# -*- coding: utf-8 -*- """ 分类器示例 """ import cv2 import numpy as np import onnxruntime as ort def Preprocessing(pathOfImage): # 读取图像 image = cv2.imread(pathOfImage, cv2.IMREAD_COLOR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # 调整大小,使短边为256,保持长宽比 ratio = float(256) / min(image.shape[0], image.shape[1]) if image.shape[0] > image.shape[1]: new_size = [int(round(ratio * image.shape[0])), 256] else: new_size = [256, int(round(ratio * image.shape[1]))] image = np.array(cv2.resize(image, (new_size[1],new_size[0]))) # 裁剪中心窗口为224*224 h, w, c = image.shape start_x = w//2 - 224//2 start_y = h//2 - 224//2 image = image[start_y:start_y+224, start_x:start_x+224, :] # transpose image = image.transpose(2, 0, 1) # 将输入数据转换为float32 img_data = image.astype('float32') # normalize mean_vec = np.array([123.675, 116.28, 103.53]) stddev_vec = np.array([58.395, 57.12, 57.375]) norm_img_data = np.zeros(img_data.shape).astype('float32') for i in range(img_data.shape[0]): norm_img_data[i,:,:] = (img_data[i,:,:] - mean_vec[i]) / stddev_vec[i] # 调整尺寸 norm_img_data = norm_img_data.reshape(1, 3, 224, 224).astype('float32') return norm_img_data def postprocess(scores): ''' Postprocessing with mxnet gluon The function takes scores generated by the network and returns the class IDs in decreasing order of probability ''' with open('../Resource/synset.txt', 'r') as f: labels = [l.rstrip() for l in f] preds = np.squeeze(scores) a = np.argsort(preds)[::-1] print('class=%s ; probability=%f' %(labels[a[0]],preds[a[0]])) def ort_seg_dcu(model_path,image): #创建sess_options sess_options = ort.SessionOptions() #设置图优化 sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_BASIC #是否开启profiling sess_options.enable_profiling = False dcu_session = ort.InferenceSession(model_path,sess_options,providers=['ROCMExecutionProvider'],) input_name=dcu_session.get_inputs()[0].name results = dcu_session.run(None, input_feed={input_name:image }) scores=np.array(results[0]) print("ort result.shape:",scores.shape) return scores if __name__ == '__main__': pathOfImage ="../Resource/Images/ImageNet_01.jpg" image = Preprocessing(pathOfImage) model_path = "../Resource/Models/resnet50-v2-7.onnx" # 推理 result = ort_seg_dcu(model_path,image) # 解析分类结果 postprocess(result)