# -*- coding: utf-8 -*- """ 分类器示例 """ import cv2 import argparse import numpy as np import onnxruntime as ort def Preprocessing(pathOfImage): # 读取图像 image = cv2.imread(pathOfImage, cv2.IMREAD_COLOR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # 调整大小,使短边为256,保持长宽比 ratio = float(256) / min(image.shape[0], image.shape[1]) if image.shape[0] > image.shape[1]: new_size = [int(round(ratio * image.shape[0])), 256] else: new_size = [256, int(round(ratio * image.shape[1]))] image = np.array(cv2.resize(image, (new_size[1],new_size[0]))) # 裁剪中心窗口为224*224 h, w, c = image.shape start_x = w//2 - 224//2 start_y = h//2 - 224//2 image = image[start_y:start_y+224, start_x:start_x+224, :] # transpose image = image.transpose(2, 0, 1) # 将输入数据转换为float32 img_data = image.astype('float32') # normalize mean_vec = np.array([123.675, 116.28, 103.53]) stddev_vec = np.array([58.395, 57.12, 57.375]) norm_img_data = np.zeros(img_data.shape).astype('float32') for i in range(img_data.shape[0]): norm_img_data[i,:,:] = (img_data[i,:,:] - mean_vec[i]) / stddev_vec[i] # 调整尺寸 norm_img_data = norm_img_data.reshape(1, 3, 224, 224).astype('float32') return norm_img_data def postprocess(scores,pathOfImage): ''' Postprocessing with mxnet gluon The function takes scores generated by the network and returns the class IDs in decreasing order of probability ''' with open('../Resource/synset.txt', 'r') as f: labels = [l.rstrip() for l in f] preds = np.squeeze(scores) a = np.argsort(preds)[::-1] print('class=%s ; probability=%f' %(labels[a[0]],preds[a[0]])) text = 'class=%s ' % (labels[a[0]]) saveimage(pathOfImage,text) def ort_seg_dcu(model_path,image,staticInfer,dynamicInfer): provider_options=[] if staticInfer: provider_options=[{'device_id':'0','migraphx_fp16_enable':'true'}] if dynamicInfer: provider_options=[{'device_id':'0','migraphx_fp16_enable':'true','dynamic_model':'true', 'migraphx_profile_max_shapes':'data:1x3x224x224'}] dcu_session=ort.InferenceSession(model_path, providers=['MIGraphXExecutionProvider'], provider_options=provider_options) input_name=dcu_session.get_inputs()[0].name output_name=dcu_session.get_outputs()[0].name ort_value=ort.OrtValue.ortvalue_from_numpy(image, device_type='cuda') results=dcu_session.run_with_ort_values([output_name], {input_name:ort_value}) scores=results[0].numpy() print("ort result.shape:",scores.shape) return scores def saveimage(pathOfImage,text): iimage = cv2.imread(pathOfImage, cv2.IMREAD_COLOR) font = cv2.FONT_HERSHEY_SIMPLEX font_scale = 0.5 font_color = (0, 0, 255) font_thickness = 1 text_position = (5, 20) cv2.putText(iimage, text, text_position, font, font_scale, font_color, font_thickness) cv2.imwrite("./output_image.jpg", iimage) cv2.destroyAllWindows() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--imgPath', type=str, default='../Resource/Images/ImageNet_01.jpg', help="image path") parser.add_argument('--staticModelPath', type=str, default='../Resource/Models/resnet50_static.onnx', help="static onnx filepath") parser.add_argument('--dynamicModelPath', type=str, default='../Resource/Models/resnet50_dynamic.onnx', help="dynamic onnx filepath") parser.add_argument("--staticInfer",action="store_true",default=False,help="Performing static inference") parser.add_argument("--dynamicInfer",action="store_true",default=False,help="Performing static inference") args = parser.parse_args() # 数据预处理 image = Preprocessing(args.imgPath) # 静态推理 if args.staticInfer: result = ort_seg_dcu(args.staticModelPath, image, args.staticInfer, args.dynamicInfer) # 动态推理 if args.dynamicInfer: result = ort_seg_dcu(args.dynamicModelPath, image, args.staticInfer, args.dynamicInfer) # 解析分类结果 postprocess(result, args.imgPath)