from transformers import AutoTokenizer, AutoModelForCausalLM device = "cuda" # the device to load the model onto # Now you do not need to add "trust_remote_code=True" tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-Coder-32B") model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-Coder-32B", device_map="auto").eval() # tokenize the input into tokens input_text = "#write a quick sort algorithm" model_inputs = tokenizer([input_text], return_tensors="pt").to(device) # Use `max_new_tokens` to control the maximum output length. generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=1024, do_sample=False)[0] # The generated_ids include prompt_ids, so we only need to decode the tokens after prompt_ids. output_text = tokenizer.decode(generated_ids[len(model_inputs.input_ids[0]):], skip_special_tokens=True) print(f"Prompt: {input_text}\n\nGenerated text: {output_text}")