from transformers import AutoTokenizer, AutoModelForCausalLM from transformers import TextIteratorStreamer from threading import Thread device = "cuda" # the device to load the model onto # Now you do not need to add "trust_remote_code=True" tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-Coder-32B-Instruct") model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-Coder-32B-Instruct", device_map="auto").eval() # Instead of using model.chat(), we directly use model.generate() # But you need to use tokenizer.apply_chat_template() to format your inputs as shown below prompt = "write a quick sort algorithm." messages = [ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) generation_kwargs = dict(inputs=model_inputs.input_ids, streamer=streamer, max_new_tokens=2048) thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() generated_text = "" for new_text in streamer: generated_text += new_text print(new_text, end="") print(generated_text)