"vscode:/vscode.git/clone" did not exist on "5627de3dc45ec894a28d00550bc0f2fbaff64071"
Commit c218d1c5 authored by chenzk's avatar chenzk
Browse files

v1.0

parents
Pipeline #1192 canceled with stages
torch
torchvision
timm
opencv-python
import os
import sys
import cv2
import matplotlib.pyplot as plt
import numpy as np
import torch
from PIL import Image
def convert_box_xywh_to_xyxy(box):
x1 = box[0]
y1 = box[1]
x2 = box[0] + box[2]
y2 = box[1] + box[3]
return [x1, y1, x2, y2]
def segment_image(image, bbox):
image_array = np.array(image)
segmented_image_array = np.zeros_like(image_array)
x1, y1, x2, y2 = bbox
segmented_image_array[y1:y2, x1:x2] = image_array[y1:y2, x1:x2]
segmented_image = Image.fromarray(segmented_image_array)
black_image = Image.new("RGB", image.size, (255, 255, 255))
# transparency_mask = np.zeros_like((), dtype=np.uint8)
transparency_mask = np.zeros(
(image_array.shape[0], image_array.shape[1]), dtype=np.uint8
)
transparency_mask[y1:y2, x1:x2] = 255
transparency_mask_image = Image.fromarray(transparency_mask, mode="L")
black_image.paste(segmented_image, mask=transparency_mask_image)
return black_image
def format_results(masks, scores, logits, filter=0):
annotations = []
n = len(scores)
for i in range(n):
annotation = {}
mask = masks[i]
tmp = np.where(mask != 0)
if np.sum(mask) < filter:
continue
annotation["id"] = i
annotation["segmentation"] = mask
annotation["bbox"] = [
np.min(tmp[0]),
np.min(tmp[1]),
np.max(tmp[1]),
np.max(tmp[0]),
]
annotation["score"] = scores[i]
annotation["area"] = annotation["segmentation"].sum()
annotations.append(annotation)
return annotations
def filter_masks(annotations): # filter the overlap mask
annotations.sort(key=lambda x: x["area"], reverse=True)
to_remove = set()
for i in range(0, len(annotations)):
a = annotations[i]
for j in range(i + 1, len(annotations)):
b = annotations[j]
if i != j and j not in to_remove:
# check if
if b["area"] < a["area"]:
if (a["segmentation"] & b["segmentation"]).sum() / b[
"segmentation"
].sum() > 0.8:
to_remove.add(j)
return [a for i, a in enumerate(annotations) if i not in to_remove], to_remove
def get_bbox_from_mask(mask):
mask = mask.astype(np.uint8)
contours, hierarchy = cv2.findContours(
mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
x1, y1, w, h = cv2.boundingRect(contours[0])
x2, y2 = x1 + w, y1 + h
if len(contours) > 1:
for b in contours:
x_t, y_t, w_t, h_t = cv2.boundingRect(b)
# 将多个bbox合并成一个
x1 = min(x1, x_t)
y1 = min(y1, y_t)
x2 = max(x2, x_t + w_t)
y2 = max(y2, y_t + h_t)
h = y2 - y1
w = x2 - x1
return [x1, y1, x2, y2]
def fast_process(
annotations, args, mask_random_color, bbox=None, points=None, edges=False
):
if isinstance(annotations[0], dict):
annotations = [annotation["segmentation"] for annotation in annotations]
result_name = os.path.basename(args.img_path)
image = cv2.imread(args.img_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
original_h = image.shape[0]
original_w = image.shape[1]
if sys.platform == "darwin":
plt.switch_backend("TkAgg")
plt.figure(figsize=(original_w / 100, original_h / 100))
# Add subplot with no margin.
plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
plt.margins(0, 0)
plt.gca().xaxis.set_major_locator(plt.NullLocator())
plt.gca().yaxis.set_major_locator(plt.NullLocator())
plt.imshow(image)
if args.better_quality == True:
if isinstance(annotations[0], torch.Tensor):
annotations = np.array(annotations.cpu())
for i, mask in enumerate(annotations):
mask = cv2.morphologyEx(
mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8)
)
annotations[i] = cv2.morphologyEx(
mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8)
)
if args.device == "cpu":
annotations = np.array(annotations)
fast_show_mask(
annotations,
plt.gca(),
random_color=mask_random_color,
bbox=bbox,
points=points,
point_label=args.point_label,
retinamask=args.retina,
target_height=original_h,
target_width=original_w,
)
else:
if isinstance(annotations[0], np.ndarray):
annotations = torch.from_numpy(annotations)
fast_show_mask_gpu(
annotations,
plt.gca(),
random_color=args.randomcolor,
bbox=bbox,
points=points,
point_label=args.point_label,
retinamask=args.retina,
target_height=original_h,
target_width=original_w,
)
if isinstance(annotations, torch.Tensor):
annotations = annotations.cpu().numpy()
if args.withContours == True:
contour_all = []
temp = np.zeros((original_h, original_w, 1))
for i, mask in enumerate(annotations):
if type(mask) == dict:
mask = mask["segmentation"]
annotation = mask.astype(np.uint8)
if args.retina == False:
annotation = cv2.resize(
annotation,
(original_w, original_h),
interpolation=cv2.INTER_NEAREST,
)
contours, hierarchy = cv2.findContours(
annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
)
for contour in contours:
contour_all.append(contour)
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2)
color = np.array([0 / 255, 0 / 255, 255 / 255, 0.8])
contour_mask = temp / 255 * color.reshape(1, 1, -1)
plt.imshow(contour_mask)
save_path = args.output
if not os.path.exists(save_path):
os.makedirs(save_path)
plt.axis("off")
fig = plt.gcf()
plt.draw()
try:
buf = fig.canvas.tostring_rgb()
except AttributeError:
fig.canvas.draw()
buf = fig.canvas.tostring_rgb()
cols, rows = fig.canvas.get_width_height()
img_array = np.fromstring(buf, dtype=np.uint8).reshape(rows, cols, 3)
cv2.imwrite(
os.path.join(save_path, result_name), cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR)
)
# CPU post process
def fast_show_mask(
annotation,
ax,
random_color=False,
bbox=None,
points=None,
point_label=None,
retinamask=True,
target_height=960,
target_width=960,
):
msak_sum = annotation.shape[0]
height = annotation.shape[1]
weight = annotation.shape[2]
# 将annotation 按照面积 排序
areas = np.sum(annotation, axis=(1, 2))
sorted_indices = np.argsort(areas)
annotation = annotation[sorted_indices]
index = (annotation != 0).argmax(axis=0)
if random_color == True:
color = np.random.random((msak_sum, 1, 1, 3))
else:
color = np.ones((msak_sum, 1, 1, 3)) * np.array(
[30 / 255, 144 / 255, 255 / 255]
)
transparency = np.ones((msak_sum, 1, 1, 1)) * 0.6
visual = np.concatenate([color, transparency], axis=-1)
mask_image = np.expand_dims(annotation, -1) * visual
show = np.zeros((height, weight, 4))
h_indices, w_indices = np.meshgrid(
np.arange(height), np.arange(weight), indexing="ij"
)
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
# 使用向量化索引更新show的值
show[h_indices, w_indices, :] = mask_image[indices]
if bbox is not None:
x1, y1, x2, y2 = bbox
ax.add_patch(
plt.Rectangle(
(x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1
)
)
# draw point
if points is not None:
plt.scatter(
[point[0] for i, point in enumerate(points) if point_label[i] == 1],
[point[1] for i, point in enumerate(points) if point_label[i] == 1],
s=20,
c="y",
)
plt.scatter(
[point[0] for i, point in enumerate(points) if point_label[i] == 0],
[point[1] for i, point in enumerate(points) if point_label[i] == 0],
s=20,
c="m",
)
if retinamask == False:
show = cv2.resize(
show, (target_width, target_height), interpolation=cv2.INTER_NEAREST
)
ax.imshow(show)
def fast_show_mask_gpu(
annotation,
ax,
random_color=False,
bbox=None,
points=None,
point_label=None,
retinamask=True,
target_height=960,
target_width=960,
):
msak_sum = annotation.shape[0]
height = annotation.shape[1]
weight = annotation.shape[2]
areas = torch.sum(annotation, dim=(1, 2))
sorted_indices = torch.argsort(areas, descending=False)
annotation = annotation[sorted_indices]
# 找每个位置第一个非零值下标
index = (annotation != 0).to(torch.long).argmax(dim=0)
if random_color == True:
color = torch.rand((msak_sum, 1, 1, 3)).to(annotation.device)
else:
color = torch.ones((msak_sum, 1, 1, 3)).to(annotation.device) * torch.tensor(
[30 / 255, 144 / 255, 255 / 255]
).to(annotation.device)
transparency = torch.ones((msak_sum, 1, 1, 1)).to(annotation.device) * 0.6
visual = torch.cat([color, transparency], dim=-1)
mask_image = torch.unsqueeze(annotation, -1) * visual
# 按index取数,index指每个位置选哪个batch的数,把mask_image转成一个batch的形式
show = torch.zeros((height, weight, 4)).to(annotation.device)
h_indices, w_indices = torch.meshgrid(
torch.arange(height), torch.arange(weight), indexing="ij"
)
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
# 使用向量化索引更新show的值
show[h_indices, w_indices, :] = mask_image[indices]
show_cpu = show.cpu().numpy()
if bbox is not None:
x1, y1, x2, y2 = bbox
ax.add_patch(
plt.Rectangle(
(x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1
)
)
# draw point
if points is not None:
plt.scatter(
[point[0] for i, point in enumerate(points) if point_label[i] == 1],
[point[1] for i, point in enumerate(points) if point_label[i] == 1],
s=20,
c="y",
)
plt.scatter(
[point[0] for i, point in enumerate(points) if point_label[i] == 0],
[point[1] for i, point in enumerate(points) if point_label[i] == 0],
s=20,
c="m",
)
if retinamask == False:
show_cpu = cv2.resize(
show_cpu, (target_width, target_height), interpolation=cv2.INTER_NEAREST
)
ax.imshow(show_cpu)
def crop_image(annotations, image_like):
if isinstance(image_like, str):
image = Image.open(image_like)
else:
image = image_like
ori_w, ori_h = image.size
mask_h, mask_w = annotations[0]["segmentation"].shape
if ori_w != mask_w or ori_h != mask_h:
image = image.resize((mask_w, mask_h))
cropped_boxes = []
cropped_images = []
not_crop = []
filter_id = []
# annotations, _ = filter_masks(annotations)
# filter_id = list(_)
for _, mask in enumerate(annotations):
if np.sum(mask["segmentation"]) <= 100:
filter_id.append(_)
continue
bbox = get_bbox_from_mask(mask["segmentation"]) # mask 的 bbox
cropped_boxes.append(segment_image(image, bbox)) # 保存裁剪的图片
# cropped_boxes.append(segment_image(image,mask["segmentation"]))
cropped_images.append(bbox) # 保存裁剪的图片的bbox
return cropped_boxes, cropped_images, not_crop, filter_id, annotations
def box_prompt(masks, bbox, target_height, target_width):
h = masks.shape[1]
w = masks.shape[2]
if h != target_height or w != target_width:
bbox = [
int(bbox[0] * w / target_width),
int(bbox[1] * h / target_height),
int(bbox[2] * w / target_width),
int(bbox[3] * h / target_height),
]
bbox[0] = round(bbox[0]) if round(bbox[0]) > 0 else 0
bbox[1] = round(bbox[1]) if round(bbox[1]) > 0 else 0
bbox[2] = round(bbox[2]) if round(bbox[2]) < w else w
bbox[3] = round(bbox[3]) if round(bbox[3]) < h else h
# IoUs = torch.zeros(len(masks), dtype=torch.float32)
bbox_area = (bbox[3] - bbox[1]) * (bbox[2] - bbox[0])
masks_area = torch.sum(masks[:, bbox[1] : bbox[3], bbox[0] : bbox[2]], dim=(1, 2))
orig_masks_area = torch.sum(masks, dim=(1, 2))
union = bbox_area + orig_masks_area - masks_area
IoUs = masks_area / union
max_iou_index = torch.argmax(IoUs)
return masks[max_iou_index].cpu().numpy(), max_iou_index
def point_prompt(masks, points, point_label, target_height, target_width): # numpy 处理
h = masks[0]["segmentation"].shape[0]
w = masks[0]["segmentation"].shape[1]
if h != target_height or w != target_width:
points = [
[int(point[0] * w / target_width), int(point[1] * h / target_height)]
for point in points
]
onemask = np.zeros((h, w))
for i, annotation in enumerate(masks):
if type(annotation) == dict:
mask = annotation["segmentation"]
else:
mask = annotation
for i, point in enumerate(points):
if mask[point[1], point[0]] == 1 and point_label[i] == 1:
onemask += mask
if mask[point[1], point[0]] == 1 and point_label[i] == 0:
onemask -= mask
onemask = onemask >= 1
return onemask, 0
import cv2
import matplotlib.pyplot as plt
import numpy as np
import torch
from PIL import Image
def fast_process(
annotations,
image,
device,
scale,
better_quality=False,
mask_random_color=True,
bbox=None,
use_retina=True,
withContours=True,
):
if isinstance(annotations[0], dict):
annotations = [annotation["segmentation"] for annotation in annotations]
original_h = image.height
original_w = image.width
if better_quality:
if isinstance(annotations[0], torch.Tensor):
annotations = np.array(annotations.cpu())
for i, mask in enumerate(annotations):
mask = cv2.morphologyEx(
mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8)
)
annotations[i] = cv2.morphologyEx(
mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8)
)
if device == "cpu":
annotations = np.array(annotations)
inner_mask = fast_show_mask(
annotations,
plt.gca(),
random_color=mask_random_color,
bbox=bbox,
retinamask=use_retina,
target_height=original_h,
target_width=original_w,
)
else:
if isinstance(annotations[0], np.ndarray):
annotations = np.array(annotations)
annotations = torch.from_numpy(annotations)
inner_mask = fast_show_mask_gpu(
annotations,
plt.gca(),
random_color=mask_random_color,
bbox=bbox,
retinamask=use_retina,
target_height=original_h,
target_width=original_w,
)
if isinstance(annotations, torch.Tensor):
annotations = annotations.cpu().numpy()
if withContours:
contour_all = []
temp = np.zeros((original_h, original_w, 1))
for i, mask in enumerate(annotations):
if type(mask) == dict:
mask = mask["segmentation"]
annotation = mask.astype(np.uint8)
if use_retina == False:
annotation = cv2.resize(
annotation,
(original_w, original_h),
interpolation=cv2.INTER_NEAREST,
)
contours, _ = cv2.findContours(
annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
)
for contour in contours:
contour_all.append(contour)
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2 // scale)
color = np.array([0 / 255, 0 / 255, 255 / 255, 0.9])
contour_mask = temp / 255 * color.reshape(1, 1, -1)
image = image.convert("RGBA")
overlay_inner = Image.fromarray((inner_mask * 255).astype(np.uint8), "RGBA")
image.paste(overlay_inner, (0, 0), overlay_inner)
if withContours:
overlay_contour = Image.fromarray((contour_mask * 255).astype(np.uint8), "RGBA")
image.paste(overlay_contour, (0, 0), overlay_contour)
return image
# CPU post process
def fast_show_mask(
annotation,
ax,
random_color=False,
bbox=None,
retinamask=True,
target_height=960,
target_width=960,
):
mask_sum = annotation.shape[0]
height = annotation.shape[1]
weight = annotation.shape[2]
# 将annotation 按照面积 排序
areas = np.sum(annotation, axis=(1, 2))
sorted_indices = np.argsort(areas)[::1]
annotation = annotation[sorted_indices]
index = (annotation != 0).argmax(axis=0)
if random_color == True:
color = np.random.random((mask_sum, 1, 1, 3))
else:
color = np.ones((mask_sum, 1, 1, 3)) * np.array(
[30 / 255, 144 / 255, 255 / 255]
)
transparency = np.ones((mask_sum, 1, 1, 1)) * 0.6
visual = np.concatenate([color, transparency], axis=-1)
mask_image = np.expand_dims(annotation, -1) * visual
mask = np.zeros((height, weight, 4))
h_indices, w_indices = np.meshgrid(
np.arange(height), np.arange(weight), indexing="ij"
)
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
mask[h_indices, w_indices, :] = mask_image[indices]
if bbox is not None:
x1, y1, x2, y2 = bbox
ax.add_patch(
plt.Rectangle(
(x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1
)
)
if retinamask == False:
mask = cv2.resize(
mask, (target_width, target_height), interpolation=cv2.INTER_NEAREST
)
return mask
def fast_show_mask_gpu(
annotation,
ax,
random_color=False,
bbox=None,
retinamask=True,
target_height=960,
target_width=960,
):
device = annotation.device
mask_sum = annotation.shape[0]
height = annotation.shape[1]
weight = annotation.shape[2]
areas = torch.sum(annotation, dim=(1, 2))
sorted_indices = torch.argsort(areas, descending=False)
annotation = annotation[sorted_indices]
# 找每个位置第一个非零值下标
index = (annotation != 0).to(torch.long).argmax(dim=0)
if random_color == True:
color = torch.rand((mask_sum, 1, 1, 3)).to(device)
else:
color = torch.ones((mask_sum, 1, 1, 3)).to(device) * torch.tensor(
[30 / 255, 144 / 255, 255 / 255]
).to(device)
transparency = torch.ones((mask_sum, 1, 1, 1)).to(device) * 0.6
visual = torch.cat([color, transparency], dim=-1)
mask_image = torch.unsqueeze(annotation, -1) * visual
# 按index取数,index指每个位置选哪个batch的数,把mask_image转成一个batch的形式
mask = torch.zeros((height, weight, 4)).to(device)
h_indices, w_indices = torch.meshgrid(torch.arange(height), torch.arange(weight))
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
# 使用向量化索引更新show的值
mask[h_indices, w_indices, :] = mask_image[indices]
mask_cpu = mask.cpu().numpy()
if bbox is not None:
x1, y1, x2, y2 = bbox
ax.add_patch(
plt.Rectangle(
(x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1
)
)
if retinamask == False:
mask_cpu = cv2.resize(
mask_cpu, (target_width, target_height), interpolation=cv2.INTER_NEAREST
)
return mask_cpu
#!/bin/bash -e
# Copyright (c) Facebook, Inc. and its affiliates.
{
black --version | grep -E "23\." > /dev/null
} || {
echo "Linter requires 'black==23.*' !"
exit 1
}
ISORT_VERSION=$(isort --version-number)
if [[ "$ISORT_VERSION" != 5.12* ]]; then
echo "Linter requires isort==5.12.0 !"
exit 1
fi
echo "Running isort ..."
isort . --atomic
echo "Running black ..."
black -l 100 .
echo "Running flake8 ..."
if [ -x "$(command -v flake8)" ]; then
flake8 .
else
python3 -m flake8 .
fi
echo "Running mypy..."
mypy --exclude 'setup.py|notebooks' .
This source diff could not be displayed because it is too large. You can view the blob instead.
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"\n",
"import torch\n",
"import numpy as np\n",
"import cv2\n",
"import matplotlib.pyplot as plt\n",
"import coremltools as ct\n",
"import math\n",
"from repvit_sam.utils.transforms import ResizeLongestSide\n",
"import torch.nn.functional as F\n",
"\n",
"\n",
"def show_mask(mask, ax):\n",
" color = np.array([30/255, 144/255, 255/255, 0.6])\n",
" h, w = mask.shape[-2:]\n",
" mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)\n",
" ax.imshow(mask_image)\n",
" \n",
"def show_points(coords, labels, ax, marker_size=375):\n",
" pos_points = coords[labels==1]\n",
" neg_points = coords[labels==0]\n",
" ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)\n",
" ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) \n",
"\n",
"def preprocess(x, img_size=1024):\n",
" \"\"\"Normalize pixel values and pad to a square input.\"\"\"\n",
" # Normalize colors\n",
" transform = ResizeLongestSide(img_size)\n",
" x = transform.apply_image(x)\n",
" x = torch.as_tensor(x)\n",
" x = x.permute(2, 0, 1).contiguous()\n",
"\n",
" pixel_mean=torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1)\n",
" pixel_std=torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1)\n",
" x = (x - pixel_mean) / pixel_std\n",
"\n",
" # Pad\n",
" h, w = x.shape[-2:]\n",
" padh = img_size - h\n",
" padw = img_size - w\n",
" x = F.pad(x, (0, padw, 0, padh))\n",
" return x, transform\n",
"\n",
"def postprocess(raw_image, masks):\n",
" def resize_longest_image_size(\n",
" input_image_size, longest_side: int\n",
" ):\n",
" scale = longest_side / max(input_image_size)\n",
" transformed_size = [int(math.floor(scale * each + 0.5)) for each in input_image_size]\n",
" return transformed_size\n",
"\n",
" prepadded_size = resize_longest_image_size(raw_image.shape[:2], masks.shape[2])\n",
" masks = masks[..., : prepadded_size[0], : prepadded_size[1]] # type: ignore\n",
"\n",
" h, w = raw_image.shape[:2]\n",
" masks = F.interpolate(torch.tensor(masks), size=(h, w), mode=\"bilinear\", align_corners=False)\n",
" masks = masks > 0\n",
" return masks"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!python3 ../scripts/export_coreml_encoder.py --resolution 1024 --model repvit --samckpt ../weights/repvit_sam.pt\n",
"!python3 ../scripts/export_coreml_decoder.py --checkpoint ../weights/repvit_sam.pt --model-type repvit"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"encoder = ct.models.MLModel('coreml/repvit_1024.mlpackage')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"decoder = ct.models.MLModel('coreml/sam_decoder.mlpackage')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"raw_image = cv2.imread('../../app/assets/picture3.jpg')\n",
"raw_image = cv2.cvtColor(raw_image, cv2.COLOR_BGR2RGB)\n",
"image, transform = preprocess(raw_image)\n",
"image_embedding= list(encoder.predict({'x_1': image.numpy()[None, ...]}).values())[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"input_point = np.array([[553, 808]])\n",
"input_label = np.array([1])\n",
"\n",
"coreml_coord = input_point[None, :, :].astype(np.float32)\n",
"coreml_label = input_label[None, :].astype(np.float32)\n",
"\n",
"coreml_coord = transform.apply_coords(coreml_coord, raw_image.shape[:2]).astype(np.float32)\n",
"\n",
"coreml_mask_input = np.zeros((1, 1, 256, 256), dtype=np.float32)\n",
"coreml_has_mask_input = np.zeros(1, dtype=np.float32)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ort_inputs = {\n",
" \"image_embeddings\": image_embedding,\n",
" \"point_coords\": coreml_coord,\n",
" \"point_labels\": coreml_label,\n",
" \"mask_input\": coreml_mask_input,\n",
" \"has_mask_input\": coreml_has_mask_input,\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"low_res_logits, score, masks = decoder.predict(ort_inputs).values()\n",
"plt.figure(figsize=(10,10))\n",
"plt.imshow(raw_image)\n",
"show_mask(postprocess(raw_image, masks), plt.gca())\n",
"show_points(input_point, input_label, plt.gca())\n",
"plt.axis('off')\n",
"plt.show() "
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.7"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
This source diff could not be displayed because it is too large. You can view the blob instead.
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from .build_sam import (
build_sam,
build_sam_vit_h,
build_sam_vit_l,
build_sam_vit_b,
build_sam_vit_t,
sam_model_registry,
)
from .predictor import SamPredictor
from .automatic_mask_generator import SamAutomaticMaskGenerator
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import torch
from torchvision.ops.boxes import batched_nms, box_area # type: ignore
from typing import Any, Dict, List, Optional, Tuple
from .modeling import Sam
from .predictor import SamPredictor
from .utils.amg import (
MaskData,
area_from_rle,
batch_iterator,
batched_mask_to_box,
box_xyxy_to_xywh,
build_all_layer_point_grids,
calculate_stability_score,
coco_encode_rle,
generate_crop_boxes,
is_box_near_crop_edge,
mask_to_rle_pytorch,
remove_small_regions,
rle_to_mask,
uncrop_boxes_xyxy,
uncrop_masks,
uncrop_points,
)
class SamAutomaticMaskGenerator:
def __init__(
self,
model: Sam,
points_per_side: Optional[int] = 32,
points_per_batch: int = 64,
pred_iou_thresh: float = 0.88,
stability_score_thresh: float = 0.95,
stability_score_offset: float = 1.0,
box_nms_thresh: float = 0.7,
crop_n_layers: int = 0,
crop_nms_thresh: float = 0.7,
crop_overlap_ratio: float = 512 / 1500,
crop_n_points_downscale_factor: int = 1,
point_grids: Optional[List[np.ndarray]] = None,
min_mask_region_area: int = 0,
output_mode: str = "binary_mask",
) -> None:
"""
Using a SAM model, generates masks for the entire image.
Generates a grid of point prompts over the image, then filters
low quality and duplicate masks. The default settings are chosen
for SAM with a ViT-H backbone.
Arguments:
model (Sam): The SAM model to use for mask prediction.
points_per_side (int or None): The number of points to be sampled
along one side of the image. The total number of points is
points_per_side**2. If None, 'point_grids' must provide explicit
point sampling.
points_per_batch (int): Sets the number of points run simultaneously
by the model. Higher numbers may be faster but use more GPU memory.
pred_iou_thresh (float): A filtering threshold in [0,1], using the
model's predicted mask quality.
stability_score_thresh (float): A filtering threshold in [0,1], using
the stability of the mask under changes to the cutoff used to binarize
the model's mask predictions.
stability_score_offset (float): The amount to shift the cutoff when
calculated the stability score.
box_nms_thresh (float): The box IoU cutoff used by non-maximal
suppression to filter duplicate masks.
crop_n_layers (int): If >0, mask prediction will be run again on
crops of the image. Sets the number of layers to run, where each
layer has 2**i_layer number of image crops.
crop_nms_thresh (float): The box IoU cutoff used by non-maximal
suppression to filter duplicate masks between different crops.
crop_overlap_ratio (float): Sets the degree to which crops overlap.
In the first crop layer, crops will overlap by this fraction of
the image length. Later layers with more crops scale down this overlap.
crop_n_points_downscale_factor (int): The number of points-per-side
sampled in layer n is scaled down by crop_n_points_downscale_factor**n.
point_grids (list(np.ndarray) or None): A list over explicit grids
of points used for sampling, normalized to [0,1]. The nth grid in the
list is used in the nth crop layer. Exclusive with points_per_side.
min_mask_region_area (int): If >0, postprocessing will be applied
to remove disconnected regions and holes in masks with area smaller
than min_mask_region_area. Requires opencv.
output_mode (str): The form masks are returned in. Can be 'binary_mask',
'uncompressed_rle', or 'coco_rle'. 'coco_rle' requires pycocotools.
For large resolutions, 'binary_mask' may consume large amounts of
memory.
"""
assert (points_per_side is None) != (
point_grids is None
), "Exactly one of points_per_side or point_grid must be provided."
if points_per_side is not None:
self.point_grids = build_all_layer_point_grids(
points_per_side,
crop_n_layers,
crop_n_points_downscale_factor,
)
elif point_grids is not None:
self.point_grids = point_grids
else:
raise ValueError("Can't have both points_per_side and point_grid be None.")
assert output_mode in [
"binary_mask",
"uncompressed_rle",
"coco_rle",
], f"Unknown output_mode {output_mode}."
if output_mode == "coco_rle":
from pycocotools import mask as mask_utils # type: ignore # noqa: F401
if min_mask_region_area > 0:
import cv2 # type: ignore # noqa: F401
self.predictor = SamPredictor(model)
self.points_per_batch = points_per_batch
self.pred_iou_thresh = pred_iou_thresh
self.stability_score_thresh = stability_score_thresh
self.stability_score_offset = stability_score_offset
self.box_nms_thresh = box_nms_thresh
self.crop_n_layers = crop_n_layers
self.crop_nms_thresh = crop_nms_thresh
self.crop_overlap_ratio = crop_overlap_ratio
self.crop_n_points_downscale_factor = crop_n_points_downscale_factor
self.min_mask_region_area = min_mask_region_area
self.output_mode = output_mode
@torch.no_grad()
def generate(self, image: np.ndarray) -> List[Dict[str, Any]]:
"""
Generates masks for the given image.
Arguments:
image (np.ndarray): The image to generate masks for, in HWC uint8 format.
Returns:
list(dict(str, any)): A list over records for masks. Each record is
a dict containing the following keys:
segmentation (dict(str, any) or np.ndarray): The mask. If
output_mode='binary_mask', is an array of shape HW. Otherwise,
is a dictionary containing the RLE.
bbox (list(float)): The box around the mask, in XYWH format.
area (int): The area in pixels of the mask.
predicted_iou (float): The model's own prediction of the mask's
quality. This is filtered by the pred_iou_thresh parameter.
point_coords (list(list(float))): The point coordinates input
to the model to generate this mask.
stability_score (float): A measure of the mask's quality. This
is filtered on using the stability_score_thresh parameter.
crop_box (list(float)): The crop of the image used to generate
the mask, given in XYWH format.
"""
# Generate masks
mask_data = self._generate_masks(image)
# Filter small disconnected regions and holes in masks
if self.min_mask_region_area > 0:
mask_data = self.postprocess_small_regions(
mask_data,
self.min_mask_region_area,
max(self.box_nms_thresh, self.crop_nms_thresh),
)
# Encode masks
if self.output_mode == "coco_rle":
mask_data["segmentations"] = [coco_encode_rle(rle) for rle in mask_data["rles"]]
elif self.output_mode == "binary_mask":
mask_data["segmentations"] = [rle_to_mask(rle) for rle in mask_data["rles"]]
else:
mask_data["segmentations"] = mask_data["rles"]
# Write mask records
curr_anns = []
for idx in range(len(mask_data["segmentations"])):
ann = {
"segmentation": mask_data["segmentations"][idx],
"area": area_from_rle(mask_data["rles"][idx]),
"bbox": box_xyxy_to_xywh(mask_data["boxes"][idx]).tolist(),
"predicted_iou": mask_data["iou_preds"][idx].item(),
"point_coords": [mask_data["points"][idx].tolist()],
"stability_score": mask_data["stability_score"][idx].item(),
"crop_box": box_xyxy_to_xywh(mask_data["crop_boxes"][idx]).tolist(),
}
curr_anns.append(ann)
return curr_anns
def _generate_masks(self, image: np.ndarray) -> MaskData:
orig_size = image.shape[:2]
crop_boxes, layer_idxs = generate_crop_boxes(
orig_size, self.crop_n_layers, self.crop_overlap_ratio
)
# Iterate over image crops
data = MaskData()
for crop_box, layer_idx in zip(crop_boxes, layer_idxs):
crop_data = self._process_crop(image, crop_box, layer_idx, orig_size)
data.cat(crop_data)
# Remove duplicate masks between crops
if len(crop_boxes) > 1:
# Prefer masks from smaller crops
scores = 1 / box_area(data["crop_boxes"])
scores = scores.to(data["boxes"].device)
keep_by_nms = batched_nms(
data["boxes"].float(),
scores,
torch.zeros_like(data["boxes"][:, 0]), # categories
iou_threshold=self.crop_nms_thresh,
)
data.filter(keep_by_nms)
data.to_numpy()
return data
def _process_crop(
self,
image: np.ndarray,
crop_box: List[int],
crop_layer_idx: int,
orig_size: Tuple[int, ...],
) -> MaskData:
# Crop the image and calculate embeddings
x0, y0, x1, y1 = crop_box
cropped_im = image[y0:y1, x0:x1, :]
cropped_im_size = cropped_im.shape[:2]
self.predictor.set_image(cropped_im)
# Get points for this crop
points_scale = np.array(cropped_im_size)[None, ::-1]
points_for_image = self.point_grids[crop_layer_idx] * points_scale
# Generate masks for this crop in batches
data = MaskData()
for (points,) in batch_iterator(self.points_per_batch, points_for_image):
batch_data = self._process_batch(points, cropped_im_size, crop_box, orig_size)
data.cat(batch_data)
del batch_data
self.predictor.reset_image()
# Remove duplicates within this crop.
keep_by_nms = batched_nms(
data["boxes"].float(),
data["iou_preds"],
torch.zeros_like(data["boxes"][:, 0]), # categories
iou_threshold=self.box_nms_thresh,
)
data.filter(keep_by_nms)
# Return to the original image frame
data["boxes"] = uncrop_boxes_xyxy(data["boxes"], crop_box)
data["points"] = uncrop_points(data["points"], crop_box)
data["crop_boxes"] = torch.tensor([crop_box for _ in range(len(data["rles"]))])
return data
def _process_batch(
self,
points: np.ndarray,
im_size: Tuple[int, ...],
crop_box: List[int],
orig_size: Tuple[int, ...],
) -> MaskData:
orig_h, orig_w = orig_size
# Run model on this batch
transformed_points = self.predictor.transform.apply_coords(points, im_size)
in_points = torch.as_tensor(transformed_points, device=self.predictor.device)
in_labels = torch.ones(in_points.shape[0], dtype=torch.int, device=in_points.device)
masks, iou_preds, _ = self.predictor.predict_torch(
in_points[:, None, :],
in_labels[:, None],
multimask_output=True,
return_logits=True,
)
# Serialize predictions and store in MaskData
data = MaskData(
masks=masks.flatten(0, 1),
iou_preds=iou_preds.flatten(0, 1),
points=torch.as_tensor(points.repeat(masks.shape[1], axis=0)),
)
del masks
# Filter by predicted IoU
if self.pred_iou_thresh > 0.0:
keep_mask = data["iou_preds"] > self.pred_iou_thresh
data.filter(keep_mask)
# Calculate stability score
data["stability_score"] = calculate_stability_score(
data["masks"], self.predictor.model.mask_threshold, self.stability_score_offset
)
if self.stability_score_thresh > 0.0:
keep_mask = data["stability_score"] >= self.stability_score_thresh
data.filter(keep_mask)
# Threshold masks and calculate boxes
data["masks"] = data["masks"] > self.predictor.model.mask_threshold
data["boxes"] = batched_mask_to_box(data["masks"])
# Filter boxes that touch crop boundaries
keep_mask = ~is_box_near_crop_edge(data["boxes"], crop_box, [0, 0, orig_w, orig_h])
if not torch.all(keep_mask):
data.filter(keep_mask)
# Compress to RLE
data["masks"] = uncrop_masks(data["masks"], crop_box, orig_h, orig_w)
data["rles"] = mask_to_rle_pytorch(data["masks"])
del data["masks"]
return data
@staticmethod
def postprocess_small_regions(
mask_data: MaskData, min_area: int, nms_thresh: float
) -> MaskData:
"""
Removes small disconnected regions and holes in masks, then reruns
box NMS to remove any new duplicates.
Edits mask_data in place.
Requires open-cv as a dependency.
"""
if len(mask_data["rles"]) == 0:
return mask_data
# Filter small disconnected regions and holes
new_masks = []
scores = []
for rle in mask_data["rles"]:
mask = rle_to_mask(rle)
mask, changed = remove_small_regions(mask, min_area, mode="holes")
unchanged = not changed
mask, changed = remove_small_regions(mask, min_area, mode="islands")
unchanged = unchanged and not changed
new_masks.append(torch.as_tensor(mask).unsqueeze(0))
# Give score=0 to changed masks and score=1 to unchanged masks
# so NMS will prefer ones that didn't need postprocessing
scores.append(float(unchanged))
# Recalculate boxes and remove any new duplicates
masks = torch.cat(new_masks, dim=0)
boxes = batched_mask_to_box(masks)
keep_by_nms = batched_nms(
boxes.float(),
torch.as_tensor(scores),
torch.zeros_like(boxes[:, 0]), # categories
iou_threshold=nms_thresh,
)
# Only recalculate RLEs for masks that have changed
for i_mask in keep_by_nms:
if scores[i_mask] == 0.0:
mask_torch = masks[i_mask].unsqueeze(0)
mask_data["rles"][i_mask] = mask_to_rle_pytorch(mask_torch)[0]
mask_data["boxes"][i_mask] = boxes[i_mask] # update res directly
mask_data.filter(keep_by_nms)
return mask_data
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment