# set -aux DEVICE_NUM_PER_NODE=1 MASTER_ADDR=127.0.0.1 NUM_NODES=1 NODE_RANK=0 export PYTHONUNBUFFERED=1 echo PYTHONUNBUFFERED=$PYTHONUNBUFFERED export NCCL_LAUNCH_MODE=PARALLEL echo NCCL_LAUNCH_MODE=$NCCL_LAUNCH_MODE # export NCCL_DEBUG=INFO # export ONEFLOW_DEBUG_MODE=True CHECKPOINT_SAVE_PATH="./graph_distributed_fp16_checkpoints" if [ ! -d "$CHECKPOINT_SAVE_PATH" ]; then mkdir $CHECKPOINT_SAVE_PATH fi OFRECORD_PATH="./mini-imagenet/ofrecord" OFRECORD_PART_NUM=8 LEARNING_RATE=1.536 MOM=0.875 EPOCH=50 TRAIN_BATCH_SIZE=128 VAL_BATCH_SIZE=128 # SRC_DIR=/path/to/models/resnet50 SRC_DIR=$(realpath $(dirname $0)/..) python3 -m oneflow.distributed.launch \ --nproc_per_node $DEVICE_NUM_PER_NODE \ --nnodes $NUM_NODES \ --node_rank $NODE_RANK \ --master_addr $MASTER_ADDR \ $SRC_DIR/train.py \ --save $CHECKPOINT_SAVE_PATH \ --ofrecord-path $OFRECORD_PATH \ --ofrecord-part-num $OFRECORD_PART_NUM \ --num-devices-per-node $DEVICE_NUM_PER_NODE \ --lr $LEARNING_RATE \ --momentum $MOM \ --num-epochs $EPOCH \ --train-batch-size $TRAIN_BATCH_SIZE \ --val-batch-size $VAL_BATCH_SIZE \ --graph \ --use-fp16 \ --metric-local True \ --metric-train-acc True