cd8eda1f20ea055c319db8d38"
zan's_copy_of_basic_classification.ipynb 30.6 KB
Newer Older
zan's avatar
zan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "name": "zan's copy of basic_classification.ipynb",
      "version": "0.3.2",
      "provenance": [],
      "private_outputs": true,
      "collapsed_sections": [],
      "include_colab_link": true
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "accelerator": "GPU"
  },
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "view-in-github",
        "colab_type": "text"
      },
      "source": [
        "[View in Colaboratory](https://colab.research.google.com/github/zanarmstrong/models/blob/master/zan's_copy_of_basic_classification.ipynb)"
      ]
    },
    {
      "metadata": {
        "id": "MhoQ0WE77laV",
        "colab_type": "text"
      },
      "cell_type": "markdown",
      "source": [
        "##### Copyright 2018 The TensorFlow Authors."
      ]
    },
    {
      "metadata": {
        "id": "_ckMIh7O7s6D",
        "colab_type": "code",
        "colab": {}
      },
      "cell_type": "code",
      "source": [
        "#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n",
        "# you may not use this file except in compliance with the License.\n",
        "# You may obtain a copy of the License at\n",
        "#\n",
        "# https://www.apache.org/licenses/LICENSE-2.0\n",
        "#\n",
        "# Unless required by applicable law or agreed to in writing, software\n",
        "# distributed under the License is distributed on an \"AS IS\" BASIS,\n",
        "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
        "# See the License for the specific language governing permissions and\n",
        "# limitations under the License."
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "metadata": {
        "id": "vasWnqRgy1H4",
        "colab_type": "code",
        "colab": {}
      },
      "cell_type": "code",
      "source": [
        "#@title MIT License\n",
        "#\n",
        "# Copyright (c) 2017 François Chollet\n",
        "#\n",
        "# Permission is hereby granted, free of charge, to any person obtaining a\n",
        "# copy of this software and associated documentation files (the \"Software\"),\n",
        "# to deal in the Software without restriction, including without limitation\n",
        "# the rights to use, copy, modify, merge, publish, distribute, sublicense,\n",
        "# and/or sell copies of the Software, and to permit persons to whom the\n",
        "# Software is furnished to do so, subject to the following conditions:\n",
        "#\n",
        "# The above copyright notice and this permission notice shall be included in\n",
        "# all copies or substantial portions of the Software.\n",
        "#\n",
        "# THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\n",
        "# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\n",
        "# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL\n",
        "# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\n",
        "# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING\n",
        "# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER\n",
        "# DEALINGS IN THE SOFTWARE."
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "metadata": {
        "id": "jYysdyb-CaWM",
        "colab_type": "text"
      },
      "cell_type": "markdown",
      "source": [
        "# Train your first neural network: basic classification"
      ]
    },
    {
      "metadata": {
        "id": "S5Uhzt6vVIB2",
        "colab_type": "text"
      },
      "cell_type": "markdown",
      "source": [
        "<table class=\"tfo-notebook-buttons\" align=\"left\">\n",
        "  <td>\n",
        "    <a target=\"_blank\" href=\"https://www.tensorflow.org/tutorials/keras/basic_classification\"><img src=\"https://www.tensorflow.org/images/tf_logo_32px.png\" />View on TensorFlow.org</a>\n",
        "  </td>\n",
        "  <td>\n",
        "    <a target=\"_blank\" href=\"https://colab.research.google.com/github/tensorflow/models/blob/master/samples/core/tutorials/keras/basic_classification.ipynb\"><img src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" />Run in Google Colab</a>\n",
        "  </td>\n",
        "  <td>\n",
        "    <a target=\"_blank\" href=\"https://github.com/tensorflow/models/blob/master/samples/core/tutorials/keras/basic_classification.ipynb\"><img src=\"https://www.tensorflow.org/images/GitHub-Mark-32px.png\" />View source on GitHub</a>\n",
        "  </td>\n",
        "</table>"
      ]
    },
    {
      "metadata": {
        "id": "FbVhjPpzn6BM",
        "colab_type": "text"
      },
      "cell_type": "markdown",
      "source": [
        "This guide trains a neural network model to classify images of clothing, like sneakers and shirts. It's okay if you don't understand all the details, this is a fast-paced overview of a complete TensorFlow program with the details explained as we go.\n",
        "\n",
        "This guide uses [tf.keras](https://www.tensorflow.org/guide/keras), a high-level API to build and train models in TensorFlow."
