from transformers import AutoTokenizer, AutoModelForCausalLM device = "cuda" # the device to load the model onto # Now you do not need to add "trust_remote_code=True" tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-Coder-32B-Instruct") model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-Coder-32B-Instruct", device_map="auto").eval() # tokenize the input into tokens # Instead of using model.chat(), we directly use model.generate() # But you need to use tokenizer.apply_chat_template() to format your inputs as shown below prompt = "write a quick sort algorithm." messages = [ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) # Directly use generate() and tokenizer.decode() to get the output. # Use `max_new_tokens` to control the maximum output length. generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=2048 # can increase the output length ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(response)