import torch from transformers import AutoTokenizer, AutoModel import math from PIL import Image import torchvision.transforms as T from torchvision.transforms.functional import InterpolationMode from .base import BaseModel from ..smp import * from ..dataset import DATASET_TYPE IMAGENET_MEAN = (0.485, 0.456, 0.406) IMAGENET_STD = (0.229, 0.224, 0.225) def split_model(): device_map = {} num_gpus = torch.cuda.device_count() rank, world_size = get_rank_and_world_size() num_gpus = num_gpus // world_size num_layers = 80 # Since the first GPU will be used for ViT, treat it as half a GPU. num_layers_per_gpu = math.ceil(num_layers / (num_gpus - 0.5)) num_layers_per_gpu = [num_layers_per_gpu] * num_gpus num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5) layer_cnt = 0 for i, num_layer in enumerate(num_layers_per_gpu): for j in range(num_layer): device_map[f'language_model.model.layers.{layer_cnt}'] = rank + i * world_size layer_cnt += 1 device_map['vision_model'] = rank device_map['mlp1'] = rank device_map['language_model.model.embed_tokens'] = rank device_map['language_model.model.norm'] = rank device_map['language_model.model.rotary_emb'] = rank device_map['language_model.lm_head'] = rank device_map[f'language_model.model.layers.{num_layers - 1}'] = rank return device_map def build_transform(input_size): MEAN, STD = IMAGENET_MEAN, IMAGENET_STD transform = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=MEAN, std=STD) ]) return transform def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): best_ratio_diff = float('inf') best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) if ratio_diff < best_ratio_diff: best_ratio_diff = ratio_diff best_ratio = ratio elif ratio_diff == best_ratio_diff: if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: best_ratio = ratio return best_ratio def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height # calculate the existing image aspect ratio target_ratios = set( (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num) target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) # find the closest aspect ratio to the target target_aspect_ratio = find_closest_aspect_ratio( aspect_ratio, target_ratios, orig_width, orig_height, image_size) # calculate the target width and height target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] # resize the image resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size ) # split the image split_img = resized_img.crop(box) processed_images.append(split_img) assert len(processed_images) == blocks if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images def load_image(image_file, input_size=448, max_num=12): image = Image.open(image_file).convert('RGB') transform = build_transform(input_size=input_size) images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) pixel_values = [transform(image) for image in images] pixel_values = torch.stack(pixel_values) return pixel_values class NVLM(BaseModel): INSTALL_REQ = False INTERLEAVE = False def __init__(self, model_path='nvidia/NVLM-D-72B', **kwargs): assert model_path is not None self.model_path = model_path self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, use_fast=False) kwargs_default = dict(max_new_tokens=1024, do_sample=False) kwargs_default.update(kwargs) self.kwargs = kwargs_default self.model = AutoModel.from_pretrained( model_path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, use_flash_attn=False, trust_remote_code=True, device_map=split_model()).eval() logging.info(f'Following kwargs received: {self.kwargs}, will use as generation config. ') torch.cuda.empty_cache() def generate_inner(self, message, dataset=None): prompt, image_path = self.message_to_promptimg(message, dataset=dataset) pixel_values = load_image(image_path, max_num=6).to(torch.bfloat16).cuda() response = self.model.chat(self.tokenizer, pixel_values, prompt, self.kwargs) return response.strip()