from transformers import AutoTokenizer, AutoModelForCausalLM # load model device = "cuda" # the device to load the model onto tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-Coder-32B") model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-Coder-32B", device_map="auto").eval() input_text = """<|fim_prefix|>def quicksort(arr): if len(arr) <= 1: return arr pivot = arr[len(arr) // 2] <|fim_suffix|> middle = [x for x in arr if x == pivot] right = [x for x in arr if x > pivot] return quicksort(left) + middle + quicksort(right)<|fim_middle|>""" model_inputs = tokenizer([input_text], return_tensors="pt").to(device) eos_token_ids = [151664, 151662, 151659, 151660, 151661, 151662, 151663, 151664, 151645, 151643] # Use `max_new_tokens` to control the maximum output length. generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=512, do_sample=False, eos_token_id=eos_token_ids)[0] # The generated_ids include prompt_ids, we only need to decode the tokens after prompt_ids. output_text = tokenizer.decode(generated_ids[len(model_inputs.input_ids[0]):], skip_special_tokens=True) print(f"Prompt: {input_text}\n\nGenerated text: {output_text}")