Commit 3a6df602 authored by chenzk's avatar chenzk
Browse files

v1.0

parents
Pipeline #1196 canceled with stages
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"\n",
"import torch\n",
"import numpy as np\n",
"import cv2\n",
"import matplotlib.pyplot as plt\n",
"import coremltools as ct\n",
"import math\n",
"from repvit_sam.utils.transforms import ResizeLongestSide\n",
"import torch.nn.functional as F\n",
"\n",
"\n",
"def show_mask(mask, ax):\n",
" color = np.array([30/255, 144/255, 255/255, 0.6])\n",
" h, w = mask.shape[-2:]\n",
" mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)\n",
" ax.imshow(mask_image)\n",
" \n",
"def show_points(coords, labels, ax, marker_size=375):\n",
" pos_points = coords[labels==1]\n",
" neg_points = coords[labels==0]\n",
" ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)\n",
" ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) \n",
"\n",
"def preprocess(x, img_size=1024):\n",
" \"\"\"Normalize pixel values and pad to a square input.\"\"\"\n",
" # Normalize colors\n",
" transform = ResizeLongestSide(img_size)\n",
" x = transform.apply_image(x)\n",
" x = torch.as_tensor(x)\n",
" x = x.permute(2, 0, 1).contiguous()\n",
"\n",
" pixel_mean=torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1)\n",
" pixel_std=torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1)\n",
" x = (x - pixel_mean) / pixel_std\n",
"\n",
" # Pad\n",
" h, w = x.shape[-2:]\n",
" padh = img_size - h\n",
" padw = img_size - w\n",
" x = F.pad(x, (0, padw, 0, padh))\n",
" return x, transform\n",
"\n",
"def postprocess(raw_image, masks):\n",
" def resize_longest_image_size(\n",
" input_image_size, longest_side: int\n",
" ):\n",
" scale = longest_side / max(input_image_size)\n",
" transformed_size = [int(math.floor(scale * each + 0.5)) for each in input_image_size]\n",
" return transformed_size\n",
"\n",
" prepadded_size = resize_longest_image_size(raw_image.shape[:2], masks.shape[2])\n",
" masks = masks[..., : prepadded_size[0], : prepadded_size[1]] # type: ignore\n",
"\n",
" h, w = raw_image.shape[:2]\n",
" masks = F.interpolate(torch.tensor(masks), size=(h, w), mode=\"bilinear\", align_corners=False)\n",
" masks = masks > 0\n",
" return masks"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!python3 ../scripts/export_coreml_encoder.py --resolution 1024 --model repvit --samckpt ../weights/repvit_sam.pt\n",
"!python3 ../scripts/export_coreml_decoder.py --checkpoint ../weights/repvit_sam.pt --model-type repvit"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"encoder = ct.models.MLModel('coreml/repvit_1024.mlpackage')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"decoder = ct.models.MLModel('coreml/sam_decoder.mlpackage')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"raw_image = cv2.imread('../../app/assets/picture3.jpg')\n",
"raw_image = cv2.cvtColor(raw_image, cv2.COLOR_BGR2RGB)\n",
"image, transform = preprocess(raw_image)\n",
"image_embedding= list(encoder.predict({'x_1': image.numpy()[None, ...]}).values())[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"input_point = np.array([[553, 808]])\n",
"input_label = np.array([1])\n",
"\n",
"coreml_coord = input_point[None, :, :].astype(np.float32)\n",
"coreml_label = input_label[None, :].astype(np.float32)\n",
"\n",
"coreml_coord = transform.apply_coords(coreml_coord, raw_image.shape[:2]).astype(np.float32)\n",
"\n",
"coreml_mask_input = np.zeros((1, 1, 256, 256), dtype=np.float32)\n",
"coreml_has_mask_input = np.zeros(1, dtype=np.float32)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ort_inputs = {\n",
" \"image_embeddings\": image_embedding,\n",
" \"point_coords\": coreml_coord,\n",
" \"point_labels\": coreml_label,\n",
" \"mask_input\": coreml_mask_input,\n",
" \"has_mask_input\": coreml_has_mask_input,\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"low_res_logits, score, masks = decoder.predict(ort_inputs).values()\n",
"plt.figure(figsize=(10,10))\n",
"plt.imshow(raw_image)\n",
"show_mask(postprocess(raw_image, masks), plt.gca())\n",
"show_points(input_point, input_label, plt.gca())\n",
"plt.axis('off')\n",
"plt.show() "
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.7"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
This source diff could not be displayed because it is too large. You can view the blob instead.
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from .build_sam import (
build_sam,
build_sam_vit_h,
build_sam_vit_l,
build_sam_vit_b,
build_sam_vit_t,
sam_model_registry,
)
from .predictor import SamPredictor
from .automatic_mask_generator import SamAutomaticMaskGenerator
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import torch
from torchvision.ops.boxes import batched_nms, box_area # type: ignore
from typing import Any, Dict, List, Optional, Tuple
from .modeling import Sam
from .predictor import SamPredictor
from .utils.amg import (
MaskData,
area_from_rle,
batch_iterator,
batched_mask_to_box,
box_xyxy_to_xywh,
build_all_layer_point_grids,
calculate_stability_score,
coco_encode_rle,
generate_crop_boxes,
is_box_near_crop_edge,
mask_to_rle_pytorch,
remove_small_regions,
rle_to_mask,
uncrop_boxes_xyxy,
uncrop_masks,
uncrop_points,
)
class SamAutomaticMaskGenerator:
def __init__(
self,
model: Sam,
points_per_side: Optional[int] = 32,
points_per_batch: int = 64,
pred_iou_thresh: float = 0.88,
stability_score_thresh: float = 0.95,
stability_score_offset: float = 1.0,
box_nms_thresh: float = 0.7,
crop_n_layers: int = 0,
crop_nms_thresh: float = 0.7,
crop_overlap_ratio: float = 512 / 1500,
crop_n_points_downscale_factor: int = 1,
point_grids: Optional[List[np.ndarray]] = None,
min_mask_region_area: int = 0,
output_mode: str = "binary_mask",
) -> None:
"""
Using a SAM model, generates masks for the entire image.
Generates a grid of point prompts over the image, then filters
low quality and duplicate masks. The default settings are chosen
for SAM with a ViT-H backbone.
Arguments:
model (Sam): The SAM model to use for mask prediction.
points_per_side (int or None): The number of points to be sampled
along one side of the image. The total number of points is
points_per_side**2. If None, 'point_grids' must provide explicit
point sampling.
points_per_batch (int): Sets the number of points run simultaneously
by the model. Higher numbers may be faster but use more GPU memory.
pred_iou_thresh (float): A filtering threshold in [0,1], using the
model's predicted mask quality.
stability_score_thresh (float): A filtering threshold in [0,1], using
the stability of the mask under changes to the cutoff used to binarize
the model's mask predictions.
stability_score_offset (float): The amount to shift the cutoff when
calculated the stability score.
box_nms_thresh (float): The box IoU cutoff used by non-maximal
suppression to filter duplicate masks.
crop_n_layers (int): If >0, mask prediction will be run again on
crops of the image. Sets the number of layers to run, where each
layer has 2**i_layer number of image crops.
crop_nms_thresh (float): The box IoU cutoff used by non-maximal
suppression to filter duplicate masks between different crops.
crop_overlap_ratio (float): Sets the degree to which crops overlap.
In the first crop layer, crops will overlap by this fraction of
the image length. Later layers with more crops scale down this overlap.
crop_n_points_downscale_factor (int): The number of points-per-side
sampled in layer n is scaled down by crop_n_points_downscale_factor**n.
point_grids (list(np.ndarray) or None): A list over explicit grids
of points used for sampling, normalized to [0,1]. The nth grid in the
list is used in the nth crop layer. Exclusive with points_per_side.
min_mask_region_area (int): If >0, postprocessing will be applied
to remove disconnected regions and holes in masks with area smaller
than min_mask_region_area. Requires opencv.
output_mode (str): The form masks are returned in. Can be 'binary_mask',
'uncompressed_rle', or 'coco_rle'. 'coco_rle' requires pycocotools.
For large resolutions, 'binary_mask' may consume large amounts of
memory.
"""
assert (points_per_side is None) != (
point_grids is None
), "Exactly one of points_per_side or point_grid must be provided."
if points_per_side is not None:
self.point_grids = build_all_layer_point_grids(
points_per_side,
crop_n_layers,
crop_n_points_downscale_factor,
)
elif point_grids is not None:
self.point_grids = point_grids
else:
raise ValueError("Can't have both points_per_side and point_grid be None.")
assert output_mode in [
"binary_mask",
"uncompressed_rle",
"coco_rle",
], f"Unknown output_mode {output_mode}."
if output_mode == "coco_rle":
from pycocotools import mask as mask_utils # type: ignore # noqa: F401
if min_mask_region_area > 0:
import cv2 # type: ignore # noqa: F401
self.predictor = SamPredictor(model)
self.points_per_batch = points_per_batch
self.pred_iou_thresh = pred_iou_thresh
self.stability_score_thresh = stability_score_thresh
self.stability_score_offset = stability_score_offset
self.box_nms_thresh = box_nms_thresh
self.crop_n_layers = crop_n_layers
self.crop_nms_thresh = crop_nms_thresh
self.crop_overlap_ratio = crop_overlap_ratio
self.crop_n_points_downscale_factor = crop_n_points_downscale_factor
self.min_mask_region_area = min_mask_region_area
self.output_mode = output_mode
@torch.no_grad()
def generate(self, image: np.ndarray) -> List[Dict[str, Any]]:
"""
Generates masks for the given image.
Arguments:
image (np.ndarray): The image to generate masks for, in HWC uint8 format.
Returns:
list(dict(str, any)): A list over records for masks. Each record is
a dict containing the following keys:
segmentation (dict(str, any) or np.ndarray): The mask. If
output_mode='binary_mask', is an array of shape HW. Otherwise,
is a dictionary containing the RLE.
bbox (list(float)): The box around the mask, in XYWH format.
area (int): The area in pixels of the mask.
predicted_iou (float): The model's own prediction of the mask's
quality. This is filtered by the pred_iou_thresh parameter.
point_coords (list(list(float))): The point coordinates input
to the model to generate this mask.
stability_score (float): A measure of the mask's quality. This
is filtered on using the stability_score_thresh parameter.
crop_box (list(float)): The crop of the image used to generate
the mask, given in XYWH format.
"""
# Generate masks
mask_data = self._generate_masks(image)
# Filter small disconnected regions and holes in masks
if self.min_mask_region_area > 0:
mask_data = self.postprocess_small_regions(
mask_data,
self.min_mask_region_area,
max(self.box_nms_thresh, self.crop_nms_thresh),
)
# Encode masks
if self.output_mode == "coco_rle":
mask_data["segmentations"] = [coco_encode_rle(rle) for rle in mask_data["rles"]]
elif self.output_mode == "binary_mask":
mask_data["segmentations"] = [rle_to_mask(rle) for rle in mask_data["rles"]]
else:
mask_data["segmentations"] = mask_data["rles"]
# Write mask records
curr_anns = []
for idx in range(len(mask_data["segmentations"])):
ann = {
"segmentation": mask_data["segmentations"][idx],
"area": area_from_rle(mask_data["rles"][idx]),
"bbox": box_xyxy_to_xywh(mask_data["boxes"][idx]).tolist(),
"predicted_iou": mask_data["iou_preds"][idx].item(),
"point_coords": [mask_data["points"][idx].tolist()],
"stability_score": mask_data["stability_score"][idx].item(),
"crop_box": box_xyxy_to_xywh(mask_data["crop_boxes"][idx]).tolist(),
}
curr_anns.append(ann)
return curr_anns
def _generate_masks(self, image: np.ndarray) -> MaskData:
orig_size = image.shape[:2]
crop_boxes, layer_idxs = generate_crop_boxes(
orig_size, self.crop_n_layers, self.crop_overlap_ratio
)
# Iterate over image crops
data = MaskData()
for crop_box, layer_idx in zip(crop_boxes, layer_idxs):
crop_data = self._process_crop(image, crop_box, layer_idx, orig_size)
data.cat(crop_data)
# Remove duplicate masks between crops
if len(crop_boxes) > 1:
# Prefer masks from smaller crops
scores = 1 / box_area(data["crop_boxes"])
scores = scores.to(data["boxes"].device)
keep_by_nms = batched_nms(
data["boxes"].float(),
scores,
torch.zeros_like(data["boxes"][:, 0]), # categories
iou_threshold=self.crop_nms_thresh,
)
data.filter(keep_by_nms)
data.to_numpy()
return data
def _process_crop(
self,
image: np.ndarray,
crop_box: List[int],
crop_layer_idx: int,
orig_size: Tuple[int, ...],
) -> MaskData:
# Crop the image and calculate embeddings
x0, y0, x1, y1 = crop_box
cropped_im = image[y0:y1, x0:x1, :]
cropped_im_size = cropped_im.shape[:2]
self.predictor.set_image(cropped_im)
# Get points for this crop
points_scale = np.array(cropped_im_size)[None, ::-1]
points_for_image = self.point_grids[crop_layer_idx] * points_scale
# Generate masks for this crop in batches
data = MaskData()
for (points,) in batch_iterator(self.points_per_batch, points_for_image):
batch_data = self._process_batch(points, cropped_im_size, crop_box, orig_size)
data.cat(batch_data)
del batch_data
self.predictor.reset_image()
