import os import oneflow as flow import oneflow.nn as nn from oneflow import Tensor from typing import Type, Any, Callable, Union, List, Optional def conv3x3( in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1 ) -> nn.Conv2d: """3x3 convolution with padding""" return nn.Conv2d( in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation, ) def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d: """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class BasicBlock(nn.Module): expansion: int = 1 def __init__( self, inplanes: int, planes: int, stride: int = 1, downsample: Optional[nn.Module] = None, groups: int = 1, base_width: int = 64, dilation: int = 1, norm_layer: Optional[Callable[..., nn.Module]] = None, ) -> None: super(BasicBlock, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d if groups != 1 or base_width != 64: raise ValueError("BasicBlock only supports groups=1 and base_width=64") if dilation > 1: raise NotImplementedError("Dilation > 1 not supported in BasicBlock") # Both self.conv1 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = norm_layer(planes) self.relu = nn.ReLU() self.conv2 = conv3x3(planes, planes) self.bn2 = norm_layer(planes) self.downsample = downsample self.stride = stride def forward(self, x: Tensor) -> Tensor: identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class Bottleneck(nn.Module): expansion: int = 4 def __init__( self, inplanes: int, planes: int, stride: int = 1, downsample: Optional[nn.Module] = None, groups: int = 1, base_width: int = 64, dilation: int = 1, norm_layer: Optional[Callable[..., nn.Module]] = None, fuse_bn_relu=False, fuse_bn_add_relu=False, ) -> None: super(Bottleneck, self).__init__() self.fuse_bn_relu = fuse_bn_relu self.fuse_bn_add_relu = fuse_bn_add_relu if norm_layer is None: norm_layer = nn.BatchNorm2d width = int(planes * (base_width / 64.0)) * groups # Both self.conv2 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv1x1(inplanes, width) if self.fuse_bn_relu: self.bn1 = nn.FusedBatchNorm2d(width) self.bn2 = nn.FusedBatchNorm2d(width) else: self.bn1 = norm_layer(width) self.bn2 = norm_layer(width) self.relu = nn.ReLU() self.conv2 = conv3x3(width, width, stride, groups, dilation) self.conv3 = conv1x1(width, planes * self.expansion) if self.fuse_bn_add_relu: self.bn3 = nn.FusedBatchNorm2d(planes * self.expansion) else: self.bn3 = norm_layer(planes * self.expansion) self.relu = nn.ReLU() self.downsample = downsample self.stride = stride def forward(self, x: Tensor) -> Tensor: identity = x if self.downsample is not None: # Note self.downsample execute before self.conv1 has better performance # when open allow_fuse_add_to_output optimizatioin in nn.Graph. # Reference: https://github.com/Oneflow-Inc/OneTeam/issues/840#issuecomment-994903466 # Reference: https://github.com/NVIDIA/cudnn-frontend/issues/21 identity = self.downsample(x) out = self.conv1(x) if self.fuse_bn_relu: out = self.bn1(out, None) else: out = self.bn1(out) out = self.relu(out) out = self.conv2(out) if self.fuse_bn_relu: out = self.bn2(out, None) else: out = self.bn2(out) out = self.relu(out) out = self.conv3(out) if self.fuse_bn_add_relu: out = self.bn3(out, identity) else: out = self.bn3(out) out += identity out = self.relu(out) return out class ResNet(nn.Module): def __init__( self, block: Type[Union[BasicBlock, Bottleneck]], layers: List[int], num_classes: int = 1000, zero_init_residual: bool = False, groups: int = 1, width_per_group: int = 64, replace_stride_with_dilation: Optional[List[bool]] = None, norm_layer: Optional[Callable[..., nn.Module]] = None, fuse_bn_relu=False, fuse_bn_add_relu=False, channel_last=False, ) -> None: super(ResNet, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer self.fuse_bn_relu = fuse_bn_relu self.fuse_bn_add_relu = fuse_bn_add_relu self.channel_last = channel_last if self.channel_last: self.pad_input = True else: self.pad_input = False self.inplanes = 64 self.dilation = 1 if replace_stride_with_dilation is None: # each element in the tuple indicates if we should replace # the 2x2 stride with a dilated convolution instead replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError( "replace_stride_with_dilation should be None " "or a 3-element tuple, got {}".format(replace_stride_with_dilation) ) self.groups = groups self.base_width = width_per_group if self.pad_input: channel_size = 4 else: channel_size = 3 if self.channel_last: os.environ["ONEFLOW_ENABLE_NHWC"] = "1" self.conv1 = nn.Conv2d( channel_size, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False ) if self.fuse_bn_relu: self.bn1 = nn.FusedBatchNorm2d(self.inplanes) else: self.bn1 = self._norm_layer(self.inplanes) self.relu = nn.ReLU() self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer( block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0] ) self.layer3 = self._make_layer( block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1] ) self.layer4 = self._make_layer( block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2] ) self.avgpool = nn.AvgPool2d((7, 7), stride=(1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): nn.init.constant_(m.bn3.weight, 0) # type: ignore[arg-type] elif isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0) # type: ignore[arg-type] def _make_layer( self, block: Type[Union[BasicBlock, Bottleneck]], planes: int, blocks: int, stride: int = 1, dilate: bool = False, ) -> nn.Sequential: norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), norm_layer(planes * block.expansion), ) layers = [] layers.append( block( self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer, fuse_bn_relu=self.fuse_bn_relu, fuse_bn_add_relu=self.fuse_bn_add_relu, ) ) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append( block( self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer, fuse_bn_relu=self.fuse_bn_relu, fuse_bn_add_relu=self.fuse_bn_add_relu, ) ) return nn.Sequential(*layers) def _forward_impl(self, x: Tensor) -> Tensor: if self.pad_input: if self.channel_last: # NHWC paddings = (0, 1) else: # NCHW paddings = (0, 0, 0, 0, 0, 1) x = flow._C.pad(x, pad=paddings, mode="constant", value=0) x = self.conv1(x) if self.fuse_bn_relu: x = self.bn1(x, None) else: x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = flow.flatten(x, 1) x = self.fc(x) return x def forward(self, x: Tensor) -> Tensor: return self._forward_impl(x) def _resnet( arch: str, block: Type[Union[BasicBlock, Bottleneck]], layers: List[int], **kwargs: Any ) -> ResNet: model = ResNet(block, layers, **kwargs) return model def resnet50(**kwargs: Any) -> ResNet: r"""ResNet-5 `"Deep Residual Learning for Image Recognition" `_. """ return _resnet("resnet50", Bottleneck, [3, 4, 6, 3], **kwargs)