      ]
    },
    {
      "metadata": {
        "id": "dzLKpmZICaWN",
        "colab_type": "code",
        "colab": {}
      },
      "cell_type": "code",
      "source": [
        "# TensorFlow and tf.keras\n",
        "import tensorflow as tf\n",
        "from tensorflow import keras\n",
        "\n",
        "# Helper libraries\n",
        "import numpy as np\n",
        "import matplotlib.pyplot as plt\n",
        "\n",
        "print(tf.__version__)"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "metadata": {
        "id": "yR0EdgrLCaWR",
        "colab_type": "text"
      },
      "cell_type": "markdown",
      "source": [
        "## Import the Fashion MNIST dataset"
      ]
    },
    {
      "metadata": {
        "id": "DLdCchMdCaWQ",
        "colab_type": "text"
      },
      "cell_type": "markdown",
      "source": [
        "This guide uses the [Fashion MNIST](https://github.com/zalandoresearch/fashion-mnist) dataset which contains 70,000 grayscale images in 10 categories. The images show individual articles of clothing at low resolution (28 by 28 pixels), as seen here:\n",
        "\n",
        "<table>\n",
        "  <tr><td>\n",
        "    <img src=\"https://tensorflow.org/images/fashion-mnist-sprite.png\"\n",
        "         alt=\"Fashion MNIST sprite\"  width=\"600\">\n",
        "  </td></tr>\n",
        "  <tr><td align=\"center\">\n",
        "    <b>Figure 1.</b> <a href=\"https://github.com/zalandoresearch/fashion-mnist\">Fashion-MNIST samples</a> (by Zalando, MIT License).<br/>&nbsp;\n",
        "  </td></tr>\n",
        "</table>\n",
        "\n",
        "Fashion MNIST is intended as a drop-in replacement for the classic [MNIST](http://yann.lecun.com/exdb/mnist/) dataset—often used as the \"Hello, World\" of machine learning programs for computer vision. The MNIST dataset contains images of handwritten digits (0, 1, 2, etc) in an identical format to the articles of clothing we'll use here.\n",
        "\n",
        "This guide uses Fashion MNIST for variety, and because it's a slightly more challenging problem than regular MNIST. Both datasets are relatively small and are used to verify that an algorithm works as expected. They're good starting points to test and debug code. \n",
        "\n",
        "We will use 60,000 images to train the network and 10,000 images to evaluate how accurately the network learned to classify images. You can access the Fashion MNIST directly from TensorFlow, just import and load the data:"
      ]
    },
    {
      "metadata": {
        "id": "7MqDQO0KCaWS",
        "colab_type": "code",
        "colab": {}
      },
      "cell_type": "code",
      "source": [
        "fashion_mnist = keras.datasets.fashion_mnist\n",
        "\n",
        "(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "metadata": {
        "id": "t9FDsUlxCaWW",
        "colab_type": "text"
      },
      "cell_type": "markdown",
      "source": [
        "Loading the dataset returns four NumPy arrays:\n",
        "\n",
        "* The `train_images` and `train_labels` arrays are the *training set*—the data the model uses to learn.\n",
        "* The model is tested against the *test set*, the `test_images`, and `test_labels` arrays.\n",
        "\n",
        "The images are 28x28 NumPy arrays, with pixel values ranging between 0 and 255. The *labels* are an array of integers, ranging from 0 to 9. These correspond to the *class* of clothing the image represents:\n",
        "\n",
        "<table>\n",
        "  <tr>\n",
        "    <th>Label</th>\n",
        "    <th>Class</th> \n",
        "  </tr>\n",
        "  <tr>\n",
        "    <td>0</td>\n",
        "    <td>T-shirt/top</td> \n",
        "  </tr>\n",
        "  <tr>\n",
        "    <td>1</td>\n",
        "    <td>Trouser</td> \n",
        "  </tr>\n",
        "    <tr>\n",
        "    <td>2</td>\n",
        "    <td>Pullover</td> \n",
        "  </tr>\n",
        "    <tr>\n",
        "    <td>3</td>\n",
        "    <td>Dress</td> \n",
        "  </tr>\n",
        "    <tr>\n",
        "    <td>4</td>\n",
        "    <td>Coat</td> \n",
        "  </tr>\n",
        "    <tr>\n",
        "    <td>5</td>\n",
        "    <td>Sandal</td> \n",
        "  </tr>\n",
        "    <tr>\n",
        "    <td>6</td>\n",
        "    <td>Shirt</td> \n",
        "  </tr>\n",
        "    <tr>\n",
        "    <td>7</td>\n",
        "    <td>Sneaker</td> \n",
        "  </tr>\n",
        "    <tr>\n",
        "    <td>8</td>\n",
        "    <td>Bag</td> \n",
        "  </tr>\n",
        "    <tr>\n",
        "    <td>9</td>\n",
        "    <td>Ankle boot</td> \n",
        "  </tr>\n",
        "</table>\n",
        "\n",
        "Each image is mapped to a single label. Since the *class names* are not included with the dataset, store them here to use later when plotting the images:"
      ]
    },
    {
      "metadata": {
        "id": "IjnLH5S2CaWx",
        "colab_type": "code",
        "colab": {}
      },
      "cell_type": "code",
      "source": [
        "class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', \n",
        "               'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "metadata": {
        "id": "Brm0b_KACaWX",
        "colab_type": "text"
      },
      "cell_type": "markdown",
      "source": [
        "## Explore the data\n",
        "\n",
        "Let's explore the format of the dataset before training the model. The following shows there are 60,000 images in the training set, with each image represented as 28 x 28 pixels:"
      ]
    },
    {
      "metadata": {
        "id": "zW5k_xz1CaWX",
        "colab_type": "code",
        "colab": {}
      },
      "cell_type": "code",
      "source": [
        "train_images.shape"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "metadata": {
        "id": "cIAcvQqMCaWf",
        "colab_type": "text"
      },
      "cell_type": "markdown",
      "source": [
        "Likewise, there are 60,000 labels in the training set:"
      ]
    },
    {
      "metadata": {
        "id": "TRFYHB2mCaWb",
        "colab_type": "code",
        "colab": {}
      },
      "cell_type": "code",
      "source": [
        "len(train_labels)"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "metadata": {
        "id": "YSlYxFuRCaWk",
        "colab_type": "text"
      },
      "cell_type": "markdown",
      "source": [
        "Each label is an integer between 0 and 9:"
      ]
    },
    {
      "metadata": {
        "id": "XKnCTHz4CaWg",
        "colab_type": "code",
        "colab": {}
      },
      "cell_type": "code",
      "source": [
        "train_labels"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "metadata": {
        "id": "TMPI88iZpO2T",
        "colab_type": "text"
      },
      "cell_type": "markdown",
      "source": [
        "There are 10,000 images in the test set. Again, each image is represented as 28 x 28 pixels:"
      ]
    },
    {
      "metadata": {
        "id": "2KFnYlcwCaWl",
        "colab_type": "code",
        "colab": {}
      },
      "cell_type": "code",
      "source": [
        "test_images.shape"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "metadata": {
        "id": "rd0A0Iu0CaWq",
        "colab_type": "text"
      },
      "cell_type": "markdown",
      "source": [
        "And the test set contains 10,000 images labels:"
      ]
    },
    {
      "metadata": {
        "id": "iJmPr5-ACaWn",
        "colab_type": "code",
        "colab": {}
      },
      "cell_type": "code",
      "source": [
        "len(test_labels)"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "metadata": {
        "id": "ES6uQoLKCaWr",
        "colab_type": "text"
      },
      "cell_type": "markdown",
      "source": [
        "## Preprocess the data\n",
        "\n",
        "The data must be preprocessed before training the network. If you inspect the first image in the training set, you will see that the pixel values fall in the range of 0 to 255:"
      ]
    },
    {
      "metadata": {
        "id": "m4VEw8Ud9Quh",
        "colab_type": "code",
        "colab": {}
      },
      "cell_type": "code",
      "source": [
        "plt.figure()\n",
        "plt.imshow(train_images[1000])\n",
        "plt.colorbar()\n",
        "plt.gca().grid(False)"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "metadata": {
        "id": "Wz7l27Lz9S1P",
        "colab_type": "text"
      },
      "cell_type": "markdown",
      "source": [
        "We scale these values to a range of 0 to 1 before feeding to the neural network model. For this, cast the datatype of the image components from an integer to a float, and divide by 255. Here's the function to preprocess the images:"
      ]
    },
    {
      "metadata": {
        "id": "3jCZdQNNCaWv",
        "colab_type": "text"
      },
      "cell_type": "markdown",
      "source": [
        "It's important that the *training set* and the *testing set* are preprocessed in the same way:"
      ]
    },
    {
      "metadata": {
        "id": "bW5WzIPlCaWv",
        "colab_type": "code",
        "colab": {}
      },
      "cell_type": "code",
      "source": [
        "train_images = train_images / 255.0\n",
        "\n",
        "test_images = test_images / 255.0"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "metadata": {
        "id": "Ee638AlnCaWz",
        "colab_type": "text"
      },
      "cell_type": "markdown",
      "source": [
        "Display the first 25 images from the *training set* and display the class name below each image. Verify that the data is in the correct format and we're ready to build and train the network."
      ]
    },
    {
      "metadata": {
        "id": "oZTImqg_CaW1",
        "colab_type": "code",
        "colab": {}
      },
      "cell_type": "code",
      "source": [
        "import matplotlib.pyplot as plt\n",
        "%matplotlib inline\n",
        "\n",
        "plt.figure(figsize=(16,16))\n",
        "for i in range(100):\n",
        "    plt.subplot(10,10,i+1)\n",
        "    plt.xticks([])\n",
        "    plt.yticks([])\n",
        "    plt.grid('off')\n",
        "    plt.imshow(train_images[i], cmap=plt.cm.binary)\n",
        "    plt.xlabel(class_names[train_labels[i]])"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "metadata": {
        "id": "59veuiEZCaW4",
        "colab_type": "text"
      },
      "cell_type": "markdown",
      "source": [
        "## Build the model\n",
        "\n",
        "Building the neural network requires configuring the layers of the model, then compiling the model."
      ]
    },
    {
      "metadata": {
        "id": "Gxg1XGm0eOBy",
        "colab_type": "text"
      },
      "cell_type": "markdown",
      "source": [
        "### Setup the layers\n",
        "\n",
        "The basic building block of a neural network is the *layer*. Layers extract representations from the data fed into them. And, hopefully, these representations are more meaningful for the problem at hand.\n",
        "\n",
        "Most of deep learning consists of chaining together simple layers. Most layers, like `tf.keras.layers.Dense`, have parameters that are learned during training."
      ]
    },
    {
      "metadata": {
        "id": "9ODch-OFCaW4",
        "colab_type": "code",
        "colab": {}
      },
      "cell_type": "code",
      "source": [
        "model = keras.Sequential([\n",
        "    keras.layers.Flatten(input_shape=(28, 28)),\n",
        "    keras.layers.Dense(128, activation=tf.nn.relu),\n",
        "    keras.layers.Dense(10, activation=tf.nn.softmax)\n",
        "])"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "metadata": {
        "id": "gut8A_7rCaW6",
        "colab_type": "text"
      },
      "cell_type": "markdown",
      "source": [
        "The first layer in this network, `tf.keras.layers.Flatten`, transforms the format of the images from a 2d-array (of 28 by 28 pixels), to a 1d-array of 28 * 28 = 784 pixels. Think of this layer as unstacking rows of pixels in the image and lining them up. This layer has no parameters to learn; it only reformats the data.\n",
        "\n",
        "After the pixels are flattened, the network consists of a sequence of two `tf.keras.layers.Dense` layers. These are densely-connected, or fully-connected, neural layers. The first `Dense` layer has 128 nodes (or neurons). The second (and last) layer is a 10-node *softmax* layer—this returns an array of 10 probability scores that sum to 1. Each node contains a score that indicates the probability that the current image belongs to one of the 10 digit classes.\n",
        "\n",
        "### Compile the model\n",
        "\n",
        "Before the model is ready for training, it needs a few more settings. These are added during the model's *compile* step:\n",
        "\n",
        "* *Loss function* —This measures how accurate the model is during training. We want to minimize this function to \"steer\" the model in the right direction.\n",
        "* *Optimizer* —This is how the model is updated based on the data it sees and its loss function.\n",
        "* *Metrics* —Used to monitor the training and testing steps. The following example uses *accuracy*, the fraction of the images that are correctly classified."
      ]
    },
    {
      "metadata": {
        "id": "Lhan11blCaW7",
        "colab_type": "code",
        "colab": {}
      },
      "cell_type": "code",
      "source": [
        "model.compile(optimizer=tf.train.AdamOptimizer(), \n",
        "              loss='sparse_categorical_crossentropy',\n",
        "              metrics=['accuracy'])"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "metadata": {
        "id": "qKF6uW-BCaW-",
        "colab_type": "text"
      },
      "cell_type": "markdown",
      "source": [
        "## Train the model\n",
        "\n",
        "Training the neural network model requires the following steps:\n",
        "\n",
        "1. Feed the training data to the model—in this example, the `train_images` and `train_labels` arrays.\n",
        "2. The model learns to associate images and labels.\n",
        "3. We ask the model to make predictions about a test set—in this example, the `test_images` array. We verify that the predictions match the labels from the `test_labels` array. \n",
        "\n",
        "To start training,  call the `model.fit` method—the model is \"fit\" to the training data:"
      ]
    },
    {
      "metadata": {
        "id": "xvwvpA64CaW_",
        "colab_type": "code",
        "colab": {}
      },
      "cell_type": "code",
      "source": [
        "model.fit(train_images, train_labels, epochs=5)"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "metadata": {
        "id": "W3ZVOhugCaXA",
        "colab_type": "text"
      },
      "cell_type": "markdown",
      "source": [
        "As the model trains, the loss and accuracy metrics are displayed. This model reaches an accuracy of about 0.88 (or 88%) on the training data."
      ]
    },
    {
      "metadata": {
        "id": "oEw4bZgGCaXB",
        "colab_type": "text"
      },
      "cell_type": "markdown",
      "source": [
        "## Evaluate accuracy\n",
        "\n",
        "Next, compare how the model performs on the test dataset:"
      ]
    },
    {
      "metadata": {
        "id": "VflXLEeECaXC",
        "colab_type": "code",
        "colab": {}
      },
      "cell_type": "code",
      "source": [
        "test_loss, test_acc = model.evaluate(test_images, test_labels)\n",
        "\n",
        "print('Test accuracy:', test_acc)"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "metadata": {
        "id": "yWfgsmVXCaXG",
        "colab_type": "text"
      },
      "cell_type": "markdown",
      "source": [
        "It turns out, the accuracy on the test dataset is a little less than the accuracy on the training dataset. This gap between training accuracy and test accuracy is an example of *overfitting*. Overfitting is when a machine learning model performs worse on new data than on their training data. "
      ]
    },
    {
      "metadata": {
        "id": "xsoS7CPDCaXH",
        "colab_type": "text"
      },
      "cell_type": "markdown",
      "source": [
        "## Make predictions\n",
        "\n",
        "With the model trained, we can use it to make predictions about some images."
      ]
    },
    {
      "metadata": {
        "id": "Gl91RPhdCaXI",
        "colab_type": "code",
        "colab": {}
      },
      "cell_type": "code",
      "source": [
        "predictions = model.predict(test_images)"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "metadata": {
        "id": "x9Kk1voUCaXJ",
        "colab_type": "text"
      },
      "cell_type": "markdown",
      "source": [
        "Here, the model has predicted the label for each image in the testing set. Let's take a look at the first prediction:"
      ]
    },
    {
      "metadata": {
        "id": "3DmJEUinCaXK",
        "colab_type": "code",
        "colab": {}
      },
      "cell_type": "code",
      "source": [
        "predictions[0]"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "metadata": {
        "id": "DLddP9FpyKvI",
        "colab_type": "text"
      },
      "cell_type": "markdown",
      "source": [
        "Let's take a look at what the model thinks is the categorization. "
      ]
    },
    {
      "metadata": {
        "id": "9tW6mu7R7um2",
        "colab_type": "text"
      },
      "cell_type": "markdown",
      "source": [
        "A prediction is an array of 10 numbers. These describe the \"confidence\" of the model that the image corresponds to each of the 10 different articles of clothing. We can see which label has the highest confidence value:"
      ]
    },
    {
      "metadata": {
        "id": "Hl5-vE-O7um3",
        "colab_type": "code",
        "colab": {}
      },
      "cell_type": "code",
      "source": [
        "np.argmax(predictions[0])"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "metadata": {
        "id": "65IIjOK87um5",
        "colab_type": "text"
      },
      "cell_type": "markdown",
      "source": [
        "So the model is most confident that this image is an ankle boot, or `class_names[9]`. And we can check the test label to see this is correct:"
      ]
    },
    {
      "metadata": {
        "id": "8g-OXDes7um6",
        "colab_type": "code",
        "colab": {}
      },
      "cell_type": "code",
      "source": [
        "test_labels[0]"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "metadata": {
        "id": "ygh2yYC972ne",
        "colab_type": "text"
      },
      "cell_type": "markdown",
      "source": [
        "We can graph this to look at the full set of 10 channels"
      ]
    },
    {
      "metadata": {
        "id": "DvYmmrpIy6Y1",
        "colab_type": "code",
        "colab": {}
      },
      "cell_type": "code",
      "source": [
        "def plot_image(predictions_array, true_label, img):\n",
        "  plt.xticks([])\n",
        "  plt.yticks([])\n",
        "  plt.grid('off')\n",
        "  plt.imshow(img, cmap=plt.cm.binary)\n",
        "\n",
        "  predicted_label = np.argmax(predictions_array)\n",
        "  if predicted_label == true_label:\n",
        "    color = 'blue'\n",
        "  else:\n",
        "    color = 'red'\n",
        "  plt.xlabel(\"{} {} ({})\".format(class_names[predicted_label],\n",
        "                                 str(round(predictions_array[np.argmax(predictions_array)] * 100)) + \"%\",\n",
        "                                class_names[true_label]),\n",
        "                                color=color)\n",
        "\n",
        "def plot_value_array(predictions_array, true_label):\n",
        "  plt.grid('off')\n",
        "  thisplot = plt.bar(range(10), predictions_array, color=\"#777777\")\n",
        "  plt.ylim([0, 1]) \n",
        "  predicted_label = np.argmax(predictions_array)\n",
        " \n",
        "  thisplot[predicted_label].set_color('red')\n",
        "  thisplot[true_label].set_color('blue')\n",
        "\n",
        "  \n",
        "# define plot to look at the image, predicted label, actual label, predicted percent for top prediction, and graph of all prediction values\n",
        "def plot_fig_and_predarray(iter):\n",
        "  plt.figure(figsize=(6,3))\n",
        "  \n",
        "  # plot the image first\n",
        "  plt.subplot(1,2,1)\n",
        "  plot_image(predictions[iter], test_labels[iter], test_images[int(iter)])\n",
        "  \n",
        "  # then the graph of 10 values\n",
        "  plt.subplot(1,2,2)\n",
        "  plot_value_array(predictions[iter],  test_labels[iter])"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "metadata": {
        "id": "d4Ov9OFDMmOD",
        "colab_type": "text"
      },
      "cell_type": "markdown",
      "source": [
        "Let's look at the 0th image, predictions, and prediction array. "
      ]
    },
    {
      "metadata": {
        "id": "HV5jw-5HwSmO",
        "colab_type": "code",
        "colab": {}
      },
      "cell_type": "code",
      "source": [
        "plot_fig_and_predarray(0)"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "metadata": {
        "id": "Ko-uzOufSCSe",
        "colab_type": "code",
        "colab": {}
      },
      "cell_type": "code",
      "source": [
        "plot_fig_and_predarray(12)"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "metadata": {
        "id": "kgdvGD52CaXR",
        "colab_type": "text"
      },
      "cell_type": "markdown",
      "source": [
        "Let's plot several images with their predictions. Correct prediction labels are blue and incorrect prediction labels are red. The number gives the percent (out of 100) for the predicted label. Note that it can be wrong even when very confident. "
      ]
    },
    {
      "metadata": {
        "id": "hQlnbqaw2Qu_",
        "colab_type": "code",
        "colab": {}
      },
      "cell_type": "code",
      "source": [
        "# Plot the first X test images, their predicted label, and the true label\n",
        "# Color correct predictions in blue, incorrect predictions in red\n",
        "num_images = int(50)\n",
        "plt.figure(figsize=(24,20))\n",
        "for i in range(num_images):\n",
        "    plt.subplot(10,num_images / 5,2*i+1)\n",
        "    plot_image(predictions[i], test_labels[i], test_images[i])\n",
        "    \n",
        "    plt.subplot(10,num_images / 5,2*i+2)\n",
        "    plt.xticks([])\n",
        "    plt.yticks([])\n",
        "    plot_value_array(predictions[i], test_labels[i])"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "metadata": {
        "id": "R32zteKHCaXT",
        "colab_type": "text"
      },
      "cell_type": "markdown",
      "source": [
        "Finally, use the trained model to make a prediction about a single image. "
      ]
    },
    {
      "metadata": {
        "id": "yRJ7JU7JCaXT",
        "colab_type": "code",
        "colab": {}
      },
      "cell_type": "code",
      "source": [
        "# Grab an image from the test dataset\n",
        "img = test_images[0]\n",
        "\n",
        "print(img.shape)"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "metadata": {
        "id": "vz3bVp21CaXV",
        "colab_type": "text"
      },
      "cell_type": "markdown",
      "source": [
        "`tf.keras` models are optimized to make predictions on a *batch*, or collection, of examples at once. So even though we're using a single image, we need to add it to a list:"
      ]
    },
    {
      "metadata": {
        "id": "lDFh5yF_CaXW",
        "colab_type": "code",
        "colab": {}
      },
      "cell_type": "code",
      "source": [
        "# Add the image to a batch where it's the only member.\n",
        "img = (np.expand_dims(img,0))\n",
        "\n",
        "print(img.shape)"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "metadata": {
        "id": "EQ5wLTkcCaXY",
        "colab_type": "text"
      },
      "cell_type": "markdown",
      "source": [
        "Now predict the image:"
      ]
    },
    {
      "metadata": {
        "id": "o_rzNSdrCaXY",
        "colab_type": "code",
        "colab": {}
      },
      "cell_type": "code",
      "source": [
        "predictions_single = model.predict(img)\n",
        "\n",
        "print(predictions_single)"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "metadata": {
        "id": "cU1Y2OAMCaXb",
        "colab_type": "text"
      },
      "cell_type": "markdown",
      "source": [
        "`model.predict` returns a list of lists, one for each image in the batch of data. Grab the predictions for our (only) image in the batch:"
      ]
    },
    {
      "metadata": {
        "id": "2tRmdq_8CaXb",
        "colab_type": "code",
        "colab": {}
      },
      "cell_type": "code",
      "source": [
        "np.argmax(predictions_single[0])"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "metadata": {
        "id": "YFc2HbEVCaXd",
        "colab_type": "text"
      },
      "cell_type": "markdown",
      "source": [
        "And, as before, the model predicts a label of 9."
      ]
    }
  ]
}