# Remove duplicates within this crop.
keep_by_nms = batched_nms(
data["boxes"].float(),
data["iou_preds"],
torch.zeros_like(data["boxes"][:, 0]), # categories
iou_threshold=self.box_nms_thresh,
)
data.filter(keep_by_nms)
# Return to the original image frame
data["boxes"] = uncrop_boxes_xyxy(data["boxes"], crop_box)
data["points"] = uncrop_points(data["points"], crop_box)
data["crop_boxes"] = torch.tensor([crop_box for _ in range(len(data["rles"]))])
return data
def _process_batch(
self,
points: np.ndarray,
im_size: Tuple[int, ...],
crop_box: List[int],
orig_size: Tuple[int, ...],
) -> MaskData:
orig_h, orig_w = orig_size
# Run model on this batch
transformed_points = self.predictor.transform.apply_coords(points, im_size)
in_points = torch.as_tensor(transformed_points, device=self.predictor.device)
in_labels = torch.ones(in_points.shape[0], dtype=torch.int, device=in_points.device)
masks, iou_preds, _ = self.predictor.predict_torch(
in_points[:, None, :],
in_labels[:, None],
multimask_output=True,
return_logits=True,
)
# Serialize predictions and store in MaskData
data = MaskData(
masks=masks.flatten(0, 1),
iou_preds=iou_preds.flatten(0, 1),
points=torch.as_tensor(points.repeat(masks.shape[1], axis=0)),
)
del masks
# Filter by predicted IoU
if self.pred_iou_thresh > 0.0:
keep_mask = data["iou_preds"] > self.pred_iou_thresh
data.filter(keep_mask)
# Calculate stability score
data["stability_score"] = calculate_stability_score(
data["masks"], self.predictor.model.mask_threshold, self.stability_score_offset
)
if self.stability_score_thresh > 0.0:
keep_mask = data["stability_score"] >= self.stability_score_thresh
data.filter(keep_mask)
# Threshold masks and calculate boxes
data["masks"] = data["masks"] > self.predictor.model.mask_threshold
data["boxes"] = batched_mask_to_box(data["masks"])
# Filter boxes that touch crop boundaries
keep_mask = ~is_box_near_crop_edge(data["boxes"], crop_box, [0, 0, orig_w, orig_h])
if not torch.all(keep_mask):
data.filter(keep_mask)
# Compress to RLE
data["masks"] = uncrop_masks(data["masks"], crop_box, orig_h, orig_w)
data["rles"] = mask_to_rle_pytorch(data["masks"])
del data["masks"]
return data
@staticmethod
def postprocess_small_regions(
mask_data: MaskData, min_area: int, nms_thresh: float
) -> MaskData:
"""
Removes small disconnected regions and holes in masks, then reruns
box NMS to remove any new duplicates.
Edits mask_data in place.
Requires open-cv as a dependency.
"""
if len(mask_data["rles"]) == 0:
return mask_data
# Filter small disconnected regions and holes
new_masks = []
scores = []
for rle in mask_data["rles"]:
mask = rle_to_mask(rle)
mask, changed = remove_small_regions(mask, min_area, mode="holes")
unchanged = not changed
mask, changed = remove_small_regions(mask, min_area, mode="islands")
unchanged = unchanged and not changed
new_masks.append(torch.as_tensor(mask).unsqueeze(0))
# Give score=0 to changed masks and score=1 to unchanged masks
# so NMS will prefer ones that didn't need postprocessing
scores.append(float(unchanged))
# Recalculate boxes and remove any new duplicates
masks = torch.cat(new_masks, dim=0)
boxes = batched_mask_to_box(masks)
keep_by_nms = batched_nms(
boxes.float(),
torch.as_tensor(scores),
torch.zeros_like(boxes[:, 0]), # categories
iou_threshold=nms_thresh,
)
# Only recalculate RLEs for masks that have changed
for i_mask in keep_by_nms:
if scores[i_mask] == 0.0:
mask_torch = masks[i_mask].unsqueeze(0)
mask_data["rles"][i_mask] = mask_to_rle_pytorch(mask_torch)[0]
mask_data["boxes"][i_mask] = boxes[i_mask] # update res directly
mask_data.filter(keep_by_nms)
return mask_data
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch
from functools import partial
from .modeling import ImageEncoderViT, MaskDecoder, PromptEncoder, Sam, TwoWayTransformer, TinyViT
def build_sam_vit_h(checkpoint=None):
return _build_sam(
encoder_embed_dim=1280,
encoder_depth=32,
encoder_num_heads=16,
encoder_global_attn_indexes=[7, 15, 23, 31],
checkpoint=checkpoint,
)
build_sam = build_sam_vit_h
def build_sam_vit_l(checkpoint=None):
return _build_sam(
encoder_embed_dim=1024,
encoder_depth=24,
encoder_num_heads=16,
encoder_global_attn_indexes=[5, 11, 17, 23],
checkpoint=checkpoint,
)
def build_sam_vit_b(checkpoint=None):
return _build_sam(
encoder_embed_dim=768,
encoder_depth=12,
encoder_num_heads=12,
encoder_global_attn_indexes=[2, 5, 8, 11],
checkpoint=checkpoint,
)
from timm.models import create_model
def build_sam_repvit(checkpoint=None):
prompt_embed_dim = 256
image_size = 1024
vit_patch_size = 16
image_embedding_size = image_size // vit_patch_size
repvit_sam = Sam(
image_encoder=create_model('repvit'),
prompt_encoder=PromptEncoder(
embed_dim=prompt_embed_dim,
image_embedding_size=(image_embedding_size, image_embedding_size),
input_image_size=(image_size, image_size),
mask_in_chans=16,
),
mask_decoder=MaskDecoder(
num_multimask_outputs=3,
transformer=TwoWayTransformer(
depth=2,
embedding_dim=prompt_embed_dim,
mlp_dim=2048,
num_heads=8,
),
transformer_dim=prompt_embed_dim,
iou_head_depth=3,
iou_head_hidden_dim=256,
),
pixel_mean=[123.675, 116.28, 103.53],
pixel_std=[58.395, 57.12, 57.375],
)
repvit_sam.eval()
if checkpoint is not None:
with open(checkpoint, "rb") as f:
state_dict = torch.load(f)
repvit_sam.load_state_dict(state_dict)
return repvit_sam
def build_sam_vit_t(checkpoint=None):
prompt_embed_dim = 256
image_size = 1024
vit_patch_size = 16
image_embedding_size = image_size // vit_patch_size
mobile_sam = Sam(
image_encoder=TinyViT(img_size=1024, in_chans=3, num_classes=1000,
embed_dims=[64, 128, 160, 320],
depths=[2, 2, 6, 2],
num_heads=[2, 4, 5, 10],
window_sizes=[7, 7, 14, 7],
mlp_ratio=4.,
drop_rate=0.,
drop_path_rate=0.0,
use_checkpoint=False,
mbconv_expand_ratio=4.0,
local_conv_size=3,
layer_lr_decay=0.8
),
prompt_encoder=PromptEncoder(
embed_dim=prompt_embed_dim,
image_embedding_size=(image_embedding_size, image_embedding_size),
input_image_size=(image_size, image_size),
mask_in_chans=16,
),
mask_decoder=MaskDecoder(
num_multimask_outputs=3,
transformer=TwoWayTransformer(
depth=2,
embedding_dim=prompt_embed_dim,
mlp_dim=2048,
num_heads=8,
),
transformer_dim=prompt_embed_dim,
iou_head_depth=3,
iou_head_hidden_dim=256,
),
pixel_mean=[123.675, 116.28, 103.53],
pixel_std=[58.395, 57.12, 57.375],
)
mobile_sam.eval()
if checkpoint is not None:
with open(checkpoint, "rb") as f:
state_dict = torch.load(f)
mobile_sam.load_state_dict(state_dict)
return mobile_sam
from functools import partial
sam_model_registry = {
"default": build_sam_vit_h,
"vit_h": build_sam_vit_h,
"vit_l": build_sam_vit_l,
"vit_b": build_sam_vit_b,
"vit_t": build_sam_vit_t,
"repvit": partial(build_sam_repvit),
}
def _build_sam(
encoder_embed_dim,
encoder_depth,
encoder_num_heads,
encoder_global_attn_indexes,
checkpoint=None,
):
prompt_embed_dim = 256
image_size = 1024
vit_patch_size = 16
image_embedding_size = image_size // vit_patch_size
sam = Sam(
image_encoder=ImageEncoderViT(
depth=encoder_depth,
embed_dim=encoder_embed_dim,
img_size=image_size,
mlp_ratio=4,
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
num_heads=encoder_num_heads,
patch_size=vit_patch_size,
qkv_bias=True,
use_rel_pos=True,
global_attn_indexes=encoder_global_attn_indexes,
window_size=14,
out_chans=prompt_embed_dim,
),
prompt_encoder=PromptEncoder(
embed_dim=prompt_embed_dim,
image_embedding_size=(image_embedding_size, image_embedding_size),
input_image_size=(image_size, image_size),
mask_in_chans=16,
),
mask_decoder=MaskDecoder(
num_multimask_outputs=3,
transformer=TwoWayTransformer(
depth=2,
embedding_dim=prompt_embed_dim,
mlp_dim=2048,
num_heads=8,
),
transformer_dim=prompt_embed_dim,
iou_head_depth=3,
iou_head_hidden_dim=256,
),
pixel_mean=[123.675, 116.28, 103.53],
pixel_std=[58.395, 57.12, 57.375],
)
sam.eval()
if checkpoint is not None:
with open(checkpoint, "rb") as f:
state_dict = torch.load(f)
sam.load_state_dict(state_dict)
return sam
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from .sam import Sam
from .image_encoder import ImageEncoderViT
from .mask_decoder import MaskDecoder
from .prompt_encoder import PromptEncoder
from .transformer import TwoWayTransformer
from .tiny_vit_sam import TinyViT
from .repvit import RepViT
\ No newline at end of file
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
from typing import Type
class MLPBlock(nn.Module):
def __init__(
self,
embedding_dim: int,
mlp_dim: int,
act: Type[nn.Module] = nn.GELU,
) -> None:
super().__init__()
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
self.act = act()
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.lin2(self.act(self.lin1(x)))
# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa
class LayerNorm2d(nn.Module):
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
super().__init__()
self.weight = nn.Parameter(torch.ones(num_channels))
self.bias = nn.Parameter(torch.zeros(num_channels))
self.eps = eps
def forward(self, x: torch.Tensor) -> torch.Tensor:
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Tuple, Type
from .common import LayerNorm2d, MLPBlock
# This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa
class ImageEncoderViT(nn.Module):
def __init__(
self,
img_size: int = 1024,
patch_size: int = 16,
in_chans: int = 3,
embed_dim: int = 768,
depth: int = 12,
num_heads: int = 12,
mlp_ratio: float = 4.0,
out_chans: int = 256,
qkv_bias: bool = True,
norm_layer: Type[nn.Module] = nn.LayerNorm,
act_layer: Type[nn.Module] = nn.GELU,
use_abs_pos: bool = True,
use_rel_pos: bool = False,
rel_pos_zero_init: bool = True,
window_size: int = 0,
global_attn_indexes: Tuple[int, ...] = (),
) -> None:
"""
Args:
img_size (int): Input image size.
patch_size (int): Patch size.
in_chans (int): Number of input image channels.
embed_dim (int): Patch embedding dimension.
depth (int): Depth of ViT.
num_heads (int): Number of attention heads in each ViT block.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool): If True, add a learnable bias to query, key, value.
norm_layer (nn.Module): Normalization layer.
act_layer (nn.Module): Activation layer.
use_abs_pos (bool): If True, use absolute positional embeddings.
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
window_size (int): Window size for window attention blocks.
global_attn_indexes (list): Indexes for blocks using global attention.
"""
super().__init__()
self.img_size = img_size
self.patch_embed = PatchEmbed(
kernel_size=(patch_size, patch_size),
stride=(patch_size, patch_size),
in_chans=in_chans,
embed_dim=embed_dim,
)
self.pos_embed: Optional[nn.Parameter] = None
if use_abs_pos:
# Initialize absolute positional embedding with pretrain image size.
self.pos_embed = nn.Parameter(
torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim)
)
self.blocks = nn.ModuleList()
for i in range(depth):
block = Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
norm_layer=norm_layer,
act_layer=act_layer,
use_rel_pos=use_rel_pos,
rel_pos_zero_init=rel_pos_zero_init,
window_size=window_size if i not in global_attn_indexes else 0,
input_size=(img_size // patch_size, img_size // patch_size),
)
self.blocks.append(block)
self.neck = nn.Sequential(
nn.Conv2d(
embed_dim,
out_chans,
kernel_size=1,
bias=False,
),
LayerNorm2d(out_chans),
nn.Conv2d(
out_chans,
out_chans,
kernel_size=3,
padding=1,
bias=False,
),
LayerNorm2d(out_chans),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.patch_embed(x)
if self.pos_embed is not None:
x = x + self.pos_embed
for blk in self.blocks:
x = blk(x)
x = self.neck(x.permute(0, 3, 1, 2))
return x
class Block(nn.Module):
"""Transformer blocks with support of window attention and residual propagation blocks"""
def __init__(
self,
dim: int,
num_heads: int,
mlp_ratio: float = 4.0,
qkv_bias: bool = True,
norm_layer: Type[nn.Module] = nn.LayerNorm,
act_layer: Type[nn.Module] = nn.GELU,
use_rel_pos: bool = False,
rel_pos_zero_init: bool = True,
window_size: int = 0,
input_size: Optional[Tuple[int, int]] = None,
) -> None:
"""
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads in each ViT block.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool): If True, add a learnable bias to query, key, value.
norm_layer (nn.Module): Normalization layer.
act_layer (nn.Module): Activation layer.
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
window_size (int): Window size for window attention blocks. If it equals 0, then
use global attention.
input_size (tuple(int, int) or None): Input resolution for calculating the relative
positional parameter size.
