dp_mnist.py 20.6 KB
Newer Older
Xin Pan's avatar
Xin Pan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Example differentially private trainer and evaluator for MNIST.
"""
from __future__ import division

import json
import os
import sys
import time

import numpy as np
import tensorflow as tf

from differential_privacy.dp_optimizer import accountant
from differential_privacy.dp_optimizer import dp_optimizer
from differential_privacy.dp_optimizer import dp_pca
from differential_privacy.dp_optimizer import sanitizer
from differential_privacy.dp_optimizer import utils

# parameters for the training
tf.flags.DEFINE_integer("batch_size", 600,
                        "The training batch size.")
tf.flags.DEFINE_integer("batches_per_lot", 1,
                        "Number of batches per lot.")
# Together, batch_size and batches_per_lot determine lot_size.
tf.flags.DEFINE_integer("num_training_steps", 50000,
                        "The number of training steps."
                        "This counts number of lots.")

tf.flags.DEFINE_bool("randomize", True,
                     "If true, randomize the input data; otherwise use a fixed "
                     "seed and non-randomized input.")
tf.flags.DEFINE_bool("freeze_bottom_layers", False,
                     "If true, only train on the logit layer.")
tf.flags.DEFINE_bool("save_mistakes", False,
                     "If true, save the mistakes made during testing.")
tf.flags.DEFINE_float("lr", 0.05, "start learning rate")
tf.flags.DEFINE_float("end_lr", 0.05, "end learning rate")
tf.flags.DEFINE_float("lr_saturate_epochs", 0,
                      "learning rate saturate epochs; set to 0 for a constant "
                      "learning rate of --lr.")

# For searching parameters
tf.flags.DEFINE_integer("projection_dimensions", 60,
                        "PCA projection dimensions, or 0 for no projection.")
tf.flags.DEFINE_integer("num_hidden_layers", 1,
                        "Number of hidden layers in the network")
tf.flags.DEFINE_integer("hidden_layer_num_units", 1000,
                        "Number of units per hidden layer")
tf.flags.DEFINE_float("default_gradient_l2norm_bound", 4.0, "norm clipping")
tf.flags.DEFINE_integer("num_conv_layers", 0,
                        "Number of convolutional layers to use.")

tf.flags.DEFINE_string("training_data_path",
                       "/tmp/mnist/mnist_train.tfrecord",
                       "Location of the training data.")
tf.flags.DEFINE_string("eval_data_path",
                       "/tmp/mnist/mnist_test.tfrecord",
                       "Location of the eval data.")
tf.flags.DEFINE_integer("eval_steps", 10,
                        "Evaluate the model every eval_steps")

# Parameters for privacy spending. We allow linearly varying eps during
# training.
tf.flags.DEFINE_string("accountant_type", "Moments", "Moments, Amortized.")

# Flags that control privacy spending during training.
tf.flags.DEFINE_float("eps", 1.0,
                      "Start privacy spending for one epoch of training, "
                      "used if accountant_type is Amortized.")
tf.flags.DEFINE_float("end_eps", 1.0,
                      "End privacy spending for one epoch of training, "
                      "used if accountant_type is Amortized.")
tf.flags.DEFINE_float("eps_saturate_epochs", 0,
                      "Stop varying epsilon after eps_saturate_epochs. Set to "
                      "0 for constant eps of --eps. "
                      "Used if accountant_type is Amortized.")
tf.flags.DEFINE_float("delta", 1e-5,
                      "Privacy spending for training. Constant through "
                      "training, used if accountant_type is Amortized.")
tf.flags.DEFINE_float("sigma", 4.0,
                      "Noise sigma, used only if accountant_type is Moments")


# Flags that control privacy spending for the pca projection
# (only used if --projection_dimensions > 0).
tf.flags.DEFINE_float("pca_eps", 0.5,
                      "Privacy spending for PCA, used if accountant_type is "
                      "Amortized.")
tf.flags.DEFINE_float("pca_delta", 0.005,
                      "Privacy spending for PCA, used if accountant_type is "
                      "Amortized.")

