mnist.py 8.43 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#  Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
"""Convolutional Neural Network Estimator for MNIST, built with tf.layers."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

20
21
from absl import app as absl_app
from absl import flags
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
22
from six.moves import range
Karmel Allison's avatar
Karmel Allison committed
23
import tensorflow as tf  # pylint: disable=g-bad-import-order
24

25
from official.mnist import dataset
26
from official.utils.flags import core as flags_core
27
from official.utils.logs import hooks_helper
28
from official.utils.misc import distribution_utils
29
from official.utils.misc import model_helpers
30

31

32
LEARNING_RATE = 1e-4
33

Karmel Allison's avatar
Karmel Allison committed
34

35
def create_model(data_format):
Asim Shankar's avatar
Asim Shankar committed
36
  """Model to recognize digits in the MNIST dataset.
Asim Shankar's avatar
Asim Shankar committed
37
38
39
40
41
42

  Network structure is equivalent to:
  https://github.com/tensorflow/tensorflow/blob/r1.5/tensorflow/examples/tutorials/mnist/mnist_deep.py
  and
  https://github.com/tensorflow/models/blob/master/tutorials/image/mnist/convolutional.py

43
44
45
  But uses the tf.keras API.

  Args:
Asim Shankar's avatar
Asim Shankar committed
46
47
48
    data_format: Either 'channels_first' or 'channels_last'. 'channels_first' is
      typically faster on GPUs while 'channels_last' is typically faster on
      CPUs. See
49
      https://www.tensorflow.org/performance/performance_guide#data_formats
Asim Shankar's avatar
Asim Shankar committed
50

51
52
53
54
55
56
57
58
59
  Returns:
    A tf.keras.Model.
  """
  if data_format == 'channels_first':
    input_shape = [1, 28, 28]
  else:
    assert data_format == 'channels_last'
    input_shape = [28, 28, 1]

Asim Shankar's avatar
Asim Shankar committed
60
61
62
  l = tf.keras.layers
  max_pool = l.MaxPooling2D(
      (2, 2), (2, 2), padding='same', data_format=data_format)
63
64
  # The model consists of a sequential chain of layers, so tf.keras.Sequential
  # (a subclass of tf.keras.Model) makes for a compact description.
Asim Shankar's avatar
Asim Shankar committed
65
66
  return tf.keras.Sequential(
      [
67
68
69
          l.Reshape(
              target_shape=input_shape,
              input_shape=(28 * 28,)),
Asim Shankar's avatar
Asim Shankar committed
70
71
72
73
74
          l.Conv2D(
              32,
              5,
              padding='same',
              data_format=data_format,
75
76
              activation=tf.nn.relu),
          max_pool,
Asim Shankar's avatar
Asim Shankar committed
77
78
79
80
81
          l.Conv2D(
              64,
              5,
              padding='same',
              data_format=data_format,
82
83
              activation=tf.nn.relu),
          max_pool,
Asim Shankar's avatar
Asim Shankar committed
84
85
86
87
88
          l.Flatten(),
          l.Dense(1024, activation=tf.nn.relu),
          l.Dropout(0.4),
          l.Dense(10)
      ])
Asim Shankar's avatar
Asim Shankar committed
89
90


91
def define_mnist_flags():
92
  """Defines flags for mnist."""
93
  flags_core.define_base(clean=True, train_epochs=True,
94
95
96
                         epochs_between_evals=True, stop_threshold=True,
                         num_gpu=True, hooks=True, export_dir=True,
                         distribution_strategy=True)
97
  flags_core.define_performance(inter_op=True, intra_op=True,
98
99
                                num_parallel_calls=False,
                                all_reduce_alg=True)
100
101
102
103
104
105
106
107
  flags_core.define_image()
  flags.adopt_module_key_flags(flags_core)
  flags_core.set_defaults(data_dir='/tmp/mnist_data',
                          model_dir='/tmp/mnist_model',
                          batch_size=100,
                          train_epochs=40)


Asim Shankar's avatar
Asim Shankar committed
108
109
def model_fn(features, labels, mode, params):
  """The model_fn argument for creating an Estimator."""
110
  model = create_model(params['data_format'])
111
112
113
114
  image = features
  if isinstance(image, dict):
    image = features['image']

Asim Shankar's avatar
Asim Shankar committed
115
  if mode == tf.estimator.ModeKeys.PREDICT:
116
117
118
119
120
121
122
123
124
125
126
    logits = model(image, training=False)
    predictions = {
        'classes': tf.argmax(logits, axis=1),
        'probabilities': tf.nn.softmax(logits),
    }
    return tf.estimator.EstimatorSpec(
        mode=tf.estimator.ModeKeys.PREDICT,
        predictions=predictions,
        export_outputs={
            'classify': tf.estimator.export.PredictOutput(predictions)
        })
Asim Shankar's avatar
Asim Shankar committed
127
  if mode == tf.estimator.ModeKeys.TRAIN:
128
    optimizer = tf.train.AdamOptimizer(learning_rate=LEARNING_RATE)
129

130
    logits = model(image, training=True)
131
    loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
132
    accuracy = tf.metrics.accuracy(
133
        labels=labels, predictions=tf.argmax(logits, axis=1))
134
135
136
137

    # Name tensors to be logged with LoggingTensorHook.
    tf.identity(LEARNING_RATE, 'learning_rate')
    tf.identity(loss, 'cross_entropy')
138
    tf.identity(accuracy[1], name='train_accuracy')
139
140

    # Save accuracy scalar to Tensorboard output.
141
    tf.summary.scalar('train_accuracy', accuracy[1])
142

143
144
145
146
    return tf.estimator.EstimatorSpec(
        mode=tf.estimator.ModeKeys.TRAIN,
        loss=loss,
        train_op=optimizer.minimize(loss, tf.train.get_or_create_global_step()))
Asim Shankar's avatar
Asim Shankar committed
147
  if mode == tf.estimator.ModeKeys.EVAL:
148
    logits = model(image, training=False)
149
    loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
150
151
152
153
154
155
    return tf.estimator.EstimatorSpec(
        mode=tf.estimator.ModeKeys.EVAL,
        loss=loss,
        eval_metric_ops={
            'accuracy':
                tf.metrics.accuracy(
Asim Shankar's avatar
Asim Shankar committed
156
                    labels=labels, predictions=tf.argmax(logits, axis=1)),
157
        })
158
159


160
161
162
163
164
165
def run_mnist(flags_obj):
  """Run MNIST training and eval loop.

  Args:
    flags_obj: An object containing parsed flag values.
  """
166
  model_helpers.apply_clean(flags_obj)
167
168
  model_function = model_fn

169
170
171
172
  session_config = tf.ConfigProto(
      inter_op_parallelism_threads=flags_obj.inter_op_parallelism_threads,
      intra_op_parallelism_threads=flags_obj.intra_op_parallelism_threads,
      allow_soft_placement=True)
173

174
  distribution_strategy = distribution_utils.get_distribution_strategy(
175
176
177
      distribution_strategy=flags_obj.distribution_strategy,
      num_gpus=flags_core.get_num_gpus(flags_obj),
      all_reduce_alg=flags_obj.all_reduce_alg)
178

179
180
  run_config = tf.estimator.RunConfig(
      train_distribute=distribution_strategy, session_config=session_config)
181

182
  data_format = flags_obj.data_format
Asim Shankar's avatar
Asim Shankar committed
183
184
185
  if data_format is None:
    data_format = ('channels_first'
                   if tf.test.is_built_with_cuda() else 'channels_last')
186
  mnist_classifier = tf.estimator.Estimator(
187
      model_fn=model_function,
188
      model_dir=flags_obj.model_dir,
189
      config=run_config,
Asim Shankar's avatar
Asim Shankar committed
190
      params={
191
          'data_format': data_format,
Asim Shankar's avatar
Asim Shankar committed
192
      })
193

194
  # Set up training and evaluation input functions.
Asim Shankar's avatar
Asim Shankar committed
195
  def train_input_fn():
Karmel Allison's avatar
Karmel Allison committed
196
197
    """Prepare data for training."""

Asim Shankar's avatar
Asim Shankar committed
198
199
200
    # When choosing shuffle buffer sizes, larger sizes result in better
    # randomness, while smaller sizes use less memory. MNIST is a small
    # enough dataset that we can easily shuffle the full epoch.
201
202
    ds = dataset.train(flags_obj.data_dir)
    ds = ds.cache().shuffle(buffer_size=50000).batch(flags_obj.batch_size)
Asim Shankar's avatar
Asim Shankar committed
203

204
205
    # Iterate through the dataset a set number (`epochs_between_evals`) of times
    # during each training session.
206
    ds = ds.repeat(flags_obj.epochs_between_evals)
207
    return ds
208

Asim Shankar's avatar
Asim Shankar committed
209
  def eval_input_fn():
210
211
    return dataset.test(flags_obj.data_dir).batch(
        flags_obj.batch_size).make_one_shot_iterator().get_next()
Asim Shankar's avatar
Asim Shankar committed
212

213
214
  # Set up hook that outputs training logs every 100 steps.
  train_hooks = hooks_helper.get_train_hooks(
215
216
      flags_obj.hooks, model_dir=flags_obj.model_dir,
      batch_size=flags_obj.batch_size)
217
218

  # Train and evaluate model.
219
  for _ in range(flags_obj.train_epochs // flags_obj.epochs_between_evals):
220
221
222
    mnist_classifier.train(input_fn=train_input_fn, hooks=train_hooks)
    eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn)
    print('\nEvaluation results:\n\t%s\n' % eval_results)
223

224
    if model_helpers.past_stop_threshold(flags_obj.stop_threshold,
Asim Shankar's avatar
Asim Shankar committed
225
                                         eval_results['accuracy']):
226
227
      break

228
  # Export the model
229
  if flags_obj.export_dir is not None:
Asim Shankar's avatar
Asim Shankar committed
230
231
    image = tf.placeholder(tf.float32, [None, 28, 28])
    input_fn = tf.estimator.export.build_raw_serving_input_receiver_fn({
232
        'image': image,
Asim Shankar's avatar
Asim Shankar committed
233
    })
234
235
    mnist_classifier.export_savedmodel(flags_obj.export_dir, input_fn,
                                       strip_default_attrs=True)
236
237


238
239
240
241
def main(_):
  run_mnist(flags.FLAGS)


242
if __name__ == '__main__':
243
  tf.logging.set_verbosity(tf.logging.INFO)
244
245
  define_mnist_flags()
  absl_app.run(main)