"""
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
use_rel_pos=use_rel_pos,
rel_pos_zero_init=rel_pos_zero_init,
input_size=input_size if window_size == 0 else (window_size, window_size),
)
self.norm2 = norm_layer(dim)
self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer)
self.window_size = window_size
def forward(self, x: torch.Tensor) -> torch.Tensor:
shortcut = x
x = self.norm1(x)
# Window partition
if self.window_size > 0:
H, W = x.shape[1], x.shape[2]
x, pad_hw = window_partition(x, self.window_size)
x = self.attn(x)
# Reverse window partition
if self.window_size > 0:
x = window_unpartition(x, self.window_size, pad_hw, (H, W))
x = shortcut + x
x = x + self.mlp(self.norm2(x))
return x
class Attention(nn.Module):
"""Multi-head Attention block with relative position embeddings."""
def __init__(
self,
dim: int,
num_heads: int = 8,
qkv_bias: bool = True,
use_rel_pos: bool = False,
rel_pos_zero_init: bool = True,
input_size: Optional[Tuple[int, int]] = None,
) -> None:
"""
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads.
qkv_bias (bool): If True, add a learnable bias to query, key, value.
rel_pos (bool): If True, add relative positional embeddings to the attention map.
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
input_size (tuple(int, int) or None): Input resolution for calculating the relative
positional parameter size.
"""
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.proj = nn.Linear(dim, dim)
self.use_rel_pos = use_rel_pos
if self.use_rel_pos:
assert (
input_size is not None
), "Input size must be provided if using relative positional encoding."
# initialize relative positional embeddings
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
def forward(self, x: torch.Tensor) -> torch.Tensor:
B, H, W, _ = x.shape
# qkv with shape (3, B, nHead, H * W, C)
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
# q, k, v with shape (B * nHead, H * W, C)
q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
attn = (q * self.scale) @ k.transpose(-2, -1)
if self.use_rel_pos:
attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))
attn = attn.softmax(dim=-1)
x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
x = self.proj(x)
return x
def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
"""
Partition into non-overlapping windows with padding if needed.
Args:
x (tensor): input tokens with [B, H, W, C].
window_size (int): window size.
Returns:
windows: windows after partition with [B * num_windows, window_size, window_size, C].
(Hp, Wp): padded height and width before partition
"""
B, H, W, C = x.shape
pad_h = (window_size - H % window_size) % window_size
pad_w = (window_size - W % window_size) % window_size
if pad_h > 0 or pad_w > 0:
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
Hp, Wp = H + pad_h, W + pad_w
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
return windows, (Hp, Wp)
def window_unpartition(
windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int]
) -> torch.Tensor:
"""
Window unpartition into original sequences and removing padding.
Args:
windows (tensor): input tokens with [B * num_windows, window_size, window_size, C].
window_size (int): window size.
pad_hw (Tuple): padded height and width (Hp, Wp).
hw (Tuple): original height and width (H, W) before padding.
Returns:
x: unpartitioned sequences with [B, H, W, C].
"""
Hp, Wp = pad_hw
H, W = hw
B = windows.shape[0] // (Hp * Wp // window_size // window_size)
x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
if Hp > H or Wp > W:
x = x[:, :H, :W, :].contiguous()
return x
def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
"""
Get relative positional embeddings according to the relative positions of
query and key sizes.
Args:
q_size (int): size of query q.
k_size (int): size of key k.
rel_pos (Tensor): relative position embeddings (L, C).
Returns:
Extracted positional embeddings according to relative positions.
"""
max_rel_dist = int(2 * max(q_size, k_size) - 1)
# Interpolate rel pos if needed.
if rel_pos.shape[0] != max_rel_dist:
# Interpolate rel pos.
rel_pos_resized = F.interpolate(
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
size=max_rel_dist,
mode="linear",
)
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
else:
rel_pos_resized = rel_pos
# Scale the coords with short length if shapes for q and k are different.
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
return rel_pos_resized[relative_coords.long()]
def add_decomposed_rel_pos(
attn: torch.Tensor,
q: torch.Tensor,
rel_pos_h: torch.Tensor,
rel_pos_w: torch.Tensor,
q_size: Tuple[int, int],
k_size: Tuple[int, int],
) -> torch.Tensor:
"""
Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950
Args:
attn (Tensor): attention map.
q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
Returns:
attn (Tensor): attention map with added relative positional embeddings.
"""
q_h, q_w = q_size
k_h, k_w = k_size
Rh = get_rel_pos(q_h, k_h, rel_pos_h)
Rw = get_rel_pos(q_w, k_w, rel_pos_w)
B, _, dim = q.shape
r_q = q.reshape(B, q_h, q_w, dim)
rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
attn = (
attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]
).view(B, q_h * q_w, k_h * k_w)
return attn
class PatchEmbed(nn.Module):
"""
Image to Patch Embedding.
"""
def __init__(
self,
kernel_size: Tuple[int, int] = (16, 16),
stride: Tuple[int, int] = (16, 16),
padding: Tuple[int, int] = (0, 0),
in_chans: int = 3,
embed_dim: int = 768,
) -> None:
"""
Args:
kernel_size (Tuple): kernel size of the projection layer.
stride (Tuple): stride of the projection layer.
padding (Tuple): padding size of the projection layer.
in_chans (int): Number of input image channels.
embed_dim (int): Patch embedding dimension.
"""
super().__init__()
self.proj = nn.Conv2d(
in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.proj(x)
# B C H W -> B H W C
x = x.permute(0, 2, 3, 1)
return x
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch
from torch import nn
from torch.nn import functional as F
from typing import List, Tuple, Type
from .common import LayerNorm2d
class MaskDecoder(nn.Module):
def __init__(
self,
*,
transformer_dim: int,
transformer: nn.Module,
num_multimask_outputs: int = 3,
activation: Type[nn.Module] = nn.GELU,
iou_head_depth: int = 3,
iou_head_hidden_dim: int = 256,
) -> None:
"""
Predicts masks given an image and prompt embeddings, using a
transformer architecture.
Arguments:
transformer_dim (int): the channel dimension of the transformer
transformer (nn.Module): the transformer used to predict masks
num_multimask_outputs (int): the number of masks to predict
when disambiguating masks
activation (nn.Module): the type of activation to use when
upscaling masks
iou_head_depth (int): the depth of the MLP used to predict
mask quality
iou_head_hidden_dim (int): the hidden dimension of the MLP
used to predict mask quality
"""
super().__init__()
self.transformer_dim = transformer_dim
self.transformer = transformer
self.num_multimask_outputs = num_multimask_outputs
self.iou_token = nn.Embedding(1, transformer_dim)
self.num_mask_tokens = num_multimask_outputs + 1
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
self.output_upscaling = nn.Sequential(
nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
LayerNorm2d(transformer_dim // 4),
activation(),
nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
activation(),
)
self.output_hypernetworks_mlps = nn.ModuleList(
[
MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
for i in range(self.num_mask_tokens)
]
)
self.iou_prediction_head = MLP(
transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth
)
def forward(
self,
image_embeddings: torch.Tensor,
image_pe: torch.Tensor,
sparse_prompt_embeddings: torch.Tensor,
dense_prompt_embeddings: torch.Tensor,
multimask_output: bool,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Predict masks given image and prompt embeddings.
Arguments:
image_embeddings (torch.Tensor): the embeddings from the image encoder
image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
multimask_output (bool): Whether to return multiple masks or a single
mask.
Returns:
torch.Tensor: batched predicted masks
torch.Tensor: batched predictions of mask quality
"""
masks, iou_pred = self.predict_masks(
image_embeddings=image_embeddings,
image_pe=image_pe,
sparse_prompt_embeddings=sparse_prompt_embeddings,
dense_prompt_embeddings=dense_prompt_embeddings,
)
# Select the correct mask or masks for output
if multimask_output:
mask_slice = slice(1, None)
else:
mask_slice = slice(0, 1)
masks = masks[:, mask_slice, :, :]
iou_pred = iou_pred[:, mask_slice]
# Prepare output
return masks, iou_pred
def predict_masks(
self,
image_embeddings: torch.Tensor,
image_pe: torch.Tensor,
sparse_prompt_embeddings: torch.Tensor,
dense_prompt_embeddings: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Predicts masks. See 'forward' for more details."""
# Concatenate output tokens
output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
# Expand per-image data in batch direction to be per-mask
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
src = src + dense_prompt_embeddings
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
b, c, h, w = src.shape
# Run the transformer
hs, src = self.transformer(src, pos_src, tokens)
iou_token_out = hs[:, 0, :]
mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :]
# Upscale mask embeddings and predict masks using the mask tokens
src = src.transpose(1, 2).view(b, c, h, w)
upscaled_embedding = self.output_upscaling(src)
hyper_in_list: List[torch.Tensor] = []
for i in range(self.num_mask_tokens):
hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]))
hyper_in = torch.stack(hyper_in_list, dim=1)
b, c, h, w = upscaled_embedding.shape
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
# Generate mask quality predictions
iou_pred = self.iou_prediction_head(iou_token_out)
return masks, iou_pred
# Lightly adapted from
# https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa
class MLP(nn.Module):
def __init__(
self,
input_dim: int,
hidden_dim: int,
output_dim: int,
num_layers: int,
sigmoid_output: bool = False,
) -> None:
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList(
nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
)
self.sigmoid_output = sigmoid_output
def forward(self, x):
for i, layer in enumerate(self.layers):
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
if self.sigmoid_output:
x = F.sigmoid(x)
return x
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import torch
from torch import nn
from typing import Any, Optional, Tuple, Type
from .common import LayerNorm2d
class PromptEncoder(nn.Module):
def __init__(
self,
embed_dim: int,
image_embedding_size: Tuple[int, int],
input_image_size: Tuple[int, int],
mask_in_chans: int,
activation: Type[nn.Module] = nn.GELU,
) -> None:
"""
Encodes prompts for input to SAM's mask decoder.
Arguments:
embed_dim (int): The prompts' embedding dimension
image_embedding_size (tuple(int, int)): The spatial size of the
image embedding, as (H, W).
input_image_size (int): The padded size of the image as input
to the image encoder, as (H, W).
mask_in_chans (int): The number of hidden channels used for
encoding input masks.
activation (nn.Module): The activation to use when encoding
input masks.
"""
super().__init__()
self.embed_dim = embed_dim
self.input_image_size = input_image_size
self.image_embedding_size = image_embedding_size
self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners
point_embeddings = [nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)]
self.point_embeddings = nn.ModuleList(point_embeddings)
self.not_a_point_embed = nn.Embedding(1, embed_dim)
self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1])
self.mask_downscaling = nn.Sequential(
nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
LayerNorm2d(mask_in_chans // 4),
activation(),
nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
LayerNorm2d(mask_in_chans),
activation(),
nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
)
self.no_mask_embed = nn.Embedding(1, embed_dim)
def get_dense_pe(self) -> torch.Tensor:
"""
Returns the positional encoding used to encode point prompts,
applied to a dense set of points the shape of the image encoding.
Returns:
torch.Tensor: Positional encoding with shape
1x(embed_dim)x(embedding_h)x(embedding_w)
"""
return self.pe_layer(self.image_embedding_size).unsqueeze(0)
def _embed_points(
self,
points: torch.Tensor,
labels: torch.Tensor,
pad: bool,
) -> torch.Tensor:
"""Embeds point prompts."""
points = points + 0.5 # Shift to center of pixel
if pad:
padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device)
padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
points = torch.cat([points, padding_point], dim=1)
labels = torch.cat([labels, padding_label], dim=1)
point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size)
point_embedding[labels == -1] = 0.0
point_embedding[labels == -1] += self.not_a_point_embed.weight
point_embedding[labels == 0] += self.point_embeddings[0].weight
point_embedding[labels == 1] += self.point_embeddings[1].weight
return point_embedding
def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
"""Embeds box prompts."""
boxes = boxes + 0.5 # Shift to center of pixel
coords = boxes.reshape(-1, 2, 2)
corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size)
corner_embedding[:, 0, :] += self.point_embeddings[2].weight
corner_embedding[:, 1, :] += self.point_embeddings[3].weight
return corner_embedding
def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
"""Embeds mask inputs."""
mask_embedding = self.mask_downscaling(masks)
return mask_embedding
def _get_batch_size(
self,
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
boxes: Optional[torch.Tensor],
masks: Optional[torch.Tensor],
) -> int:
"""
Gets the batch size of the output given the batch size of the input prompts.
"""
if points is not None:
return points[0].shape[0]
elif boxes is not None:
return boxes.shape[0]
elif masks is not None:
return masks.shape[0]
else:
return 1
def _get_device(self) -> torch.device:
return self.point_embeddings[0].weight.device
def forward(
self,
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
boxes: Optional[torch.Tensor],
masks: Optional[torch.Tensor],
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Embeds different types of prompts, returning both sparse and dense
embeddings.
Arguments:
points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates
and labels to embed.
boxes (torch.Tensor or none): boxes to embed
masks (torch.Tensor or none): masks to embed
Returns:
torch.Tensor: sparse embeddings for the points and boxes, with shape
BxNx(embed_dim), where N is determined by the number of input points
and boxes.
torch.Tensor: dense embeddings for the masks, in the shape
Bx(embed_dim)x(embed_H)x(embed_W)
"""
bs = self._get_batch_size(points, boxes, masks)
sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device())
if points is not None:
coords, labels = points
point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
if boxes is not None:
box_embeddings = self._embed_boxes(boxes)
sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
if masks is not None:
dense_embeddings = self._embed_masks(masks)
else:
dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
bs, -1, self.image_embedding_size[0], self.image_embedding_size[1]
)
return sparse_embeddings, dense_embeddings
class PositionEmbeddingRandom(nn.Module):
"""
Positional encoding using random spatial frequencies.
"""
def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
super().__init__()
if scale is None or scale <= 0.0:
scale = 1.0
self.register_buffer(
"positional_encoding_gaussian_matrix",
scale * torch.randn((2, num_pos_feats)),
)
def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
"""Positionally encode points that are normalized to [0,1]."""
# assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
coords = 2 * coords - 1
coords = coords @ self.positional_encoding_gaussian_matrix
coords = 2 * np.pi * coords
# outputs d_1 x ... x d_n x C shape
return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
def forward(self, size: Tuple[int, int]) -> torch.Tensor:
"""Generate positional encoding for a grid of the specified size."""
h, w = size
device: Any = self.positional_encoding_gaussian_matrix.device
grid = torch.ones((h, w), device=device, dtype=torch.float32)
y_embed = grid.cumsum(dim=0) - 0.5
x_embed = grid.cumsum(dim=1) - 0.5
y_embed = y_embed / h
x_embed = x_embed / w
pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
return pe.permute(2, 0, 1) # C x H x W
def forward_with_coords(
self, coords_input: torch.Tensor, image_size: Tuple[int, int]
) -> torch.Tensor:
"""Positionally encode points that are not normalized to [0,1]."""
coords = coords_input.clone()
coords[:, :, 0] = coords[:, :, 0] / image_size[1]
coords[:, :, 1] = coords[:, :, 1] / image_size[0]
return self._pe_encoding(coords.to(torch.float)) # B x N x C
import torch.nn as nn
__all__ = ['repvit_m1']
def _make_divisible(v, divisor, min_value=None):
"""
This function is taken from the original tf repo.
It ensures that all layers have a channel number that is divisible by 8
It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
:param v:
:param divisor:
:param min_value:
:return:
"""
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
from timm.models.layers import SqueezeExcite
import torch
# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa
class LayerNorm2d(nn.Module):
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
super().__init__()
self.weight = nn.Parameter(torch.ones(num_channels))
self.bias = nn.Parameter(torch.zeros(num_channels))
self.eps = eps
def forward(self, x: torch.Tensor) -> torch.Tensor:
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
class Conv2d_BN(torch.nn.Sequential):
def __init__(self, a, b, ks=1, stride=1, pad=0, dilation=1,
groups=1, bn_weight_init=1, resolution=-10000):
super().__init__()
self.add_module('c', torch.nn.Conv2d(
a, b, ks, stride, pad, dilation, groups, bias=False))
self.add_module('bn', torch.nn.BatchNorm2d(b))
torch.nn.init.constant_(self.bn.weight, bn_weight_init)
torch.nn.init.constant_(self.bn.bias, 0)
@torch.no_grad()
def fuse(self):
c, bn = self._modules.values()
w = bn.weight / (bn.running_var + bn.eps)**0.5
w = c.weight * w[:, None, None, None]
b = bn.bias - bn.running_mean * bn.weight / \
(bn.running_var + bn.eps)**0.5
m = torch.nn.Conv2d(w.size(1) * self.c.groups, w.size(
0), w.shape[2:], stride=self.c.stride, padding=self.c.padding, dilation=self.c.dilation, groups=self.c.groups,
device=c.weight.device)
m.weight.data.copy_(w)
m.bias.data.copy_(b)
return m
class Residual(torch.nn.Module):
def __init__(self, m, drop=0.):
super().__init__()
self.m = m
self.drop = drop
def forward(self, x):
if self.training and self.drop > 0:
return x + self.m(x) * torch.rand(x.size(0), 1, 1, 1,
device=x.device).ge_(self.drop).div(1 - self.drop).detach()
else:
return x + self.m(x)
@torch.no_grad()
def fuse(self):
if isinstance(self.m, Conv2d_BN):
m = self.m.fuse()
assert(m.groups == m.in_channels)
identity = torch.ones(m.weight.shape[0], m.weight.shape[1], 1, 1)
identity = torch.nn.functional.pad(identity, [1,1,1,1])
m.weight += identity.to(m.weight.device)
return m
elif isinstance(self.m, torch.nn.Conv2d):
m = self.m
assert(m.groups != m.in_channels)
identity = torch.ones(m.weight.shape[0], m.weight.shape[1], 1, 1)
identity = torch.nn.functional.pad(identity, [1,1,1,1])
m.weight += identity.to(m.weight.device)
return m
else:
return self
class RepVGGDW(torch.nn.Module):
def __init__(self, ed) -> None:
super().__init__()
self.conv = Conv2d_BN(ed, ed, 3, 1, 1, groups=ed)
self.conv1 = torch.nn.Conv2d(ed, ed, 1, 1, 0, groups=ed)
self.dim = ed
self.bn = torch.nn.BatchNorm2d(ed)
def forward(self, x):
return self.bn((self.conv(x) + self.conv1(x)) + x)
@torch.no_grad()
def fuse(self):
conv = self.conv.fuse()
conv1 = self.conv1
conv_w = conv.weight
conv_b = conv.bias
conv1_w = conv1.weight
conv1_b = conv1.bias
conv1_w = torch.nn.functional.pad(conv1_w, [1,1,1,1])
identity = torch.nn.functional.pad(torch.ones(conv1_w.shape[0], conv1_w.shape[1], 1, 1, device=conv1_w.device), [1,1,1,1])
final_conv_w = conv_w + conv1_w + identity
final_conv_b = conv_b + conv1_b
conv.weight.data.copy_(final_conv_w)
conv.bias.data.copy_(final_conv_b)
bn = self.bn
w = bn.weight / (bn.running_var + bn.eps)**0.5
w = conv.weight * w[:, None, None, None]
b = bn.bias + (conv.bias - bn.running_mean) * bn.weight / \
(bn.running_var + bn.eps)**0.5
conv.weight.data.copy_(w)
conv.bias.data.copy_(b)
return conv
class RepViTBlock(nn.Module):
def __init__(self, inp, hidden_dim, oup, kernel_size, stride, use_se, use_hs):
super(RepViTBlock, self).__init__()
assert stride in [1, 2]
self.identity = stride == 1 and inp == oup
assert(hidden_dim == 2 * inp)
if stride == 2:
self.token_mixer = nn.Sequential(
Conv2d_BN(inp, inp, kernel_size, stride if inp != 320 else 1, (kernel_size - 1) // 2, groups=inp),
SqueezeExcite(inp, 0.25) if use_se else nn.Identity(),
Conv2d_BN(inp, oup, ks=1, stride=1, pad=0)
)
self.channel_mixer = Residual(nn.Sequential(
# pw
Conv2d_BN(oup, 2 * oup, 1, 1, 0),
nn.GELU() if use_hs else nn.GELU(),
# pw-linear
Conv2d_BN(2 * oup, oup, 1, 1, 0, bn_weight_init=0),
))
else:
# assert(self.identity)
self.token_mixer = nn.Sequential(
RepVGGDW(inp),
SqueezeExcite(inp, 0.25) if use_se else nn.Identity(),
)
if self.identity:
self.channel_mixer = Residual(nn.Sequential(
# pw
Conv2d_BN(inp, hidden_dim, 1, 1, 0),
nn.GELU() if use_hs else nn.GELU(),
# pw-linear
Conv2d_BN(hidden_dim, oup, 1, 1, 0, bn_weight_init=0),
))
else:
self.channel_mixer = nn.Sequential(
# pw
Conv2d_BN(inp, hidden_dim, 1, 1, 0),
nn.GELU() if use_hs else nn.GELU(),
# pw-linear
Conv2d_BN(hidden_dim, oup, 1, 1, 0, bn_weight_init=0),
)
def forward(self, x):
return self.channel_mixer(self.token_mixer(x))
from timm.models.vision_transformer import trunc_normal_
class BN_Linear(torch.nn.Sequential):
def __init__(self, a, b, bias=True, std=0.02):
super().__init__()
self.add_module('bn', torch.nn.BatchNorm1d(a))
self.add_module('l', torch.nn.Linear(a, b, bias=bias))
trunc_normal_(self.l.weight, std=std)
if bias:
torch.nn.init.constant_(self.l.bias, 0)
@torch.no_grad()
def fuse(self):
bn, l = self._modules.values()
w = bn.weight / (bn.running_var + bn.eps)**0.5
b = bn.bias - self.bn.running_mean * \
self.bn.weight / (bn.running_var + bn.eps)**0.5
w = l.weight * w[None, :]
if l.bias is None:
b = b @ self.l.weight.T
else:
b = (l.weight @ b[:, None]).view(-1) + self.l.bias
m = torch.nn.Linear(w.size(1), w.size(0), device=l.weight.device)
m.weight.data.copy_(w)
m.bias.data.copy_(b)
return m
class Classfier(nn.Module):
def __init__(self, dim, num_classes, distillation=True):
super().__init__()
self.classifier = BN_Linear(dim, num_classes) if num_classes > 0 else torch.nn.Identity()
self.distillation = distillation
if distillation:
self.classifier_dist = BN_Linear(dim, num_classes) if num_classes > 0 else torch.nn.Identity()
def forward(self, x):
if self.distillation:
x = self.classifier(x), self.classifier_dist(x)
if not self.training:
x = (x[0] + x[1]) / 2
else:
x = self.classifier(x)
return x
@torch.no_grad()
def fuse(self):
classifier = self.classifier.fuse()
if self.distillation:
classifier_dist = self.classifier_dist.fuse()
classifier.weight += classifier_dist.weight
classifier.bias += classifier_dist.bias
classifier.weight /= 2
classifier.bias /= 2
return classifier
else:
return classifier
class RepViT(nn.Module):
def __init__(self, cfgs, num_classes=1000, distillation=False, img_size=1024):
super(RepViT, self).__init__()
# setting of inverted residual blocks
self.cfgs = cfgs
self.img_size = img_size
# building first layer
input_channel = self.cfgs[0][2]
patch_embed = torch.nn.Sequential(Conv2d_BN(3, input_channel // 2, 3, 2, 1), torch.nn.GELU(),
Conv2d_BN(input_channel // 2, input_channel, 3, 2, 1))
layers = [patch_embed]
# building inverted residual blocks
block = RepViTBlock
for k, t, c, use_se, use_hs, s in self.cfgs:
output_channel = _make_divisible(c, 8)
exp_size = _make_divisible(input_channel * t, 8)
layers.append(block(input_channel, exp_size, output_channel, k, s, use_se, use_hs))
input_channel = output_channel
self.features = nn.ModuleList(layers)
# self.classifier = Classfier(output_channel, num_classes, distillation)
self.neck = nn.Sequential(
nn.Conv2d(
output_channel,
256,
kernel_size=1,
bias=False,
),
LayerNorm2d(256),
nn.Conv2d(
256,
256,
kernel_size=3,
padding=1,
bias=False,
),
LayerNorm2d(256),
)
def forward(self, x):
# x = self.features(x)
for f in self.features:
x = f(x)
# x = torch.nn.functional.adaptive_avg_pool2d(x, 1).flatten(1)
x = self.neck(x)
return x
from timm.models import register_model
@register_model
def repvit(pretrained=False, num_classes = 1000, distillation=False, **kwargs):
"""
Constructs a MobileNetV3-Large model
"""
cfgs = [
# k, t, c, SE, HS, s
[3, 2, 80, 1, 0, 1],
[3, 2, 80, 0, 0, 1],
[3, 2, 80, 1, 0, 1],
[3, 2, 80, 0, 0, 1],
[3, 2, 80, 1, 0, 1],
[3, 2, 80, 0, 0, 1],
[3, 2, 80, 0, 0, 1],
[3, 2, 160, 0, 0, 2],
[3, 2, 160, 1, 0, 1],
[3, 2, 160, 0, 0, 1],
[3, 2, 160, 1, 0, 1],
[3, 2, 160, 0, 0, 1],
[3, 2, 160, 1, 0, 1],
[3, 2, 160, 0, 0, 1],
[3, 2, 160, 0, 0, 1],
[3, 2, 320, 0, 1, 2],
[3, 2, 320, 1, 1, 1],
[3, 2, 320, 0, 1, 1],
[3, 2, 320, 1, 1, 1],
[3, 2, 320, 0, 1, 1],
[3, 2, 320, 1, 1, 1],
[3, 2, 320, 0, 1, 1],
[3, 2, 320, 1, 1, 1],
[3, 2, 320, 0, 1, 1],
[3, 2, 320, 1, 1, 1],
[3, 2, 320, 0, 1, 1],
[3, 2, 320, 1, 1, 1],
[3, 2, 320, 0, 1, 1],
[3, 2, 320, 1, 1, 1],
[3, 2, 320, 0, 1, 1],
[3, 2, 320, 1, 1, 1],
[3, 2, 320, 0, 1, 1],
[3, 2, 320, 1, 1, 1],
[3, 2, 320, 0, 1, 1],
[3, 2, 320, 1, 1, 1],
[3, 2, 320, 0, 1, 1],
[3, 2, 320, 1, 1, 1],
[3, 2, 320, 0, 1, 1],
[3, 2, 320, 1, 1, 1],
[3, 2, 320, 0, 1, 1],
[3, 2, 320, 1, 1, 1],
[3, 2, 320, 0, 1, 1],
[3, 2, 320, 1, 1, 1],
[3, 2, 320, 0, 1, 1],
[3, 2, 320, 1, 1, 1],
[3, 2, 320, 0, 1, 1],
[3, 2, 320, 1, 1, 1],
[3, 2, 320, 0, 1, 1],
[3, 2, 320, 1, 1, 1],
[3, 2, 320, 0, 1, 1],
# [3, 2, 320, 1, 1, 1],
# [3, 2, 320, 0, 1, 1],
[3, 2, 320, 0, 1, 1],
[3, 2, 640, 0, 1, 2],
[3, 2, 640, 1, 1, 1],
[3, 2, 640, 0, 1, 1],
# [3, 2, 640, 1, 1, 1],
# [3, 2, 640, 0, 1, 1]
]
return RepViT(cfgs, num_classes=num_classes, distillation=distillation)
\ No newline at end of file
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch
from torch import nn
from torch.nn import functional as F
from typing import Any, Dict, List, Tuple, Union
from .tiny_vit_sam import TinyViT
from .image_encoder import ImageEncoderViT
from .mask_decoder import MaskDecoder
from .prompt_encoder import PromptEncoder
class Sam(nn.Module):
mask_threshold: float = 0.0
image_format: str = "RGB"
def __init__(
self,
image_encoder: Union[ImageEncoderViT, TinyViT],
prompt_encoder: PromptEncoder,
mask_decoder: MaskDecoder,
pixel_mean: List[float] = [123.675, 116.28, 103.53],
pixel_std: List[float] = [58.395, 57.12, 57.375],
) -> None:
"""
SAM predicts object masks from an image and input prompts.