tf.flags.DEFINE_float("pca_sigma", 7.0,
                      "Noise sigma for PCA, used if accountant_type is Moments")

tf.flags.DEFINE_string("target_eps", "0.125,0.25,0.5,1,2,4,8",
                       "Log the privacy loss for the target epsilon's. Only "
                       "used when accountant_type is Moments.")
tf.flags.DEFINE_float("target_delta", 1e-5,
                      "Maximum delta for --terminate_based_on_privacy.")
tf.flags.DEFINE_bool("terminate_based_on_privacy", False,
                     "Stop training if privacy spent exceeds "
                     "(max(--target_eps), --target_delta), even "
                     "if --num_training_steps have not yet been completed.")

tf.flags.DEFINE_string("save_path", "/tmp/mnist_dir",
                       "Directory for saving model outputs.")

FLAGS = tf.flags.FLAGS
NUM_TRAINING_IMAGES = 60000
NUM_TESTING_IMAGES = 10000
IMAGE_SIZE = 28


def MnistInput(mnist_data_file, batch_size, randomize):
  """Create operations to read the MNIST input file.

  Args:
    mnist_data_file: Path of a file containing the MNIST images to process.
    batch_size: size of the mini batches to generate.
    randomize: If true, randomize the dataset.

  Returns:
    images: A tensor with the formatted image data. shape [batch_size, 28*28]
    labels: A tensor with the labels for each image.  shape [batch_size]
  """
  file_queue = tf.train.string_input_producer([mnist_data_file])
  reader = tf.TFRecordReader()
  _, value = reader.read(file_queue)
  example = tf.parse_single_example(
      value,
      features={"image/encoded": tf.FixedLenFeature(shape=(), dtype=tf.string),
                "image/class/label": tf.FixedLenFeature([1], tf.int64)})

  image = tf.cast(tf.image.decode_png(example["image/encoded"], channels=1),
                  tf.float32)
  image = tf.reshape(image, [IMAGE_SIZE * IMAGE_SIZE])
  image /= 255
  label = tf.cast(example["image/class/label"], dtype=tf.int32)
  label = tf.reshape(label, [])

  if randomize:
    images, labels = tf.train.shuffle_batch(
        [image, label], batch_size=batch_size,
        capacity=(batch_size * 100),
        min_after_dequeue=(batch_size * 10))
  else:
    images, labels = tf.train.batch([image, label], batch_size=batch_size)

  return images, labels


def Eval(mnist_data_file, network_parameters, num_testing_images,
         randomize, load_path, save_mistakes=False):
  """Evaluate MNIST for a number of steps.

  Args:
    mnist_data_file: Path of a file containing the MNIST images to process.
    network_parameters: parameters for defining and training the network.
    num_testing_images: the number of images we will evaluate on.
    randomize: if false, randomize; otherwise, read the testing images
      sequentially.
    load_path: path where to load trained parameters from.
    save_mistakes: save the mistakes if True.

  Returns:
    The evaluation accuracy as a float.
  """
  batch_size = 100
  # Like for training, we need a session for executing the TensorFlow graph.
  with tf.Graph().as_default(), tf.Session() as sess:
    # Create the basic Mnist model.
    images, labels = MnistInput(mnist_data_file, batch_size, randomize)
    logits, _, _ = utils.BuildNetwork(images, network_parameters)
    softmax = tf.nn.softmax(logits)

    # Load the variables.
    ckpt_state = tf.train.get_checkpoint_state(load_path)
    if not (ckpt_state and ckpt_state.model_checkpoint_path):
      raise ValueError("No model checkpoint to eval at %s\n" % load_path)

    saver = tf.train.Saver()
    saver.restore(sess, ckpt_state.model_checkpoint_path)
    coord = tf.train.Coordinator()
    _ = tf.train.start_queue_runners(sess=sess, coord=coord)

    total_examples = 0
    correct_predictions = 0
    image_index = 0
    mistakes = []
    for _ in xrange((num_testing_images + batch_size - 1) // batch_size):
      predictions, label_values = sess.run([softmax, labels])

      # Count how many were predicted correctly.
      for prediction, label_value in zip(predictions, label_values):
        total_examples += 1
        if np.argmax(prediction) == label_value:
          correct_predictions += 1
        elif save_mistakes:
          mistakes.append({"index": image_index,
                           "label": label_value,
                           "pred": np.argmax(prediction)})
        image_index += 1

  return (correct_predictions / total_examples,
          mistakes if save_mistakes else None)


def Train(mnist_train_file, mnist_test_file, network_parameters, num_steps,
          save_path, eval_steps=0):
  """Train MNIST for a number of steps.

  Args:
    mnist_train_file: path of MNIST train data file.
    mnist_test_file: path of MNIST test data file.
    network_parameters: parameters for defining and training the network.
    num_steps: number of steps to run. Here steps = lots
    save_path: path where to save trained parameters.
    eval_steps: evaluate the model every eval_steps.

  Returns:
    the result after the final training step.

  Raises:
    ValueError: if the accountant_type is not supported.
  """
  batch_size = FLAGS.batch_size

  params = {"accountant_type": FLAGS.accountant_type,
            "task_id": 0,
            "batch_size": FLAGS.batch_size,
            "projection_dimensions": FLAGS.projection_dimensions,
            "default_gradient_l2norm_bound":
            network_parameters.default_gradient_l2norm_bound,
            "num_hidden_layers": FLAGS.num_hidden_layers,
            "hidden_layer_num_units": FLAGS.hidden_layer_num_units,
            "num_examples": NUM_TRAINING_IMAGES,
            "learning_rate": FLAGS.lr,
            "end_learning_rate": FLAGS.end_lr,
            "learning_rate_saturate_epochs": FLAGS.lr_saturate_epochs
           }
  # Log different privacy parameters dependent on the accountant type.
  if FLAGS.accountant_type == "Amortized":
    params.update({"flag_eps": FLAGS.eps,
                   "flag_delta": FLAGS.delta,
                   "flag_pca_eps": FLAGS.pca_eps,
                   "flag_pca_delta": FLAGS.pca_delta,
                  })
  elif FLAGS.accountant_type == "Moments":
    params.update({"sigma": FLAGS.sigma,
                   "pca_sigma": FLAGS.pca_sigma,
                  })

  with tf.Graph().as_default(), tf.Session() as sess, tf.device('/cpu:0'):
    # Create the basic Mnist model.
    images, labels = MnistInput(mnist_train_file, batch_size, FLAGS.randomize)

    logits, projection, training_params = utils.BuildNetwork(
        images, network_parameters)

    cost = tf.nn.softmax_cross_entropy_with_logits(
        logits, tf.one_hot(labels, 10))

    # The actual cost is the average across the examples.
    cost = tf.reduce_sum(cost, [0]) / batch_size

    if FLAGS.accountant_type == "Amortized":
      priv_accountant = accountant.AmortizedAccountant(NUM_TRAINING_IMAGES)
      sigma = None
      pca_sigma = None
      with_privacy = FLAGS.eps > 0
    elif FLAGS.accountant_type == "Moments":
      priv_accountant = accountant.GaussianMomentsAccountant(
          NUM_TRAINING_IMAGES)
      sigma = FLAGS.sigma
      pca_sigma = FLAGS.pca_sigma
      with_privacy = FLAGS.sigma > 0
    else:
      raise ValueError("Undefined accountant type, needs to be "
                       "Amortized or Moments, but got %s" % FLAGS.accountant)
    # Note: Here and below, we scale down the l2norm_bound by
    # batch_size. This is because per_example_gradients computes the
    # gradient of the minibatch loss with respect to each individual
    # example, and the minibatch loss (for our model) is the *average*
    # loss over examples in the minibatch. Hence, the scale of the
    # per-example gradients goes like 1 / batch_size.
    gaussian_sanitizer = sanitizer.AmortizedGaussianSanitizer(
        priv_accountant,
        [network_parameters.default_gradient_l2norm_bound / batch_size, True])

    for var in training_params:
      if "gradient_l2norm_bound" in training_params[var]:
        l2bound = training_params[var]["gradient_l2norm_bound"] / batch_size
        gaussian_sanitizer.set_option(var,
                                      sanitizer.ClipOption(l2bound, True))
    lr = tf.placeholder(tf.float32)
    eps = tf.placeholder(tf.float32)
    delta = tf.placeholder(tf.float32)

    init_ops = []
    if network_parameters.projection_type == "PCA":
      with tf.variable_scope("pca"):
        # Compute differentially private PCA.
        all_data, _ = MnistInput(mnist_train_file, NUM_TRAINING_IMAGES, False)
        pca_projection = dp_pca.ComputeDPPrincipalProjection(
            all_data, network_parameters.projection_dimensions,
            gaussian_sanitizer, [FLAGS.pca_eps, FLAGS.pca_delta], pca_sigma)
        assign_pca_proj = tf.assign(projection, pca_projection)
        init_ops.append(assign_pca_proj)

    # Add global_step
    global_step = tf.Variable(0, dtype=tf.int32, trainable=False,
                              name="global_step")

    if with_privacy:
      gd_op = dp_optimizer.DPGradientDescentOptimizer(
          lr,
          [eps, delta],
          gaussian_sanitizer,
          sigma=sigma,
          batches_per_lot=FLAGS.batches_per_lot).minimize(
              cost, global_step=global_step)
    else:
      gd_op = tf.train.GradientDescentOptimizer(lr).minimize(cost)

    saver = tf.train.Saver()
    coord = tf.train.Coordinator()
    _ = tf.train.start_queue_runners(sess=sess, coord=coord)

    # We need to maintain the intialization sequence.
    for v in tf.trainable_variables():
      sess.run(tf.initialize_variables([v]))
    sess.run(tf.initialize_all_variables())
    sess.run(init_ops)

    results = []
    start_time = time.time()
    prev_time = start_time
    filename = "results-0.json"
    log_path = os.path.join(save_path, filename)

    target_eps = [float(s) for s in FLAGS.target_eps.split(",")]
    if FLAGS.accountant_type == "Amortized":
      # Only matters if --terminate_based_on_privacy is true.
      target_eps = [max(target_eps)]
    max_target_eps = max(target_eps)

    lot_size = FLAGS.batches_per_lot * FLAGS.batch_size
    lots_per_epoch = NUM_TRAINING_IMAGES / lot_size
    for step in xrange(num_steps):
      epoch = step / lots_per_epoch
      curr_lr = utils.VaryRate(FLAGS.lr, FLAGS.end_lr,
                               FLAGS.lr_saturate_epochs, epoch)
      curr_eps = utils.VaryRate(FLAGS.eps, FLAGS.end_eps,
                                FLAGS.eps_saturate_epochs, epoch)
      for _ in xrange(FLAGS.batches_per_lot):
        _ = sess.run(
            [gd_op], feed_dict={lr: curr_lr, eps: curr_eps, delta: FLAGS.delta})
      sys.stderr.write("step: %d\n" % step)

      # See if we should stop training due to exceeded privacy budget:
      should_terminate = False
      terminate_spent_eps_delta = None
      if with_privacy and FLAGS.terminate_based_on_privacy:
        terminate_spent_eps_delta = priv_accountant.get_privacy_spent(
            sess, target_eps=[max_target_eps])[0]
        # For the Moments accountant, we should always have
        # spent_eps == max_target_eps.
        if (terminate_spent_eps_delta.spent_delta > FLAGS.target_delta or
            terminate_spent_eps_delta.spent_eps > max_target_eps):
          should_terminate = True

      if (eval_steps > 0 and (step + 1) % eval_steps == 0) or should_terminate:
        if with_privacy:
          spent_eps_deltas = priv_accountant.get_privacy_spent(
              sess, target_eps=target_eps)
        else:
          spent_eps_deltas = [accountant.EpsDelta(0, 0)]
        for spent_eps, spent_delta in spent_eps_deltas:
          sys.stderr.write("spent privacy: eps %.4f delta %.5g\n" % (
              spent_eps, spent_delta))

        saver.save(sess, save_path=save_path + "/ckpt")
        train_accuracy, _ = Eval(mnist_train_file, network_parameters,
                                 num_testing_images=NUM_TESTING_IMAGES,
                                 randomize=True, load_path=save_path)
        sys.stderr.write("train_accuracy: %.2f\n" % train_accuracy)
        test_accuracy, mistakes = Eval(mnist_test_file, network_parameters,
                                       num_testing_images=NUM_TESTING_IMAGES,
                                       randomize=False, load_path=save_path,
                                       save_mistakes=FLAGS.save_mistakes)
        sys.stderr.write("eval_accuracy: %.2f\n" % test_accuracy)

        curr_time = time.time()
        elapsed_time = curr_time - prev_time
        prev_time = curr_time

        results.append({"step": step+1,  # Number of lots trained so far.
                        "elapsed_secs": elapsed_time,
                        "spent_eps_deltas": spent_eps_deltas,
                        "train_accuracy": train_accuracy,
                        "test_accuracy": test_accuracy,
                        "mistakes": mistakes})
        loginfo = {"elapsed_secs": curr_time-start_time,
                   "spent_eps_deltas": spent_eps_deltas,
                   "train_accuracy": train_accuracy,
                   "test_accuracy": test_accuracy,
                   "num_training_steps": step+1,  # Steps so far.
                   "mistakes": mistakes,
                   "result_series": results}
        loginfo.update(params)
        if log_path:
          with tf.gfile.Open(log_path, "w") as f:
            json.dump(loginfo, f, indent=2)
            f.write("\n")
            f.close()

      if should_terminate:
        break


def main(_):
  network_parameters = utils.NetworkParameters()

  # If the ASCII proto isn't specified, then construct a config protobuf based
  # on 3 flags.
  network_parameters.input_size = IMAGE_SIZE ** 2
  network_parameters.default_gradient_l2norm_bound = (
      FLAGS.default_gradient_l2norm_bound)
  if FLAGS.projection_dimensions > 0 and FLAGS.num_conv_layers > 0:
    raise ValueError("Currently you can't do PCA and have convolutions"
                     "at the same time. Pick one")

    # could add support for PCA after convolutions.
    # Currently BuildNetwork can build the network with conv followed by
    # projection, but the PCA training works on data, rather than data run
    # through a few layers. Will need to init the convs before running the
    # PCA, and need to change the PCA subroutine to take a network and perhaps
    # allow for batched inputs, to handle larger datasets.
  if FLAGS.num_conv_layers > 0:
    conv = utils.ConvParameters()
    conv.name = "conv1"
    conv.in_channels = 1
    conv.out_channels = 128
    conv.num_outputs = 128 * 14 * 14
    network_parameters.conv_parameters.append(conv)
    # defaults for the rest: 5x5,stride 1, relu, maxpool 2x2,stride 2.
    # insize 28x28, bias, stddev 0.1, non-trainable.
  if FLAGS.num_conv_layers > 1:
    conv = network_parameters.ConvParameters()
    conv.name = "conv2"
    conv.in_channels = 128
    conv.out_channels = 128
    conv.num_outputs = 128 * 7 * 7
    conv.in_size = 14
    # defaults for the rest: 5x5,stride 1, relu, maxpool 2x2,stride 2.
    # bias, stddev 0.1, non-trainable.
    network_parameters.conv_parameters.append(conv)

  if FLAGS.num_conv_layers > 2:
    raise ValueError("Currently --num_conv_layers must be 0,1 or 2."
                     "Manually create a network_parameters proto for more.")

  if FLAGS.projection_dimensions > 0:
    network_parameters.projection_type = "PCA"
    network_parameters.projection_dimensions = FLAGS.projection_dimensions
  for i in xrange(FLAGS.num_hidden_layers):
    hidden = utils.LayerParameters()
    hidden.name = "hidden%d" % i
    hidden.num_units = FLAGS.hidden_layer_num_units
    hidden.relu = True
    hidden.with_bias = False
    hidden.trainable = not FLAGS.freeze_bottom_layers
    network_parameters.layer_parameters.append(hidden)

  logits = utils.LayerParameters()
  logits.name = "logits"
  logits.num_units = 10
  logits.relu = False
  logits.with_bias = False
  network_parameters.layer_parameters.append(logits)

  Train(FLAGS.training_data_path,
        FLAGS.eval_data_path,
        network_parameters,
        FLAGS.num_training_steps,
        FLAGS.save_path,
        eval_steps=FLAGS.eval_steps)


if __name__ == "__main__":
  tf.app.run()