# -*- coding: utf-8 -*- """ 分类器示例 """ import cv2 import numpy as np import migraphx def Preprocessing(pathOfImage): # 读取图像 image = cv2.imread(pathOfImage, cv2.IMREAD_COLOR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # 调整大小,使短边为256,保持长宽比 ratio = float(256) / min(image.shape[0], image.shape[1]) if image.shape[0] > image.shape[1]: new_size = [int(round(ratio * image.shape[0])), 256] else: new_size = [256, int(round(ratio * image.shape[1]))] image = np.array(cv2.resize(image, (new_size[1],new_size[0]))) # 裁剪中心窗口为224*224 h, w, c = image.shape start_x = w//2 - 224//2 start_y = h//2 - 224//2 image = image[start_y:start_y+224, start_x:start_x+224, :] # transpose image = image.transpose(2, 0, 1) # 将输入数据转换为float32 img_data = image.astype('float32') # normalize mean_vec = np.array([123.675, 116.28, 103.53]) stddev_vec = np.array([58.395, 57.12, 57.375]) norm_img_data = np.zeros(img_data.shape).astype('float32') for i in range(img_data.shape[0]): norm_img_data[i,:,:] = (img_data[i,:,:] - mean_vec[i]) / stddev_vec[i] # 调整尺寸 norm_img_data = norm_img_data.reshape(1, 3, 224, 224).astype('float32') return norm_img_data if __name__ == '__main__': # 加载模型 model = migraphx.parse_onnx("../Resource/Models/resnet50-v2-7.onnx") inputName=model.get_parameter_names()[0] inputShape=model.get_parameter_shapes()[inputName].lens() print("inputName:{0} \ninputShape:{1}".format(inputName,inputShape)) # 编译 model.compile(t=migraphx.get_target("gpu"),device_id=0) # device_id: 设置GPU设备,默认为0号设备 # 预处理并转换为NCHW pathOfImage ="../Resource/Images/ImageNet_01.jpg" image = Preprocessing(pathOfImage) # 推理 results = model.run({inputName: image}) # 推理结果,list类型 # 获取输出节点属性 result=results[0] # 获取第一个输出节点的数据,migraphx.argument类型 outputShape=result.get_shape() # 输出节点的shape,migraphx.shape类型 outputSize=outputShape.lens() # 每一维大小,维度顺序为(N,C,H,W),list类型 numberOfOutput=outputShape.elements() # 输出节点元素的个数 # 获取分类结果 result=np.array(results[0]) print(result)