Arguments:
image_encoder (ImageEncoderViT): The backbone used to encode the
image into image embeddings that allow for efficient mask prediction.
prompt_encoder (PromptEncoder): Encodes various types of input prompts.
mask_decoder (MaskDecoder): Predicts masks from the image embeddings
and encoded prompts.
pixel_mean (list(float)): Mean values for normalizing pixels in the input image.
pixel_std (list(float)): Std values for normalizing pixels in the input image.
"""
super().__init__()
self.image_encoder = image_encoder
self.prompt_encoder = prompt_encoder
self.mask_decoder = mask_decoder
self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)
@property
def device(self) -> Any:
return self.pixel_mean.device
@torch.no_grad()
def forward(
self,
batched_input: List[Dict[str, Any]],
multimask_output: bool,
) -> List[Dict[str, torch.Tensor]]:
"""
Predicts masks end-to-end from provided images and prompts.
If prompts are not known in advance, using SamPredictor is
recommended over calling the model directly.
Arguments:
batched_input (list(dict)): A list over input images, each a
dictionary with the following keys. A prompt key can be
excluded if it is not present.
'image': The image as a torch tensor in 3xHxW format,
already transformed for input to the model.
'original_size': (tuple(int, int)) The original size of
the image before transformation, as (H, W).
'point_coords': (torch.Tensor) Batched point prompts for
this image, with shape BxNx2. Already transformed to the
input frame of the model.
'point_labels': (torch.Tensor) Batched labels for point prompts,
with shape BxN.
'boxes': (torch.Tensor) Batched box inputs, with shape Bx4.
Already transformed to the input frame of the model.
'mask_inputs': (torch.Tensor) Batched mask inputs to the model,
in the form Bx1xHxW.
multimask_output (bool): Whether the model should predict multiple
disambiguating masks, or return a single mask.
Returns:
(list(dict)): A list over input images, where each element is
as dictionary with the following keys.
'masks': (torch.Tensor) Batched binary mask predictions,
with shape BxCxHxW, where B is the number of input prompts,
C is determined by multimask_output, and (H, W) is the
original size of the image.
'iou_predictions': (torch.Tensor) The model's predictions
of mask quality, in shape BxC.
'low_res_logits': (torch.Tensor) Low resolution logits with
shape BxCxHxW, where H=W=256. Can be passed as mask input
to subsequent iterations of prediction.
"""
input_images = torch.stack([self.preprocess(x["image"]) for x in batched_input], dim=0)
image_embeddings = self.image_encoder(input_images)
outputs = []
for image_record, curr_embedding in zip(batched_input, image_embeddings):
if "point_coords" in image_record:
points = (image_record["point_coords"], image_record["point_labels"])
else:
points = None
sparse_embeddings, dense_embeddings = self.prompt_encoder(
points=points,
boxes=image_record.get("boxes", None),
masks=image_record.get("mask_inputs", None),
)
low_res_masks, iou_predictions = self.mask_decoder(
image_embeddings=curr_embedding.unsqueeze(0),
image_pe=self.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=multimask_output,
)
masks = self.postprocess_masks(
low_res_masks,
input_size=image_record["image"].shape[-2:],
original_size=image_record["original_size"],
)
masks = masks > self.mask_threshold
outputs.append(
{
"masks": masks,
"iou_predictions": iou_predictions,
"low_res_logits": low_res_masks,
}
)
return outputs
def postprocess_masks(
self,
masks: torch.Tensor,
input_size: Tuple[int, ...],
original_size: Tuple[int, ...],
) -> torch.Tensor:
"""
Remove padding and upscale masks to the original image size.
Arguments:
masks (torch.Tensor): Batched masks from the mask_decoder,
in BxCxHxW format.
input_size (tuple(int, int)): The size of the image input to the
model, in (H, W) format. Used to remove padding.
original_size (tuple(int, int)): The original size of the image
before resizing for input to the model, in (H, W) format.
Returns:
(torch.Tensor): Batched masks in BxCxHxW format, where (H, W)
is given by original_size.
"""
masks = F.interpolate(
masks,
(self.image_encoder.img_size, self.image_encoder.img_size),
mode="bilinear",
align_corners=False,
)
masks = masks[..., : input_size[0], : input_size[1]]
masks = F.interpolate(masks, original_size, mode="bilinear", align_corners=False)
return masks
def preprocess(self, x: torch.Tensor) -> torch.Tensor:
"""Normalize pixel values and pad to a square input."""
# Normalize colors
x = (x - self.pixel_mean) / self.pixel_std
# Pad
h, w = x.shape[-2:]
padh = self.image_encoder.img_size - h
padw = self.image_encoder.img_size - w
x = F.pad(x, (0, padw, 0, padh))
return x
# --------------------------------------------------------
# TinyViT Model Architecture
# Copyright (c) 2022 Microsoft
# Adapted from LeViT and Swin Transformer
# LeViT: (https://github.com/facebookresearch/levit)
# Swin: (https://github.com/microsoft/swin-transformer)
# Build the TinyViT Model
# --------------------------------------------------------
import itertools
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from timm.models.layers import DropPath as TimmDropPath,\
to_2tuple, trunc_normal_
from timm.models.registry import register_model
from typing import Tuple
class Conv2d_BN(torch.nn.Sequential):
def __init__(self, a, b, ks=1, stride=1, pad=0, dilation=1,
groups=1, bn_weight_init=1):
super().__init__()
self.add_module('c', torch.nn.Conv2d(
a, b, ks, stride, pad, dilation, groups, bias=False))
bn = torch.nn.BatchNorm2d(b)
torch.nn.init.constant_(bn.weight, bn_weight_init)
torch.nn.init.constant_(bn.bias, 0)
self.add_module('bn', bn)
@torch.no_grad()
def fuse(self):
c, bn = self._modules.values()
w = bn.weight / (bn.running_var + bn.eps)**0.5
w = c.weight * w[:, None, None, None]
b = bn.bias - bn.running_mean * bn.weight / \
(bn.running_var + bn.eps)**0.5
m = torch.nn.Conv2d(w.size(1) * self.c.groups, w.size(
0), w.shape[2:], stride=self.c.stride, padding=self.c.padding, dilation=self.c.dilation, groups=self.c.groups)
m.weight.data.copy_(w)
m.bias.data.copy_(b)
return m
class DropPath(TimmDropPath):
def __init__(self, drop_prob=None):
super().__init__(drop_prob=drop_prob)
self.drop_prob = drop_prob
def __repr__(self):
msg = super().__repr__()
msg += f'(drop_prob={self.drop_prob})'
return msg
class PatchEmbed(nn.Module):
def __init__(self, in_chans, embed_dim, resolution, activation):
super().__init__()
img_size: Tuple[int, int] = to_2tuple(resolution)
self.patches_resolution = (img_size[0] // 4, img_size[1] // 4)
self.num_patches = self.patches_resolution[0] * \
self.patches_resolution[1]
self.in_chans = in_chans
self.embed_dim = embed_dim
n = embed_dim
self.seq = nn.Sequential(
Conv2d_BN(in_chans, n // 2, 3, 2, 1),
activation(),
Conv2d_BN(n // 2, n, 3, 2, 1),
)
def forward(self, x):
return self.seq(x)
class MBConv(nn.Module):
def __init__(self, in_chans, out_chans, expand_ratio,
activation, drop_path):
super().__init__()
self.in_chans = in_chans
self.hidden_chans = int(in_chans * expand_ratio)
self.out_chans = out_chans
self.conv1 = Conv2d_BN(in_chans, self.hidden_chans, ks=1)
self.act1 = activation()
self.conv2 = Conv2d_BN(self.hidden_chans, self.hidden_chans,
ks=3, stride=1, pad=1, groups=self.hidden_chans)
self.act2 = activation()
self.conv3 = Conv2d_BN(
self.hidden_chans, out_chans, ks=1, bn_weight_init=0.0)
self.act3 = activation()
self.drop_path = DropPath(
drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x):
shortcut = x
x = self.conv1(x)
x = self.act1(x)
x = self.conv2(x)
x = self.act2(x)
x = self.conv3(x)
x = self.drop_path(x)
x += shortcut
x = self.act3(x)
return x
class PatchMerging(nn.Module):
def __init__(self, input_resolution, dim, out_dim, activation):
super().__init__()
self.input_resolution = input_resolution
self.dim = dim
self.out_dim = out_dim
self.act = activation()
self.conv1 = Conv2d_BN(dim, out_dim, 1, 1, 0)
stride_c=2
if(out_dim==320 or out_dim==448 or out_dim==576):
stride_c=1
self.conv2 = Conv2d_BN(out_dim, out_dim, 3, stride_c, 1, groups=out_dim)
self.conv3 = Conv2d_BN(out_dim, out_dim, 1, 1, 0)
def forward(self, x):
if x.ndim == 3:
H, W = self.input_resolution
B = x.shape[0]
# (B, C, H, W)
x = x.view(B, H, W, -1).permute(0, 3, 1, 2)
x = self.conv1(x)
x = self.act(x)
x = self.conv2(x)
x = self.act(x)
x = self.conv3(x)
x = x.flatten(2).transpose(1, 2)
return x
class ConvLayer(nn.Module):
def __init__(self, dim, input_resolution, depth,
activation,
drop_path=0., downsample=None, use_checkpoint=False,
out_dim=None,
conv_expand_ratio=4.,
):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.depth = depth
self.use_checkpoint = use_checkpoint
# build blocks
self.blocks = nn.ModuleList([
MBConv(dim, dim, conv_expand_ratio, activation,
drop_path[i] if isinstance(drop_path, list) else drop_path,
)
for i in range(depth)])
# patch merging layer
if downsample is not None:
self.downsample = downsample(
input_resolution, dim=dim, out_dim=out_dim, activation=activation)
else:
self.downsample = None
def forward(self, x):
for blk in self.blocks:
if self.use_checkpoint:
x = checkpoint.checkpoint(blk, x)
else:
x = blk(x)
if self.downsample is not None:
x = self.downsample(x)
return x
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None,
out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.norm = nn.LayerNorm(in_features)
self.fc1 = nn.Linear(in_features, hidden_features)
self.fc2 = nn.Linear(hidden_features, out_features)
self.act = act_layer()
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.norm(x)
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(torch.nn.Module):
def __init__(self, dim, key_dim, num_heads=8,
attn_ratio=4,
resolution=(14, 14),
):
super().__init__()
# (h, w)
assert isinstance(resolution, tuple) and len(resolution) == 2
self.num_heads = num_heads
self.scale = key_dim ** -0.5
self.key_dim = key_dim
self.nh_kd = nh_kd = key_dim * num_heads
self.d = int(attn_ratio * key_dim)
self.dh = int(attn_ratio * key_dim) * num_heads
self.attn_ratio = attn_ratio
h = self.dh + nh_kd * 2
self.norm = nn.LayerNorm(dim)
self.qkv = nn.Linear(dim, h)
self.proj = nn.Linear(self.dh, dim)
points = list(itertools.product(
range(resolution[0]), range(resolution[1])))
N = len(points)
attention_offsets = {}
idxs = []
for p1 in points:
for p2 in points:
offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1]))
if offset not in attention_offsets:
attention_offsets[offset] = len(attention_offsets)
idxs.append(attention_offsets[offset])
self.attention_biases = torch.nn.Parameter(
torch.zeros(num_heads, len(attention_offsets)))
self.register_buffer('attention_bias_idxs',
torch.LongTensor(idxs).view(N, N),
persistent=False)
@torch.no_grad()
def train(self, mode=True):
super().train(mode)
if mode and hasattr(self, 'ab'):
del self.ab
else:
self.register_buffer('ab',
self.attention_biases[:, self.attention_bias_idxs],
persistent=False)
def forward(self, x): # x (B,N,C)
B, N, _ = x.shape
# Normalization
x = self.norm(x)
qkv = self.qkv(x)
# (B, N, num_heads, d)
q, k, v = qkv.view(B, N, self.num_heads, -
1).split([self.key_dim, self.key_dim, self.d], dim=3)
# (B, num_heads, N, d)
q = q.permute(0, 2, 1, 3)
k = k.permute(0, 2, 1, 3)
v = v.permute(0, 2, 1, 3)
attn = (
(q @ k.transpose(-2, -1)) * self.scale
+
(self.attention_biases[:, self.attention_bias_idxs]
if self.training else self.ab)
)
attn = attn.softmax(dim=-1)
x = (attn @ v).transpose(1, 2).reshape(B, N, self.dh)
x = self.proj(x)
return x
class TinyViTBlock(nn.Module):
r""" TinyViT Block.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int, int]): Input resolution.
num_heads (int): Number of attention heads.
window_size (int): Window size.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
drop (float, optional): Dropout rate. Default: 0.0
drop_path (float, optional): Stochastic depth rate. Default: 0.0
local_conv_size (int): the kernel size of the convolution between
Attention and MLP. Default: 3
activation: the activation function. Default: nn.GELU
"""
def __init__(self, dim, input_resolution, num_heads, window_size=7,
mlp_ratio=4., drop=0., drop_path=0.,
local_conv_size=3,
activation=nn.GELU,
):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.num_heads = num_heads
assert window_size > 0, 'window_size must be greater than 0'
self.window_size = window_size
self.mlp_ratio = mlp_ratio
self.drop_path = DropPath(
drop_path) if drop_path > 0. else nn.Identity()
assert dim % num_heads == 0, 'dim must be divisible by num_heads'
head_dim = dim // num_heads
window_resolution = (window_size, window_size)
self.attn = Attention(dim, head_dim, num_heads,
attn_ratio=1, resolution=window_resolution)
mlp_hidden_dim = int(dim * mlp_ratio)
mlp_activation = activation
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,
act_layer=mlp_activation, drop=drop)
pad = local_conv_size // 2
self.local_conv = Conv2d_BN(
dim, dim, ks=local_conv_size, stride=1, pad=pad, groups=dim)
def forward(self, x):
H, W = self.input_resolution
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
res_x = x
if H == self.window_size and W == self.window_size:
x = self.attn(x)
else:
x = x.view(B, H, W, C)
pad_b = (self.window_size - H %
self.window_size) % self.window_size
pad_r = (self.window_size - W %
self.window_size) % self.window_size
padding = pad_b > 0 or pad_r > 0
if padding:
x = F.pad(x, (0, 0, 0, pad_r, 0, pad_b))
pH, pW = H + pad_b, W + pad_r
nH = pH // self.window_size
nW = pW // self.window_size
# window partition
x = x.view(B, nH, self.window_size, nW, self.window_size, C).transpose(2, 3).reshape(
B * nH * nW, self.window_size * self.window_size, C)
x = self.attn(x)
# window reverse
x = x.view(B, nH, nW, self.window_size, self.window_size,
C).transpose(2, 3).reshape(B, pH, pW, C)
if padding:
x = x[:, :H, :W].contiguous()
x = x.view(B, L, C)
x = res_x + self.drop_path(x)
x = x.transpose(1, 2).reshape(B, C, H, W)
x = self.local_conv(x)
x = x.view(B, C, L).transpose(1, 2)
x = x + self.drop_path(self.mlp(x))
return x
def extra_repr(self) -> str:
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
f"window_size={self.window_size}, mlp_ratio={self.mlp_ratio}"
class BasicLayer(nn.Module):
""" A basic TinyViT layer for one stage.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resolution.
depth (int): Number of blocks.
num_heads (int): Number of attention heads.
window_size (int): Local window size.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
drop (float, optional): Dropout rate. Default: 0.0
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
local_conv_size: the kernel size of the depthwise convolution between attention and MLP. Default: 3
activation: the activation function. Default: nn.GELU
out_dim: the output dimension of the layer. Default: dim
"""
def __init__(self, dim, input_resolution, depth, num_heads, window_size,
mlp_ratio=4., drop=0.,
drop_path=0., downsample=None, use_checkpoint=False,
local_conv_size=3,
activation=nn.GELU,
out_dim=None,
):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.depth = depth
self.use_checkpoint = use_checkpoint
# build blocks
self.blocks = nn.ModuleList([
TinyViTBlock(dim=dim, input_resolution=input_resolution,
num_heads=num_heads, window_size=window_size,
mlp_ratio=mlp_ratio,
drop=drop,
drop_path=drop_path[i] if isinstance(
drop_path, list) else drop_path,
local_conv_size=local_conv_size,
activation=activation,
)
for i in range(depth)])
# patch merging layer
if downsample is not None:
self.downsample = downsample(
input_resolution, dim=dim, out_dim=out_dim, activation=activation)
else:
self.downsample = None
def forward(self, x):
for blk in self.blocks:
if self.use_checkpoint:
x = checkpoint.checkpoint(blk, x)
else:
x = blk(x)
if self.downsample is not None:
x = self.downsample(x)
return x
def extra_repr(self) -> str:
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
class LayerNorm2d(nn.Module):
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
super().__init__()
self.weight = nn.Parameter(torch.ones(num_channels))
self.bias = nn.Parameter(torch.zeros(num_channels))
self.eps = eps
def forward(self, x: torch.Tensor) -> torch.Tensor:
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
class TinyViT(nn.Module):
def __init__(self, img_size=224, in_chans=3, num_classes=1000,
embed_dims=[96, 192, 384, 768], depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_sizes=[7, 7, 14, 7],
mlp_ratio=4.,
drop_rate=0.,
drop_path_rate=0.1,
use_checkpoint=False,
mbconv_expand_ratio=4.0,
local_conv_size=3,
layer_lr_decay=1.0,
):
super().__init__()
self.img_size=img_size
self.num_classes = num_classes
self.depths = depths
self.num_layers = len(depths)
self.mlp_ratio = mlp_ratio
activation = nn.GELU
self.patch_embed = PatchEmbed(in_chans=in_chans,
embed_dim=embed_dims[0],
resolution=img_size,
activation=activation)
patches_resolution = self.patch_embed.patches_resolution
self.patches_resolution = patches_resolution
# stochastic depth
dpr = [x.item() for x in torch.linspace(0, drop_path_rate,
sum(depths))] # stochastic depth decay rule
# build layers
self.layers = nn.ModuleList()
for i_layer in range(self.num_layers):
kwargs = dict(dim=embed_dims[i_layer],
input_resolution=(patches_resolution[0] // (2 ** (i_layer-1 if i_layer == 3 else i_layer)),
patches_resolution[1] // (2 ** (i_layer-1 if i_layer == 3 else i_layer))),
# input_resolution=(patches_resolution[0] // (2 ** i_layer),
# patches_resolution[1] // (2 ** i_layer)),
depth=depths[i_layer],
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
downsample=PatchMerging if (
i_layer < self.num_layers - 1) else None,
use_checkpoint=use_checkpoint,
out_dim=embed_dims[min(
i_layer + 1, len(embed_dims) - 1)],
activation=activation,
)
if i_layer == 0:
layer = ConvLayer(
conv_expand_ratio=mbconv_expand_ratio,
**kwargs,
)
else:
layer = BasicLayer(
num_heads=num_heads[i_layer],
window_size=window_sizes[i_layer],
mlp_ratio=self.mlp_ratio,
drop=drop_rate,
local_conv_size=local_conv_size,
**kwargs)
self.layers.append(layer)
# Classifier head
self.norm_head = nn.LayerNorm(embed_dims[-1])
self.head = nn.Linear(
embed_dims[-1], num_classes) if num_classes > 0 else torch.nn.Identity()
# init weights
self.apply(self._init_weights)
self.set_layer_lr_decay(layer_lr_decay)
self.neck = nn.Sequential(
nn.Conv2d(
embed_dims[-1],
256,
kernel_size=1,
bias=False,
),
LayerNorm2d(256),
nn.Conv2d(
256,
256,
kernel_size=3,
padding=1,
bias=False,
),
LayerNorm2d(256),
)
def set_layer_lr_decay(self, layer_lr_decay):
decay_rate = layer_lr_decay
# layers -> blocks (depth)
depth = sum(self.depths)
lr_scales = [decay_rate ** (depth - i - 1) for i in range(depth)]
#print("LR SCALES:", lr_scales)
def _set_lr_scale(m, scale):
for p in m.parameters():
p.lr_scale = scale
self.patch_embed.apply(lambda x: _set_lr_scale(x, lr_scales[0]))
i = 0
for layer in self.layers:
for block in layer.blocks:
block.apply(lambda x: _set_lr_scale(x, lr_scales[i]))
i += 1
if layer.downsample is not None:
layer.downsample.apply(
lambda x: _set_lr_scale(x, lr_scales[i - 1]))
assert i == depth
for m in [self.norm_head, self.head]:
m.apply(lambda x: _set_lr_scale(x, lr_scales[-1]))
for k, p in self.named_parameters():
p.param_name = k
def _check_lr_scale(m):
for p in m.parameters():
assert hasattr(p, 'lr_scale'), p.param_name
self.apply(_check_lr_scale)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay_keywords(self):
return {'attention_biases'}
def forward_features(self, x):
# x: (N, C, H, W)
x = self.patch_embed(x)
x = self.layers[0](x)
start_i = 1
for i in range(start_i, len(self.layers)):
layer = self.layers[i]
x = layer(x)
B,_,C=x.size()
x = x.view(B, 64, 64, C)
x=x.permute(0, 3, 1, 2)
x=self.neck(x)
return x
def forward(self, x):
x = self.forward_features(x)
#x = self.norm_head(x)
#x = self.head(x)
return x
from timm.models import register_model
@register_model
def vit_t(*args, **kwargs):
return TinyViT(img_size=1024, in_chans=3, num_classes=1000,
embed_dims=[64, 128, 160, 320],
depths=[2, 2, 6, 2],
num_heads=[2, 4, 5, 10],
window_sizes=[7, 7, 14, 7],
mlp_ratio=4.,
drop_rate=0.,
drop_path_rate=0.0,
use_checkpoint=False,
mbconv_expand_ratio=4.0,
local_conv_size=3,
layer_lr_decay=0.8
)
\ No newline at end of file
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch
from torch import Tensor, nn
import math
from typing import Tuple, Type
from .common import MLPBlock
class TwoWayTransformer(nn.Module):
def __init__(
self,
depth: int,
embedding_dim: int,
num_heads: int,
mlp_dim: int,
activation: Type[nn.Module] = nn.ReLU,
attention_downsample_rate: int = 2,
) -> None:
"""
A transformer decoder that attends to an input image using
queries whose positional embedding is supplied.
Args:
depth (int): number of layers in the transformer
embedding_dim (int): the channel dimension for the input embeddings
num_heads (int): the number of heads for multihead attention. Must
divide embedding_dim
mlp_dim (int): the channel dimension internal to the MLP block
activation (nn.Module): the activation to use in the MLP block
"""
super().__init__()
self.depth = depth
self.embedding_dim = embedding_dim
self.num_heads = num_heads
self.mlp_dim = mlp_dim
self.layers = nn.ModuleList()
for i in range(depth):
self.layers.append(
TwoWayAttentionBlock(
embedding_dim=embedding_dim,
num_heads=num_heads,
mlp_dim=mlp_dim,
activation=activation,
attention_downsample_rate=attention_downsample_rate,
skip_first_layer_pe=(i == 0),
)
)
self.final_attn_token_to_image = Attention(
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
)
self.norm_final_attn = nn.LayerNorm(embedding_dim)
def forward(
self,
image_embedding: Tensor,
image_pe: Tensor,
point_embedding: Tensor,
) -> Tuple[Tensor, Tensor]:
"""
Args:
image_embedding (torch.Tensor): image to attend to. Should be shape
B x embedding_dim x h x w for any h and w.
image_pe (torch.Tensor): the positional encoding to add to the image. Must
have the same shape as image_embedding.
point_embedding (torch.Tensor): the embedding to add to the query points.
Must have shape B x N_points x embedding_dim for any N_points.
Returns:
torch.Tensor: the processed point_embedding
torch.Tensor: the processed image_embedding
"""
# BxCxHxW -> BxHWxC == B x N_image_tokens x C
bs, c, h, w = image_embedding.shape
image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
image_pe = image_pe.flatten(2).permute(0, 2, 1)
# Prepare queries
queries = point_embedding
keys = image_embedding
# Apply transformer blocks and final layernorm
for layer in self.layers:
queries, keys = layer(
queries=queries,
keys=keys,
query_pe=point_embedding,
key_pe=image_pe,
)
# Apply the final attention layer from the points to the image
q = queries + point_embedding
k = keys + image_pe
attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
queries = queries + attn_out
queries = self.norm_final_attn(queries)
return queries, keys
class TwoWayAttentionBlock(nn.Module):
def __init__(
self,
embedding_dim: int,
num_heads: int,
mlp_dim: int = 2048,
activation: Type[nn.Module] = nn.ReLU,
attention_downsample_rate: int = 2,
skip_first_layer_pe: bool = False,
) -> None:
"""
A transformer block with four layers: (1) self-attention of sparse
inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp
block on sparse inputs, and (4) cross attention of dense inputs to sparse
inputs.
Arguments:
embedding_dim (int): the channel dimension of the embeddings
num_heads (int): the number of heads in the attention layers
mlp_dim (int): the hidden dimension of the mlp block
activation (nn.Module): the activation of the mlp block
skip_first_layer_pe (bool): skip the PE on the first layer
"""
super().__init__()
self.self_attn = Attention(embedding_dim, num_heads)
self.norm1 = nn.LayerNorm(embedding_dim)
self.cross_attn_token_to_image = Attention(
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
)
self.norm2 = nn.LayerNorm(embedding_dim)
self.mlp = MLPBlock(embedding_dim, mlp_dim, activation)
self.norm3 = nn.LayerNorm(embedding_dim)
self.norm4 = nn.LayerNorm(embedding_dim)
self.cross_attn_image_to_token = Attention(
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
)
self.skip_first_layer_pe = skip_first_layer_pe
def forward(
self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor
) -> Tuple[Tensor, Tensor]:
# Self attention block
if self.skip_first_layer_pe:
queries = self.self_attn(q=queries, k=queries, v=queries)
else:
q = queries + query_pe
attn_out = self.self_attn(q=q, k=q, v=queries)
queries = queries + attn_out
queries = self.norm1(queries)
# Cross attention block, tokens attending to image embedding
q = queries + query_pe
k = keys + key_pe
attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
queries = queries + attn_out
queries = self.norm2(queries)
# MLP block
mlp_out = self.mlp(queries)
queries = queries + mlp_out
queries = self.norm3(queries)
# Cross attention block, image embedding attending to tokens
q = queries + query_pe
k = keys + key_pe
attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
keys = keys + attn_out
keys = self.norm4(keys)
return queries, keys
class Attention(nn.Module):
"""
An attention layer that allows for downscaling the size of the embedding
after projection to queries, keys, and values.
