import os import requests import time import random import string import copy import traceback import pandas as pd from PIL import Image from typing import List, Dict, Tuple, Any from common_utils import encode_image_to_base64 class OpenAIWrapper: """Wrapper for OpenAI API.""" def __init__(self, model, api_base, api_key, timeout=60, retry=5, wait=5): self.model = model self.api_base = api_base self.api_key = api_key self.timeout = timeout self.retry = retry self.wait = wait self.fail_msg = 'Failed to obtain answer via API.' def generate(self, messages): """Generate a response from the API.""" headers = {'Content-Type': 'application/json', 'Authorization': f'Bearer {self.api_key}'} # Format messages for API formatted_messages = [] for msg in messages: if msg['type'] == 'text': formatted_messages.append({"role": "user", "content": [{"type": "text", "text": msg['value']}]}) elif msg['type'] == 'image': # Load and encode the image image = Image.open(msg['value']) image_data = encode_image_to_base64(image) formatted_messages.append({ "role": "user", "content": [ {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_data}"}} ] }) payload = { "model": self.model, "messages": formatted_messages, "max_tokens": 4096, "temperature": 0 } for i in range(self.retry): try: response = requests.post( self.api_base, headers=headers, json=payload, timeout=self.timeout ) if response.status_code == 200: resp_json = response.json() return resp_json['choices'][0]['message']['content'].strip() time.sleep(self.wait) except Exception as e: print(f"API error: {e}") time.sleep(self.wait) return self.fail_msg class DashScopeWrapper: """Wrapper for DashScope API.""" def __init__(self, model, api_base, api_key, timeout=60, retry=5, wait=5): self.model = model self.api_base = api_base self.api_key = api_key self.timeout = timeout self.retry = retry self.wait = wait self.fail_msg = 'Failed to obtain answer via API.' def generate(self, messages): """Generate a response from the API.""" headers = {'Content-Type': 'application/json', 'Authorization': f'Bearer {self.api_key}'} # Format messages for API formatted_messages = [] for msg in messages: if msg['type'] == 'text': formatted_messages.append({"role": "user", "content": [{"type": "text", "text": msg['value']}]}) elif msg['type'] == 'image': # Load and encode the image image = Image.open(msg['value']) image_data = encode_image_to_base64(image) formatted_messages.append({ "role": "user", "content": [ {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_data}"}} ] }) payload = { "model": self.model, "messages": formatted_messages, "max_completion_tokens": 4096, "n": 1, "temperature": 0, "stream": False } for i in range(self.retry): try: response = requests.post( self.api_base, headers=headers, json=payload, timeout=self.timeout ) if response.status_code == 200: resp_json = response.json() # Check finish reason for output in resp_json['choices']: if output['finish_reason'] not in ['stop', 'function_call']: print(f"DashScope finished with error: {resp_json}") time.sleep(self.wait) continue return resp_json['choices'][0]['message']['content'] else: print(f"DashScope API error: HTTP {response.status_code}") try: error_content = response.json() print(f"Error details: {error_content}") except: print(f"Raw error content: {response.content.decode('utf-8', errors='replace')}") time.sleep(self.wait) except requests.exceptions.ConnectionError as conn_err: print(f"DashScope: Connection error occurred: {conn_err}") time.sleep(self.wait) except requests.exceptions.Timeout as timeout_err: print(f"DashScope: Timeout error occurred: {timeout_err}") time.sleep(self.wait) except requests.exceptions.RequestException as req_err: print(f"DashScope: Request exception occurred: {req_err}") time.sleep(self.wait) except Exception as e: print(f"DashScope: An error occurred: {e}") print(traceback.format_exc()) time.sleep(self.wait) return self.fail_msg def build_judge(model, api_type): """Build a judge model for evaluation.""" if api_type == 'mit': api_key = os.environ.get('MIT_SPIDER_TOKEN', '') api_base = os.environ.get('MIT_SPIDER_URL', '') return OpenAIWrapper(model, api_base, api_key) elif api_type == 'dash': api_key = os.environ.get('CHATGPT_DASHSCOPE_API_KEY', '') api_base = os.environ.get('DASHSCOPE_API_BASE', '') return DashScopeWrapper(model, api_base, api_key) else: raise ValueError(f"Unsupported API type: {api_type}") def can_infer_option(answer, choices): """Rule-based extraction of answer option.""" if 'Failed to obtain answer via API' in answer: return False reject_to_answer = [ "Sorry, I can't help with images of people yet.", "I can't process this file.", "I'm sorry, but without the image provided", 'Cannot determine the answer' ] for err in reject_to_answer: if err in answer: return 'Z' def count_choice(splits, choices, prefix='', suffix=''): cnt = 0 for c in choices: if prefix + c + suffix in splits: cnt += 1 return cnt answer_mod = copy.copy(answer) chars = '.()[],:;!*#{}' for c in chars: answer_mod = answer_mod.replace(c, ' ') splits = [x.strip() for x in answer_mod.split()] count = count_choice(splits, choices) if count == 1: for ch in choices: if 'A' in splits and len(splits) > 3: # print(f'A might be a quantifier in the string: {answer}.') return False if ch in splits: return ch elif count == 0 and count_choice(splits, {'Z', ''}) == 1: return 'Z' return False def can_infer_text(answer, choices): """Extract answer by matching text content.""" answer = answer.lower() assert isinstance(choices, dict) for k in choices: assert k in string.ascii_uppercase choices[k] = str(choices[k]).lower() cands = [] for k in choices: if choices[k] in answer: cands.append(k) if len(cands) == 1: return cands[0] return False def can_infer(answer, choices): """Combined approach to infer answer choice.""" answer = str(answer) copt = can_infer_option(answer, choices) return copt if copt else can_infer_text(answer, choices) def build_choices(item): ret = {} for ch in string.ascii_uppercase: if ch in item and (not pd.isna(item[ch])): ret[ch] = item[ch] return ret def build_option_str(option_dict): s = 'There are several options: \n' for c, content in option_dict.items(): if not pd.isna(content): s += f'{c}. {content}\n' return s def build_prompt(question, options, prediction): tmpl = ( 'You are an AI assistant who will help me to match ' 'an answer with several options of a single-choice question. ' 'You are provided with a question, several options, and an answer, ' 'and you need to find which option is most similar to the answer. ' 'If the meaning of all options are significantly different from the answer, output Z. ' 'Your should output a single uppercase character in A, B, C, D (if they are valid options), and Z. \n' 'Example 1: \n' 'Question: What is the main object in image?\nOptions: A. teddy bear B. rabbit C. cat D. dog\n' 'Answer: a cute teddy bear\nYour output: A\n' 'Example 2: \n' 'Question: What is the main object in image?\nOptions: A. teddy bear B. rabbit C. cat D. dog\n' 'Answer: Spider\nYour output: Z\n' 'Example 3: \n' 'Question: {}?\nOptions: {}\nAnswer: {}\nYour output: ' ) return tmpl.format(question, options, prediction) def extract_answer_from_item(model, item, wait=5): """Extract answer from model prediction using rule-based and model-based approaches.""" # Build choices dictionary choices = build_choices(item) option_str = build_option_str(choices) prompt = build_prompt(item['question'], option_str, item['prediction']) # Try rule-based extraction first prediction = item['prediction'] ret = can_infer(prediction, choices) if ret: if ret == 'Z': extract_flag = False log = f"Rule extract failed with rule result: {ret} prediction: {prediction}" else: extract_flag = True log = f"Rule extract success with rule result: {ret} prediction: {prediction}" return dict(opt=ret, log=log, extract_model='rule', extract_flag=extract_flag) # If rule-based extraction fails, use model-based extraction print(f"Rule extract failed. Use model-based extraction.") if model is None: assert model is not None, 'Judge model is None for MMMU_DEV_VAL !!!' # Try model-based extraction with retries retry = 25 while retry: ans = model.generate([{"type": "text", "value": prompt}]) if 'Failed to obtain answer via API' in ans: print('API failed to answer.') else: ret = can_infer(ans, choices) if ret and ret != 'Z': log = f'{model.model} extract Succeed. {model.model}:{ans}\n' return dict(opt=ret, log=log, extract_model=model.model, extract_flag=True) else: print(f'Output includes 0 / > 1 letter among candidates {set(choices)} and Z: {ans}') retry -= 1 T = random.random() * wait * 2 time.sleep(T) if retry == 0: options = list(choices) + ['Z'] if 'Z' not in choices else list(choices) log = f'{model.model} extract failed. randomly generate one. {model.model} response:{ans}\n' return dict(opt=random.choice(options), log=log, extract_model=model.model, extract_flag=False) def eval_single_sample(args): """Evaluate a single sample.""" model, item = args # Extract answer using the combined approach result = extract_answer_from_item(model, item) # Determine if the answer is correct hit = 1 if result['opt'] == item['GT'] else 0 return { "index": item['index'], "split": item['split'], "question": item['question'], "prediction": item['prediction'], "extracted_answer": result['opt'], "extraction_method": result['extract_model'], "extraction_success": result['extract_flag'], "extraction_log": result['log'], "gt": item['GT'], "hit": hit }