"""
def __init__(
self,
embedding_dim: int,
num_heads: int,
downsample_rate: int = 1,
) -> None:
super().__init__()
self.embedding_dim = embedding_dim
self.internal_dim = embedding_dim // downsample_rate
self.num_heads = num_heads
assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim."
self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
self.k_proj = nn.Linear(embedding_dim, self.internal_dim)
self.v_proj = nn.Linear(embedding_dim, self.internal_dim)
self.out_proj = nn.Linear(self.internal_dim, embedding_dim)
def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
b, n, c = x.shape
x = x.reshape(b, n, num_heads, c // num_heads)
return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head
def _recombine_heads(self, x: Tensor) -> Tensor:
b, n_heads, n_tokens, c_per_head = x.shape
x = x.transpose(1, 2)
return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
# Input projections
q = self.q_proj(q)
k = self.k_proj(k)
v = self.v_proj(v)
# Separate into heads
q = self._separate_heads(q, self.num_heads)
k = self._separate_heads(k, self.num_heads)
v = self._separate_heads(v, self.num_heads)
# Attention
_, _, _, c_per_head = q.shape
attn = q @ k.permute(0, 1, 3, 2) # B x N_heads x N_tokens x N_tokens
attn = attn / math.sqrt(c_per_head)
attn = torch.softmax(attn, dim=-1)
# Get output
out = attn @ v
out = self._recombine_heads(out)
out = self.out_proj(out)
return out
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import torch
from repvit_sam.modeling import Sam
from typing import Optional, Tuple
from .utils.transforms import ResizeLongestSide
class SamPredictor(torch.nn.Module):
def __init__(
self,
sam_model: Sam,
) -> None:
"""
Uses SAM to calculate the image embedding for an image, and then
allow repeated, efficient mask prediction given prompts.
Arguments:
sam_model (Sam): The model to use for mask prediction.
"""
super().__init__()
self.model = sam_model
self.transform = ResizeLongestSide(sam_model.image_encoder.img_size)
self.reset_image()
def set_image(
self,
image: np.ndarray,
image_format: str = "RGB",
) -> None:
"""
Calculates the image embeddings for the provided image, allowing
masks to be predicted with the 'predict' method.
Arguments:
image (np.ndarray): The image for calculating masks. Expects an
image in HWC uint8 format, with pixel values in [0, 255].
image_format (str): The color format of the image, in ['RGB', 'BGR'].
"""
assert image_format in [
"RGB",
"BGR",
], f"image_format must be in ['RGB', 'BGR'], is {image_format}."
if image_format != self.model.image_format:
image = image[..., ::-1]
# Transform the image to the form expected by the model
input_image = self.transform.apply_image(image)
input_image_torch = torch.as_tensor(input_image, device=self.device)
input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[None, :, :, :]
self.set_torch_image(input_image_torch, image.shape[:2])
@torch.no_grad()
def set_torch_image(
self,
transformed_image: torch.Tensor,
original_image_size: Tuple[int, ...],
) -> None:
"""
Calculates the image embeddings for the provided image, allowing
masks to be predicted with the 'predict' method. Expects the input
image to be already transformed to the format expected by the model.
Arguments:
transformed_image (torch.Tensor): The input image, with shape
1x3xHxW, which has been transformed with ResizeLongestSide.
original_image_size (tuple(int, int)): The size of the image
before transformation, in (H, W) format.
"""
assert (
len(transformed_image.shape) == 4
and transformed_image.shape[1] == 3
and max(*transformed_image.shape[2:]) == self.model.image_encoder.img_size
), f"set_torch_image input must be BCHW with long side {self.model.image_encoder.img_size}."
self.reset_image()
self.original_size = original_image_size
self.input_size = tuple(transformed_image.shape[-2:])
#import pdb; pdb.set_trace()
input_image = self.model.preprocess(transformed_image)
self.features = self.model.image_encoder(input_image)
self.is_image_set = True
def predict(
self,
point_coords: Optional[np.ndarray] = None,
point_labels: Optional[np.ndarray] = None,
box: Optional[np.ndarray] = None,
mask_input: Optional[np.ndarray] = None,
multimask_output: bool = True,
return_logits: bool = False,
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
"""
Predict masks for the given input prompts, using the currently set image.
Arguments:
point_coords (np.ndarray or None): A Nx2 array of point prompts to the
model. Each point is in (X,Y) in pixels.
point_labels (np.ndarray or None): A length N array of labels for the
point prompts. 1 indicates a foreground point and 0 indicates a
background point.
box (np.ndarray or None): A length 4 array given a box prompt to the
model, in XYXY format.
mask_input (np.ndarray): A low resolution mask input to the model, typically
coming from a previous prediction iteration. Has form 1xHxW, where
for SAM, H=W=256.
multimask_output (bool): If true, the model will return three masks.
For ambiguous input prompts (such as a single click), this will often
produce better masks than a single prediction. If only a single
mask is needed, the model's predicted quality score can be used
to select the best mask. For non-ambiguous prompts, such as multiple
input prompts, multimask_output=False can give better results.
return_logits (bool): If true, returns un-thresholded masks logits
instead of a binary mask.
Returns:
(np.ndarray): The output masks in CxHxW format, where C is the
number of masks, and (H, W) is the original image size.
(np.ndarray): An array of length C containing the model's
predictions for the quality of each mask.
(np.ndarray): An array of shape CxHxW, where C is the number
of masks and H=W=256. These low resolution logits can be passed to
a subsequent iteration as mask input.
"""
if not self.is_image_set:
raise RuntimeError("An image must be set with .set_image(...) before mask prediction.")
# Transform input prompts
coords_torch, labels_torch, box_torch, mask_input_torch = None, None, None, None
if point_coords is not None:
assert (
point_labels is not None
), "point_labels must be supplied if point_coords is supplied."
point_coords = self.transform.apply_coords(point_coords, self.original_size)
coords_torch = torch.as_tensor(point_coords, dtype=torch.float, device=self.device)
labels_torch = torch.as_tensor(point_labels, dtype=torch.int, device=self.device)
coords_torch, labels_torch = coords_torch[None, :, :], labels_torch[None, :]
if box is not None:
box = self.transform.apply_boxes(box, self.original_size)
box_torch = torch.as_tensor(box, dtype=torch.float, device=self.device)
box_torch = box_torch[None, :]
if mask_input is not None:
mask_input_torch = torch.as_tensor(mask_input, dtype=torch.float, device=self.device)
mask_input_torch = mask_input_torch[None, :, :, :]
masks, iou_predictions, low_res_masks = self.predict_torch(
coords_torch,
labels_torch,
box_torch,
mask_input_torch,
multimask_output,
return_logits=return_logits,
)
masks_np = masks[0].detach().cpu().numpy()
iou_predictions_np = iou_predictions[0].detach().cpu().numpy()
low_res_masks_np = low_res_masks[0].detach().cpu().numpy()
return masks_np, iou_predictions_np, low_res_masks_np
@torch.no_grad()
def predict_torch(
self,
point_coords: Optional[torch.Tensor],
point_labels: Optional[torch.Tensor],
boxes: Optional[torch.Tensor] = None,
mask_input: Optional[torch.Tensor] = None,
multimask_output: bool = True,
return_logits: bool = False,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Predict masks for the given input prompts, using the currently set image.
Input prompts are batched torch tensors and are expected to already be
transformed to the input frame using ResizeLongestSide.
Arguments:
point_coords (torch.Tensor or None): A BxNx2 array of point prompts to the
model. Each point is in (X,Y) in pixels.
point_labels (torch.Tensor or None): A BxN array of labels for the
point prompts. 1 indicates a foreground point and 0 indicates a
background point.
boxes (np.ndarray or None): A Bx4 array given a box prompt to the
model, in XYXY format.
mask_input (np.ndarray): A low resolution mask input to the model, typically
coming from a previous prediction iteration. Has form Bx1xHxW, where
for SAM, H=W=256. Masks returned by a previous iteration of the
predict method do not need further transformation.
multimask_output (bool): If true, the model will return three masks.
For ambiguous input prompts (such as a single click), this will often
produce better masks than a single prediction. If only a single
mask is needed, the model's predicted quality score can be used
to select the best mask. For non-ambiguous prompts, such as multiple
input prompts, multimask_output=False can give better results.
return_logits (bool): If true, returns un-thresholded masks logits
instead of a binary mask.
Returns:
(torch.Tensor): The output masks in BxCxHxW format, where C is the
number of masks, and (H, W) is the original image size.
(torch.Tensor): An array of shape BxC containing the model's
predictions for the quality of each mask.
(torch.Tensor): An array of shape BxCxHxW, where C is the number
of masks and H=W=256. These low res logits can be passed to
a subsequent iteration as mask input.
"""
if not self.is_image_set:
raise RuntimeError("An image must be set with .set_image(...) before mask prediction.")
if point_coords is not None:
points = (point_coords, point_labels)
else:
points = None
# Embed prompts
sparse_embeddings, dense_embeddings = self.model.prompt_encoder(
points=points,
boxes=boxes,
masks=mask_input,
)
# Predict masks
low_res_masks, iou_predictions = self.model.mask_decoder(
image_embeddings=self.features,
image_pe=self.model.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=multimask_output,
)
# Upscale the masks to the original image resolution
masks = self.model.postprocess_masks(low_res_masks, self.input_size, self.original_size)
if not return_logits:
masks = masks > self.model.mask_threshold
return masks, iou_predictions, low_res_masks
def get_image_embedding(self) -> torch.Tensor:
"""
Returns the image embeddings for the currently set image, with
shape 1xCxHxW, where C is the embedding dimension and (H,W) are
the embedding spatial dimension of SAM (typically C=256, H=W=64).
"""
if not self.is_image_set:
raise RuntimeError(
"An image must be set with .set_image(...) to generate an embedding."
)
assert self.features is not None, "Features must exist if an image has been set."
return self.features
@property
def device(self) -> torch.device:
return self.model.device
def reset_image(self) -> None:
"""Resets the currently set image."""
self.is_image_set = False
self.features = None
self.orig_h = None
self.orig_w = None
self.input_h = None
self.input_w = None
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import torch
import math
from copy import deepcopy
from itertools import product
from typing import Any, Dict, Generator, ItemsView, List, Tuple
class MaskData:
"""
A structure for storing masks and their related data in batched format.
Implements basic filtering and concatenation.
"""
def __init__(self, **kwargs) -> None:
for v in kwargs.values():
assert isinstance(
v, (list, np.ndarray, torch.Tensor)
), "MaskData only supports list, numpy arrays, and torch tensors."
self._stats = dict(**kwargs)
def __setitem__(self, key: str, item: Any) -> None:
assert isinstance(
item, (list, np.ndarray, torch.Tensor)
), "MaskData only supports list, numpy arrays, and torch tensors."
self._stats[key] = item
def __delitem__(self, key: str) -> None:
del self._stats[key]
def __getitem__(self, key: str) -> Any:
return self._stats[key]
def items(self) -> ItemsView[str, Any]:
return self._stats.items()
def filter(self, keep: torch.Tensor) -> None:
for k, v in self._stats.items():
if v is None:
self._stats[k] = None
elif isinstance(v, torch.Tensor):
self._stats[k] = v[torch.as_tensor(keep, device=v.device)]
elif isinstance(v, np.ndarray):
self._stats[k] = v[keep.detach().cpu().numpy()]
elif isinstance(v, list) and keep.dtype == torch.bool:
self._stats[k] = [a for i, a in enumerate(v) if keep[i]]
elif isinstance(v, list):
self._stats[k] = [v[i] for i in keep]
else:
raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.")
def cat(self, new_stats: "MaskData") -> None:
for k, v in new_stats.items():
if k not in self._stats or self._stats[k] is None:
self._stats[k] = deepcopy(v)
elif isinstance(v, torch.Tensor):
self._stats[k] = torch.cat([self._stats[k], v], dim=0)
elif isinstance(v, np.ndarray):
self._stats[k] = np.concatenate([self._stats[k], v], axis=0)
elif isinstance(v, list):
self._stats[k] = self._stats[k] + deepcopy(v)
else:
raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.")
def to_numpy(self) -> None:
for k, v in self._stats.items():
if isinstance(v, torch.Tensor):
self._stats[k] = v.detach().cpu().numpy()
def is_box_near_crop_edge(
boxes: torch.Tensor, crop_box: List[int], orig_box: List[int], atol: float = 20.0
) -> torch.Tensor:
"""Filter masks at the edge of a crop, but not at the edge of the original image."""
crop_box_torch = torch.as_tensor(crop_box, dtype=torch.float, device=boxes.device)
orig_box_torch = torch.as_tensor(orig_box, dtype=torch.float, device=boxes.device)
boxes = uncrop_boxes_xyxy(boxes, crop_box).float()
near_crop_edge = torch.isclose(boxes, crop_box_torch[None, :], atol=atol, rtol=0)
near_image_edge = torch.isclose(boxes, orig_box_torch[None, :], atol=atol, rtol=0)
near_crop_edge = torch.logical_and(near_crop_edge, ~near_image_edge)
return torch.any(near_crop_edge, dim=1)
def box_xyxy_to_xywh(box_xyxy: torch.Tensor) -> torch.Tensor:
box_xywh = deepcopy(box_xyxy)
box_xywh[2] = box_xywh[2] - box_xywh[0]
box_xywh[3] = box_xywh[3] - box_xywh[1]
return box_xywh
def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]:
assert len(args) > 0 and all(
len(a) == len(args[0]) for a in args
), "Batched iteration must have inputs of all the same size."
n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0)
for b in range(n_batches):
yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args]
def mask_to_rle_pytorch(tensor: torch.Tensor) -> List[Dict[str, Any]]:
"""
Encodes masks to an uncompressed RLE, in the format expected by
pycoco tools.
"""
# Put in fortran order and flatten h,w
b, h, w = tensor.shape
tensor = tensor.permute(0, 2, 1).flatten(1)
# Compute change indices
diff = tensor[:, 1:] ^ tensor[:, :-1]
change_indices = diff.nonzero()
# Encode run length
out = []
for i in range(b):
cur_idxs = change_indices[change_indices[:, 0] == i, 1]
cur_idxs = torch.cat(
[
torch.tensor([0], dtype=cur_idxs.dtype, device=cur_idxs.device),
cur_idxs + 1,
torch.tensor([h * w], dtype=cur_idxs.dtype, device=cur_idxs.device),
]
)
btw_idxs = cur_idxs[1:] - cur_idxs[:-1]
counts = [] if tensor[i, 0] == 0 else [0]
counts.extend(btw_idxs.detach().cpu().tolist())
out.append({"size": [h, w], "counts": counts})
return out
def rle_to_mask(rle: Dict[str, Any]) -> np.ndarray:
"""Compute a binary mask from an uncompressed RLE."""
h, w = rle["size"]
mask = np.empty(h * w, dtype=bool)
idx = 0
parity = False
for count in rle["counts"]:
mask[idx : idx + count] = parity
idx += count
parity ^= True
mask = mask.reshape(w, h)
return mask.transpose() # Put in C order
def area_from_rle(rle: Dict[str, Any]) -> int:
return sum(rle["counts"][1::2])
def calculate_stability_score(
masks: torch.Tensor, mask_threshold: float, threshold_offset: float
) -> torch.Tensor:
"""
Computes the stability score for a batch of masks. The stability
score is the IoU between the binary masks obtained by thresholding
the predicted mask logits at high and low values.
"""
# One mask is always contained inside the other.
# Save memory by preventing unnecessary cast to torch.int64
intersections = (
(masks > (mask_threshold + threshold_offset))
.sum(-1, dtype=torch.int16)
.sum(-1, dtype=torch.int32)
)
unions = (
(masks > (mask_threshold - threshold_offset))
.sum(-1, dtype=torch.int16)
.sum(-1, dtype=torch.int32)
)
return intersections / unions
def build_point_grid(n_per_side: int) -> np.ndarray:
"""Generates a 2D grid of points evenly spaced in [0,1]x[0,1]."""
offset = 1 / (2 * n_per_side)
points_one_side = np.linspace(offset, 1 - offset, n_per_side)
points_x = np.tile(points_one_side[None, :], (n_per_side, 1))
points_y = np.tile(points_one_side[:, None], (1, n_per_side))
points = np.stack([points_x, points_y], axis=-1).reshape(-1, 2)
return points
def build_all_layer_point_grids(
n_per_side: int, n_layers: int, scale_per_layer: int
) -> List[np.ndarray]:
"""Generates point grids for all crop layers."""
points_by_layer = []
for i in range(n_layers + 1):
n_points = int(n_per_side / (scale_per_layer**i))
points_by_layer.append(build_point_grid(n_points))
return points_by_layer
def generate_crop_boxes(
im_size: Tuple[int, ...], n_layers: int, overlap_ratio: float
) -> Tuple[List[List[int]], List[int]]:
"""
Generates a list of crop boxes of different sizes. Each layer
has (2**i)**2 boxes for the ith layer.
"""
crop_boxes, layer_idxs = [], []
im_h, im_w = im_size
short_side = min(im_h, im_w)
# Original image
crop_boxes.append([0, 0, im_w, im_h])
layer_idxs.append(0)
def crop_len(orig_len, n_crops, overlap):
return int(math.ceil((overlap * (n_crops - 1) + orig_len) / n_crops))
for i_layer in range(n_layers):
n_crops_per_side = 2 ** (i_layer + 1)
overlap = int(overlap_ratio * short_side * (2 / n_crops_per_side))
crop_w = crop_len(im_w, n_crops_per_side, overlap)
crop_h = crop_len(im_h, n_crops_per_side, overlap)
crop_box_x0 = [int((crop_w - overlap) * i) for i in range(n_crops_per_side)]
crop_box_y0 = [int((crop_h - overlap) * i) for i in range(n_crops_per_side)]
# Crops in XYWH format
for x0, y0 in product(crop_box_x0, crop_box_y0):
box = [x0, y0, min(x0 + crop_w, im_w), min(y0 + crop_h, im_h)]
crop_boxes.append(box)
layer_idxs.append(i_layer + 1)
return crop_boxes, layer_idxs
def uncrop_boxes_xyxy(boxes: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
x0, y0, _, _ = crop_box
offset = torch.tensor([[x0, y0, x0, y0]], device=boxes.device)
# Check if boxes has a channel dimension
if len(boxes.shape) == 3:
offset = offset.unsqueeze(1)
return boxes + offset
def uncrop_points(points: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
x0, y0, _, _ = crop_box
offset = torch.tensor([[x0, y0]], device=points.device)
# Check if points has a channel dimension
if len(points.shape) == 3:
offset = offset.unsqueeze(1)
return points + offset
def uncrop_masks(
masks: torch.Tensor, crop_box: List[int], orig_h: int, orig_w: int
) -> torch.Tensor:
x0, y0, x1, y1 = crop_box
if x0 == 0 and y0 == 0 and x1 == orig_w and y1 == orig_h:
return masks
# Coordinate transform masks
pad_x, pad_y = orig_w - (x1 - x0), orig_h - (y1 - y0)
pad = (x0, pad_x - x0, y0, pad_y - y0)
return torch.nn.functional.pad(masks, pad, value=0)
def remove_small_regions(
mask: np.ndarray, area_thresh: float, mode: str
) -> Tuple[np.ndarray, bool]:
"""
Removes small disconnected regions and holes in a mask. Returns the
mask and an indicator of if the mask has been modified.
"""
import cv2 # type: ignore
assert mode in ["holes", "islands"]
correct_holes = mode == "holes"
working_mask = (correct_holes ^ mask).astype(np.uint8)
n_labels, regions, stats, _ = cv2.connectedComponentsWithStats(working_mask, 8)
sizes = stats[:, -1][1:] # Row 0 is background label
small_regions = [i + 1 for i, s in enumerate(sizes) if s < area_thresh]
if len(small_regions) == 0:
return mask, False
fill_labels = [0] + small_regions
if not correct_holes:
fill_labels = [i for i in range(n_labels) if i not in fill_labels]
# If every region is below threshold, keep largest
if len(fill_labels) == 0:
fill_labels = [int(np.argmax(sizes)) + 1]
mask = np.isin(regions, fill_labels)
return mask, True
def coco_encode_rle(uncompressed_rle: Dict[str, Any]) -> Dict[str, Any]:
from pycocotools import mask as mask_utils # type: ignore
h, w = uncompressed_rle["size"]
rle = mask_utils.frPyObjects(uncompressed_rle, h, w)
rle["counts"] = rle["counts"].decode("utf-8") # Necessary to serialize with json
return rle
def batched_mask_to_box(masks: torch.Tensor) -> torch.Tensor:
"""
Calculates boxes in XYXY format around masks. Return [0,0,0,0] for
an empty mask. For input shape C1xC2x...xHxW, the output shape is C1xC2x...x4.
"""
# torch.max below raises an error on empty inputs, just skip in this case
if torch.numel(masks) == 0:
return torch.zeros(*masks.shape[:-2], 4, device=masks.device)
# Normalize shape to CxHxW
shape = masks.shape
h, w = shape[-2:]
if len(shape) > 2:
masks = masks.flatten(0, -3)
else:
masks = masks.unsqueeze(0)
# Get top and bottom edges
in_height, _ = torch.max(masks, dim=-1)
in_height_coords = in_height * torch.arange(h, device=in_height.device)[None, :]
bottom_edges, _ = torch.max(in_height_coords, dim=-1)
in_height_coords = in_height_coords + h * (~in_height)
top_edges, _ = torch.min(in_height_coords, dim=-1)
# Get left and right edges
in_width, _ = torch.max(masks, dim=-2)
in_width_coords = in_width * torch.arange(w, device=in_width.device)[None, :]
right_edges, _ = torch.max(in_width_coords, dim=-1)
in_width_coords = in_width_coords + w * (~in_width)
left_edges, _ = torch.min(in_width_coords, dim=-1)
# If the mask is empty the right edge will be to the left of the left edge.
# Replace these boxes with [0, 0, 0, 0]
empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges)
out = torch.stack([left_edges, top_edges, right_edges, bottom_edges], dim=-1)
out = out * (~empty_filter).unsqueeze(-1)
# Return to original shape
if len(shape) > 2:
out = out.reshape(*shape[:-2], 4)
else:
out = out[0]
return out
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from math import floor
import torch
import torch.nn as nn
from torch.nn import functional as F
from typing import Tuple, List
from ..modeling import Sam
from .amg import calculate_stability_score
class SamCoreMLModel(nn.Module):
"""
This model should not be called directly, but is used in ONNX export.
It combines the prompt encoder, mask decoder, and mask postprocessing of Sam,
with some functions modified to enable model tracing. Also supports extra
options controlling what information. See the ONNX export script for details.
"""
def __init__(
self,
model: Sam,
orig_img_size: List,
return_single_mask: bool,
use_stability_score: bool = False,
return_extra_metrics: bool = False,
) -> None:
super().__init__()
self.mask_decoder = model.mask_decoder
self.model = model
self.img_size = model.image_encoder.img_size
self.return_single_mask = return_single_mask
self.use_stability_score = use_stability_score
self.stability_score_offset = 1.0
self.return_extra_metrics = return_extra_metrics
self.orig_img_size = orig_img_size
@staticmethod
def resize_longest_image_size(
input_image_size: List, longest_side: int
) -> List:
scale = longest_side / max(input_image_size)
transformed_size = [int(floor(scale * each + 0.5)) for each in input_image_size]
return transformed_size
def _embed_points(self, point_coords: torch.Tensor, point_labels: torch.Tensor) -> torch.Tensor:
point_coords = point_coords + 0.5
point_coords = point_coords / self.img_size
point_embedding = self.model.prompt_encoder.pe_layer._pe_encoding(point_coords)
point_labels = point_labels.unsqueeze(-1).expand_as(point_embedding)
point_embedding = point_embedding * (point_labels != -1)
point_embedding = point_embedding + self.model.prompt_encoder.not_a_point_embed.weight * (
point_labels == -1
)
for i in range(self.model.prompt_encoder.num_point_embeddings):
point_embedding = point_embedding + self.model.prompt_encoder.point_embeddings[
i
].weight * (point_labels == i)
return point_embedding
def _embed_masks(self, input_mask: torch.Tensor, has_mask_input: torch.Tensor) -> torch.Tensor:
mask_embedding = has_mask_input * self.model.prompt_encoder.mask_downscaling(input_mask)
mask_embedding = mask_embedding + (
1 - has_mask_input
) * self.model.prompt_encoder.no_mask_embed.weight.reshape(1, -1, 1, 1)
return mask_embedding
def mask_postprocessing(self, masks: torch.Tensor) -> torch.Tensor:
masks = F.interpolate(
masks,
size=(self.img_size, self.img_size),
mode="bilinear",
align_corners=False,
)
prepadded_size = self.resize_longest_image_size(self.orig_img_size, self.img_size)
masks = masks[..., : prepadded_size[0], : prepadded_size[1]] # type: ignore
h, w = self.orig_img_size[0], self.orig_img_size[1]
masks = F.interpolate(masks, size=(h, w), mode="bilinear", align_corners=False)
return masks
def select_masks(
self, masks: torch.Tensor, iou_preds: torch.Tensor, num_points: int
) -> Tuple[torch.Tensor, torch.Tensor]:
# Determine if we should return the multiclick mask or not from the number of points.
# The reweighting is used to avoid control flow.
score_reweight = torch.tensor(
[[1000] + [0] * (self.model.mask_decoder.num_mask_tokens - 1)]
).to(iou_preds.device)
score = iou_preds + (num_points - 2.5) * score_reweight
best_idx = torch.argmax(score, dim=1)
masks = masks[torch.arange(masks.shape[0]), best_idx, :, :].unsqueeze(1)
iou_preds = iou_preds[torch.arange(masks.shape[0]), best_idx].unsqueeze(1)
return masks, iou_preds
@torch.no_grad()
def forward(
self,
image_embeddings: torch.Tensor,
point_coords: torch.Tensor,
point_labels: torch.Tensor,
mask_input: torch.Tensor,
has_mask_input: torch.Tensor
):
sparse_embedding = self._embed_points(point_coords, point_labels)
dense_embedding = self._embed_masks(mask_input, has_mask_input)
masks, scores = self.model.mask_decoder.predict_masks(
image_embeddings=image_embeddings,
image_pe=self.model.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embedding,
dense_prompt_embeddings=dense_embedding,
)
if self.use_stability_score:
scores = calculate_stability_score(
masks, self.model.mask_threshold, self.stability_score_offset
)
if self.return_single_mask:
masks, scores = self.select_masks(masks, scores, point_coords.shape[1])
upscaled_masks = self.mask_postprocessing(masks)
if self.return_extra_metrics:
stability_scores = calculate_stability_score(
upscaled_masks, self.model.mask_threshold, self.stability_score_offset
)
areas = (upscaled_masks > self.model.mask_threshold).sum(-1).sum(-1)
return upscaled_masks, scores, stability_scores, areas, masks
return upscaled_masks, scores, masks
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment