Commit be78f35d authored by wanglch's avatar wanglch
Browse files

Initial commit

parents
import re
import unicodedata
import regex
# non-ASCII letters that are not separated by "NFKD" normalization
ADDITIONAL_DIACRITICS = {
"œ": "oe",
"Œ": "OE",
"ø": "o",
"Ø": "O",
"æ": "ae",
"Æ": "AE",
"ß": "ss",
"ẞ": "SS",
"đ": "d",
"Đ": "D",
"ð": "d",
"Ð": "D",
"þ": "th",
"Þ": "th",
"ł": "l",
"Ł": "L",
}
def remove_symbols_and_diacritics(s: str, keep=""):
"""
Replace any other markers, symbols, and punctuations with a space,
and drop any diacritics (category 'Mn' and some manual mappings)
"""
return "".join(
c
if c in keep
else ADDITIONAL_DIACRITICS[c]
if c in ADDITIONAL_DIACRITICS
else ""
if unicodedata.category(c) == "Mn"
else " "
if unicodedata.category(c)[0] in "MSP"
else c
for c in unicodedata.normalize("NFKD", s)
)
def remove_symbols(s: str):
"""
Replace any other markers, symbols, punctuations with a space, keeping diacritics
"""
return "".join(
" " if unicodedata.category(c)[0] in "MSP" else c
for c in unicodedata.normalize("NFKC", s)
)
class BasicTextNormalizer:
def __init__(self, remove_diacritics: bool = False, split_letters: bool = False):
self.clean = (
remove_symbols_and_diacritics if remove_diacritics else remove_symbols
)
self.split_letters = split_letters
def __call__(self, s: str):
s = s.lower()
s = re.sub(r"[<\[][^>\]]*[>\]]", "", s) # remove words between brackets
s = re.sub(r"\(([^)]+?)\)", "", s) # remove words between parenthesis
s = self.clean(s).lower()
if self.split_letters:
s = " ".join(regex.findall(r"\X", s, regex.U))
s = re.sub(
r"\s+", " ", s
) # replace any successive whitespace characters with a space
return s
{
"accessorise": "accessorize",
"accessorised": "accessorized",
"accessorises": "accessorizes",
"accessorising": "accessorizing",
"acclimatisation": "acclimatization",
"acclimatise": "acclimatize",
"acclimatised": "acclimatized",
"acclimatises": "acclimatizes",
"acclimatising": "acclimatizing",
"accoutrements": "accouterments",
"aeon": "eon",
"aeons": "eons",
"aerogramme": "aerogram",
"aerogrammes": "aerograms",
"aeroplane": "airplane",
"aeroplanes": "airplanes",
"aesthete": "esthete",
"aesthetes": "esthetes",
"aesthetic": "esthetic",
"aesthetically": "esthetically",
"aesthetics": "esthetics",
"aetiology": "etiology",
"ageing": "aging",
"aggrandisement": "aggrandizement",
"agonise": "agonize",
"agonised": "agonized",
"agonises": "agonizes",
"agonising": "agonizing",
"agonisingly": "agonizingly",
"almanack": "almanac",
"almanacks": "almanacs",
"aluminium": "aluminum",
"amortisable": "amortizable",
"amortisation": "amortization",
"amortisations": "amortizations",
"amortise": "amortize",
"amortised": "amortized",
"amortises": "amortizes",
"amortising": "amortizing",
"amphitheatre": "amphitheater",
"amphitheatres": "amphitheaters",
"anaemia": "anemia",
"anaemic": "anemic",
"anaesthesia": "anesthesia",
"anaesthetic": "anesthetic",
"anaesthetics": "anesthetics",
"anaesthetise": "anesthetize",
"anaesthetised": "anesthetized",
"anaesthetises": "anesthetizes",
"anaesthetising": "anesthetizing",
"anaesthetist": "anesthetist",
"anaesthetists": "anesthetists",
"anaesthetize": "anesthetize",
"anaesthetized": "anesthetized",
"anaesthetizes": "anesthetizes",
"anaesthetizing": "anesthetizing",
"analogue": "analog",
"analogues": "analogs",
"analyse": "analyze",
"analysed": "analyzed",
"analyses": "analyzes",
"analysing": "analyzing",
"anglicise": "anglicize",
"anglicised": "anglicized",
"anglicises": "anglicizes",
"anglicising": "anglicizing",
"annualised": "annualized",
"antagonise": "antagonize",
"antagonised": "antagonized",
"antagonises": "antagonizes",
"antagonising": "antagonizing",
"apologise": "apologize",
"apologised": "apologized",
"apologises": "apologizes",
"apologising": "apologizing",
"appal": "appall",
"appals": "appalls",
"appetiser": "appetizer",
"appetisers": "appetizers",
"appetising": "appetizing",
"appetisingly": "appetizingly",
"arbour": "arbor",
"arbours": "arbors",
"archeological": "archaeological",
"archaeologically": "archeologically",
"archaeologist": "archeologist",
"archaeologists": "archeologists",
"archaeology": "archeology</span>",
"ardour": "ardor",
"armour": "armor",
"armoured": "armored",
"armourer": "armorer",
"armourers": "armorers",
"armouries": "armories",
"armoury": "armory",
"artefact": "artifact",
"artefacts": "artifacts",
"authorise": "authorize",
"authorised": "authorized",
"authorises": "authorizes",
"authorising": "authorizing",
"axe": "ax",
"backpedalled": "backpedaled",
"backpedalling": "backpedaling",
"bannister": "banister",
"bannisters": "banisters",
"baptise": "baptize",
"baptised": "baptized",
"baptises": "baptizes",
"baptising": "baptizing",
"bastardise": "bastardize",
"bastardised": "bastardized",
"bastardises": "bastardizes",
"bastardising": "bastardizing",
"battleax": "battleaxe",
"baulk": "balk",
"baulked": "balked",
"baulking": "balking",
"baulks": "balks",
"bedevilled": "bedeviled",
"bedevilling": "bedeviling",
"behaviour": "behavior",
"behavioural": "behavioral",
"behaviourism": "behaviorism",
"behaviourist": "behaviorist",
"behaviourists": "behaviorists",
"behaviours": "behaviors",
"behove": "behoove",
"behoved": "behooved",
"behoves": "behooves",
"bejewelled": "bejeweled",
"belabour": "belabor",
"belaboured": "belabored",
"belabouring": "belaboring",
"belabours": "belabors",
"bevelled": "beveled",
"bevvies": "bevies",
"bevvy": "bevy",
"biassed": "biased",
"biassing": "biasing",
"bingeing": "binging",
"bougainvillaea": "bougainvillea",
"bougainvillaeas": "bougainvilleas",
"bowdlerise": "bowdlerize",
"bowdlerised": "bowdlerized",
"bowdlerises": "bowdlerizes",
"bowdlerising": "bowdlerizing",
"breathalyse": "breathalyze",
"breathalysed": "breathalyzed",
"breathalyser": "breathalyzer",
"breathalysers": "breathalyzers",
"breathalyses": "breathalyzes",
"breathalysing": "breathalyzing",
"brutalise": "brutalize",
"brutalised": "brutalized",
"brutalises": "brutalizes",
"brutalising": "brutalizing",
"busses": "buses",
"bussing": "busing",
"caesarean": "cesarean",
"caesareans": "cesareans",
"calibre": "caliber",
"calibres": "calibers",
"calliper": "caliper",
"callipers": "calipers",
"callisthenics": "calisthenics",
"canalise": "canalize",
"canalised": "canalized",
"canalises": "canalizes",
"canalising": "canalizing",
"cancelation": "cancellation",
"cancelations": "cancellations",
"cancelled": "canceled",
"cancelling": "canceling",
"candour": "candor",
"cannibalise": "cannibalize",
"cannibalised": "cannibalized",
"cannibalises": "cannibalizes",
"cannibalising": "cannibalizing",
"canonise": "canonize",
"canonised": "canonized",
"canonises": "canonizes",
"canonising": "canonizing",
"capitalise": "capitalize",
"capitalised": "capitalized",
"capitalises": "capitalizes",
"capitalising": "capitalizing",
"caramelise": "caramelize",
"caramelised": "caramelized",
"caramelises": "caramelizes",
"caramelising": "caramelizing",
"carbonise": "carbonize",
"carbonised": "carbonized",
"carbonises": "carbonizes",
"carbonising": "carbonizing",
"carolled": "caroled",
"carolling": "caroling",
"catalogue": "catalog",
"catalogued": "cataloged",
"catalogues": "catalogs",
"cataloguing": "cataloging",
"catalyse": "catalyze",
"catalysed": "catalyzed",
"catalyses": "catalyzes",
"catalysing": "catalyzing",
"categorise": "categorize",
"categorised": "categorized",
"categorises": "categorizes",
"categorising": "categorizing",
"cauterise": "cauterize",
"cauterised": "cauterized",
"cauterises": "cauterizes",
"cauterising": "cauterizing",
"cavilled": "caviled",
"cavilling": "caviling",
"centigramme": "centigram",
"centigrammes": "centigrams",
"centilitre": "centiliter",
"centilitres": "centiliters",
"centimetre": "centimeter",
"centimetres": "centimeters",
"centralise": "centralize",
"centralised": "centralized",
"centralises": "centralizes",
"centralising": "centralizing",
"centre": "center",
"centred": "centered",
"centrefold": "centerfold",
"centrefolds": "centerfolds",
"centrepiece": "centerpiece",
"centrepieces": "centerpieces",
"centres": "centers",
"channelled": "channeled",
"channelling": "channeling",
"characterise": "characterize",
"characterised": "characterized",
"characterises": "characterizes",
"characterising": "characterizing",
"cheque": "check",
"chequebook": "checkbook",
"chequebooks": "checkbooks",
"chequered": "checkered",
"cheques": "checks",
"chilli": "chili",
"chimaera": "chimera",
"chimaeras": "chimeras",
"chiselled": "chiseled",
"chiselling": "chiseling",
"circularise": "circularize",
"circularised": "circularized",
"circularises": "circularizes",
"circularising": "circularizing",
"civilise": "civilize",
"civilised": "civilized",
"civilises": "civilizes",
"civilising": "civilizing",
"clamour": "clamor",
"clamoured": "clamored",
"clamouring": "clamoring",
"clamours": "clamors",
"clangour": "clangor",
"clarinettist": "clarinetist",
"clarinettists": "clarinetists",
"collectivise": "collectivize",
"collectivised": "collectivized",
"collectivises": "collectivizes",
"collectivising": "collectivizing",
"colonisation": "colonization",
"colonise": "colonize",
"colonised": "colonized",
"coloniser": "colonizer",
"colonisers": "colonizers",
"colonises": "colonizes",
"colonising": "colonizing",
"colour": "color",
"colourant": "colorant",
"colourants": "colorants",
"coloured": "colored",
"coloureds": "coloreds",
"colourful": "colorful",
"colourfully": "colorfully",
"colouring": "coloring",
"colourize": "colorize",
"colourized": "colorized",
"colourizes": "colorizes",
"colourizing": "colorizing",
"colourless": "colorless",
"colours": "colors",
"commercialise": "commercialize",
"commercialised": "commercialized",
"commercialises": "commercializes",
"commercialising": "commercializing",
"compartmentalise": "compartmentalize",
"compartmentalised": "compartmentalized",
"compartmentalises": "compartmentalizes",
"compartmentalising": "compartmentalizing",
"computerise": "computerize",
"computerised": "computerized",
"computerises": "computerizes",
"computerising": "computerizing",
"conceptualise": "conceptualize",
"conceptualised": "conceptualized",
"conceptualises": "conceptualizes",
"conceptualising": "conceptualizing",
"connexion": "connection",
"connexions": "connections",
"contextualise": "contextualize",
"contextualised": "contextualized",
"contextualises": "contextualizes",
"contextualising": "contextualizing",
"cosier": "cozier",
"cosies": "cozies",
"cosiest": "coziest",
"cosily": "cozily",
"cosiness": "coziness",
"cosy": "cozy",
"councillor": "councilor",
"councillors": "councilors",
"counselled": "counseled",
"counselling": "counseling",
"counsellor": "counselor",
"counsellors": "counselors",
"crenelated": "crenellated",
"criminalise": "criminalize",
"criminalised": "criminalized",
"criminalises": "criminalizes",
"criminalising": "criminalizing",
"criticise": "criticize",
"criticised": "criticized",
"criticises": "criticizes",
"criticising": "criticizing",
"crueller": "crueler",
"cruellest": "cruelest",
"crystallisation": "crystallization",
"crystallise": "crystallize",
"crystallised": "crystallized",
"crystallises": "crystallizes",
"crystallising": "crystallizing",
"cudgelled": "cudgeled",
"cudgelling": "cudgeling",
"customise": "customize",
"customised": "customized",
"customises": "customizes",
"customising": "customizing",
"cypher": "cipher",
"cyphers": "ciphers",
"decentralisation": "decentralization",
"decentralise": "decentralize",
"decentralised": "decentralized",
"decentralises": "decentralizes",
"decentralising": "decentralizing",
"decriminalisation": "decriminalization",
"decriminalise": "decriminalize",
"decriminalised": "decriminalized",
"decriminalises": "decriminalizes",
"decriminalising": "decriminalizing",
"defence": "defense",
"defenceless": "defenseless",
"defences": "defenses",
"dehumanisation": "dehumanization",
"dehumanise": "dehumanize",
"dehumanised": "dehumanized",
"dehumanises": "dehumanizes",
"dehumanising": "dehumanizing",
"demeanour": "demeanor",
"demilitarisation": "demilitarization",
"demilitarise": "demilitarize",
"demilitarised": "demilitarized",
"demilitarises": "demilitarizes",
"demilitarising": "demilitarizing",
"demobilisation": "demobilization",
"demobilise": "demobilize",
"demobilised": "demobilized",
"demobilises": "demobilizes",
"demobilising": "demobilizing",
"democratisation": "democratization",
"democratise": "democratize",
"democratised": "democratized",
"democratises": "democratizes",
"democratising": "democratizing",
"demonise": "demonize",
"demonised": "demonized",
"demonises": "demonizes",
"demonising": "demonizing",
"demoralisation": "demoralization",
"demoralise": "demoralize",
"demoralised": "demoralized",
"demoralises": "demoralizes",
"demoralising": "demoralizing",
"denationalisation": "denationalization",
"denationalise": "denationalize",
"denationalised": "denationalized",
"denationalises": "denationalizes",
"denationalising": "denationalizing",
"deodorise": "deodorize",
"deodorised": "deodorized",
"deodorises": "deodorizes",
"deodorising": "deodorizing",
"depersonalise": "depersonalize",
"depersonalised": "depersonalized",
"depersonalises": "depersonalizes",
"depersonalising": "depersonalizing",
"deputise": "deputize",
"deputised": "deputized",
"deputises": "deputizes",
"deputising": "deputizing",
"desensitisation": "desensitization",
"desensitise": "desensitize",
"desensitised": "desensitized",
"desensitises": "desensitizes",
"desensitising": "desensitizing",
"destabilisation": "destabilization",
"destabilise": "destabilize",
"destabilised": "destabilized",
"destabilises": "destabilizes",
"destabilising": "destabilizing",
"dialled": "dialed",
"dialling": "dialing",
"dialogue": "dialog",
"dialogues": "dialogs",
"diarrhoea": "diarrhea",
"digitise": "digitize",
"digitised": "digitized",
"digitises": "digitizes",
"digitising": "digitizing",
"disc": "disk",
"discolour": "discolor",
"discoloured": "discolored",
"discolouring": "discoloring",
"discolours": "discolors",
"discs": "disks",
"disembowelled": "disemboweled",
"disembowelling": "disemboweling",
"disfavour": "disfavor",
"dishevelled": "disheveled",
"dishonour": "dishonor",
"dishonourable": "dishonorable",
"dishonourably": "dishonorably",
"dishonoured": "dishonored",
"dishonouring": "dishonoring",
"dishonours": "dishonors",
"disorganisation": "disorganization",
"disorganised": "disorganized",
"distil": "distill",
"distils": "distills",
"dramatisation": "dramatization",
"dramatisations": "dramatizations",
"dramatise": "dramatize",
"dramatised": "dramatized",
"dramatises": "dramatizes",
"dramatising": "dramatizing",
"draught": "draft",
"draughtboard": "draftboard",
"draughtboards": "draftboards",
"draughtier": "draftier",
"draughtiest": "draftiest",
"draughts": "drafts",
"draughtsman": "draftsman",
"draughtsmanship": "draftsmanship",
"draughtsmen": "draftsmen",
"draughtswoman": "draftswoman",
"draughtswomen": "draftswomen",
"draughty": "drafty",
"drivelled": "driveled",
"drivelling": "driveling",
"duelled": "dueled",
"duelling": "dueling",
"economise": "economize",
"economised": "economized",
"economises": "economizes",
"economising": "economizing",
"edoema": "edema",
"editorialise": "editorialize",
"editorialised": "editorialized",
"editorialises": "editorializes",
"editorialising": "editorializing",
"empathise": "empathize",
"empathised": "empathized",
"empathises": "empathizes",
"empathising": "empathizing",
"emphasise": "emphasize",
"emphasised": "emphasized",
"emphasises": "emphasizes",
"emphasising": "emphasizing",
"enamelled": "enameled",
"enamelling": "enameling",
"enamoured": "enamored",
"encyclopaedia": "encyclopedia",
"encyclopaedias": "encyclopedias",
"encyclopaedic": "encyclopedic",
"endeavour": "endeavor",
"endeavoured": "endeavored",
"endeavouring": "endeavoring",
"endeavours": "endeavors",
"energise": "energize",
"energised": "energized",
"energises": "energizes",
"energising": "energizing",
"enrol": "enroll",
"enrols": "enrolls",
"enthral": "enthrall",
"enthrals": "enthralls",
"epaulette": "epaulet",
"epaulettes": "epaulets",
"epicentre": "epicenter",
"epicentres": "epicenters",
"epilogue": "epilog",
"epilogues": "epilogs",
"epitomise": "epitomize",
"epitomised": "epitomized",
"epitomises": "epitomizes",
"epitomising": "epitomizing",
"equalisation": "equalization",
"equalise": "equalize",
"equalised": "equalized",
"equaliser": "equalizer",
"equalisers": "equalizers",
"equalises": "equalizes",
"equalising": "equalizing",
"eulogise": "eulogize",
"eulogised": "eulogized",
"eulogises": "eulogizes",
"eulogising": "eulogizing",
"evangelise": "evangelize",
"evangelised": "evangelized",
"evangelises": "evangelizes",
"evangelising": "evangelizing",
"exorcise": "exorcize",
"exorcised": "exorcized",
"exorcises": "exorcizes",
"exorcising": "exorcizing",
"extemporisation": "extemporization",
"extemporise": "extemporize",
"extemporised": "extemporized",
"extemporises": "extemporizes",
"extemporising": "extemporizing",
"externalisation": "externalization",
"externalisations": "externalizations",
"externalise": "externalize",
"externalised": "externalized",
"externalises": "externalizes",
"externalising": "externalizing",
"factorise": "factorize",
"factorised": "factorized",
"factorises": "factorizes",
"factorising": "factorizing",
"faecal": "fecal",
"faeces": "feces",
"familiarisation": "familiarization",
"familiarise": "familiarize",
"familiarised": "familiarized",
"familiarises": "familiarizes",
"familiarising": "familiarizing",
"fantasise": "fantasize",
"fantasised": "fantasized",
"fantasises": "fantasizes",
"fantasising": "fantasizing",
"favour": "favor",
"favourable": "favorable",
"favourably": "favorably",
"favoured": "favored",
"favouring": "favoring",
"favourite": "favorite",
"favourites": "favorites",
"favouritism": "favoritism",
"favours": "favors",
"feminise": "feminize",
"feminised": "feminized",
"feminises": "feminizes",
"feminising": "feminizing",
"fertilisation": "fertilization",
"fertilise": "fertilize",
"fertilised": "fertilized",
"fertiliser": "fertilizer",
"fertilisers": "fertilizers",
"fertilises": "fertilizes",
"fertilising": "fertilizing",
"fervour": "fervor",
"fibre": "fiber",
"fibreglass": "fiberglass",
"fibres": "fibers",
"fictionalisation": "fictionalization",
"fictionalisations": "fictionalizations",
"fictionalise": "fictionalize",
"fictionalised": "fictionalized",
"fictionalises": "fictionalizes",
"fictionalising": "fictionalizing",
"fillet": "filet",
"filleted": "fileted",
"filleting": "fileting",
"fillets": "filets",
"finalisation": "finalization",
"finalise": "finalize",
"finalised": "finalized",
"finalises": "finalizes",
"finalising": "finalizing",
"flautist": "flutist",
"flautists": "flutists",
"flavour": "flavor",
"flavoured": "flavored",
"flavouring": "flavoring",
"flavourings": "flavorings",
"flavourless": "flavorless",
"flavours": "flavors",
"flavoursome": "flavorsome",
"flyer / flier": "flier / flyer",
"foetal": "fetal",
"foetid": "fetid",
"foetus": "fetus",
"foetuses": "fetuses",
"formalisation": "formalization",
"formalise": "formalize",
"formalised": "formalized",
"formalises": "formalizes",
"formalising": "formalizing",
"fossilisation": "fossilization",
"fossilise": "fossilize",
"fossilised": "fossilized",
"fossilises": "fossilizes",
"fossilising": "fossilizing",
"fraternisation": "fraternization",
"fraternise": "fraternize",
"fraternised": "fraternized",
"fraternises": "fraternizes",
"fraternising": "fraternizing",
"fulfil": "fulfill",
"fulfilment": "fulfillment",
"fulfils": "fulfills",
"funnelled": "funneled",
"funnelling": "funneling",
"galvanise": "galvanize",
"galvanised": "galvanized",
"galvanises": "galvanizes",
"galvanising": "galvanizing",
"gambolled": "gamboled",
"gambolling": "gamboling",
"gaol": "jail",
"gaolbird": "jailbird",
"gaolbirds": "jailbirds",
"gaolbreak": "jailbreak",
"gaolbreaks": "jailbreaks",
"gaoled": "jailed",
"gaoler": "jailer",
"gaolers": "jailers",
"gaoling": "jailing",
"gaols": "jails",
"gasses": "gases",
"gage": "gauge",
"gaged": "gauged",
"gages": "gauges",
"gaging": "gauging",
"generalisation": "generalization",
"generalisations": "generalizations",
"generalise": "generalize",
"generalised": "generalized",
"generalises": "generalizes",
"generalising": "generalizing",
"ghettoise": "ghettoize",
"ghettoised": "ghettoized",
"ghettoises": "ghettoizes",
"ghettoising": "ghettoizing",
"gipsies": "gypsies",
"glamorise": "glamorize",
"glamorised": "glamorized",
"glamorises": "glamorizes",
"glamorising": "glamorizing",
"glamor": "glamour",
"globalisation": "globalization",
"globalise": "globalize",
"globalised": "globalized",
"globalises": "globalizes",
"globalising": "globalizing",
"glueing": "gluing",
"goitre": "goiter",
"goitres": "goiters",
"gonorrhoea": "gonorrhea",
"gramme": "gram",
"grammes": "grams",
"gravelled": "graveled",
"grey": "gray",
"greyed": "grayed",
"greying": "graying",
"greyish": "grayish",
"greyness": "grayness",
"greys": "grays",
"grovelled": "groveled",
"grovelling": "groveling",
"groyne": "groin",
"groynes": "groins",
"gruelling": "grueling",
"gruellingly": "gruelingly",
"gryphon": "griffin",
"gryphons": "griffins",
"gynaecological": "gynecological",
"gynaecologist": "gynecologist",
"gynaecologists": "gynecologists",
"gynaecology": "gynecology",
"haematological": "hematological",
"haematologist": "hematologist",
"haematologists": "hematologists",
"haematology": "hematology",
"haemoglobin": "hemoglobin",
"haemophilia": "hemophilia",
"haemophiliac": "hemophiliac",
"haemophiliacs": "hemophiliacs",
"haemorrhage": "hemorrhage",
"haemorrhaged": "hemorrhaged",
"haemorrhages": "hemorrhages",
"haemorrhaging": "hemorrhaging",
"haemorrhoids": "hemorrhoids",
"harbour": "harbor",
"harboured": "harbored",
"harbouring": "harboring",
"harbours": "harbors",
"harmonisation": "harmonization",
"harmonise": "harmonize",
"harmonised": "harmonized",
"harmonises": "harmonizes",
"harmonising": "harmonizing",
"homoeopath": "homeopath",
"homoeopathic": "homeopathic",
"homoeopaths": "homeopaths",
"homoeopathy": "homeopathy",
"homogenise": "homogenize",
"homogenised": "homogenized",
"homogenises": "homogenizes",
"homogenising": "homogenizing",
"honour": "honor",
"honourable": "honorable",
"honourably": "honorably",
"honoured": "honored",
"honouring": "honoring",
"honours": "honors",
"hospitalisation": "hospitalization",
"hospitalise": "hospitalize",
"hospitalised": "hospitalized",
"hospitalises": "hospitalizes",
"hospitalising": "hospitalizing",
"humanise": "humanize",
"humanised": "humanized",
"humanises": "humanizes",
"humanising": "humanizing",
"humour": "humor",
"humoured": "humored",
"humouring": "humoring",
"humourless": "humorless",
"humours": "humors",
"hybridise": "hybridize",
"hybridised": "hybridized",
"hybridises": "hybridizes",
"hybridising": "hybridizing",
"hypnotise": "hypnotize",
"hypnotised": "hypnotized",
"hypnotises": "hypnotizes",
"hypnotising": "hypnotizing",
"hypothesise": "hypothesize",
"hypothesised": "hypothesized",
"hypothesises": "hypothesizes",
"hypothesising": "hypothesizing",
"idealisation": "idealization",
"idealise": "idealize",
"idealised": "idealized",
"idealises": "idealizes",
"idealising": "idealizing",
"idolise": "idolize",
"idolised": "idolized",
"idolises": "idolizes",
"idolising": "idolizing",
"immobilisation": "immobilization",
"immobilise": "immobilize",
"immobilised": "immobilized",
"immobiliser": "immobilizer",
"immobilisers": "immobilizers",
"immobilises": "immobilizes",
"immobilising": "immobilizing",
"immortalise": "immortalize",
"immortalised": "immortalized",
"immortalises": "immortalizes",
"immortalising": "immortalizing",
"immunisation": "immunization",
"immunise": "immunize",
"immunised": "immunized",
"immunises": "immunizes",
"immunising": "immunizing",
"impanelled": "impaneled",
"impanelling": "impaneling",
"imperilled": "imperiled",
"imperilling": "imperiling",
"individualise": "individualize",
"individualised": "individualized",
"individualises": "individualizes",
"individualising": "individualizing",
"industrialise": "industrialize",
"industrialised": "industrialized",
"industrialises": "industrializes",
"industrialising": "industrializing",
"inflexion": "inflection",
"inflexions": "inflections",
"initialise": "initialize",
"initialised": "initialized",
"initialises": "initializes",
"initialising": "initializing",
"initialled": "initialed",
"initialling": "initialing",
"instal": "install",
"instalment": "installment",
"instalments": "installments",
"instals": "installs",
"instil": "instill",
"instils": "instills",
"institutionalisation": "institutionalization",
"institutionalise": "institutionalize",
"institutionalised": "institutionalized",
"institutionalises": "institutionalizes",
"institutionalising": "institutionalizing",
"intellectualise": "intellectualize",
"intellectualised": "intellectualized",
"intellectualises": "intellectualizes",
"intellectualising": "intellectualizing",
"internalisation": "internalization",
"internalise": "internalize",
"internalised": "internalized",
"internalises": "internalizes",
"internalising": "internalizing",
"internationalisation": "internationalization",
"internationalise": "internationalize",
"internationalised": "internationalized",
"internationalises": "internationalizes",
"internationalising": "internationalizing",
"ionisation": "ionization",
"ionise": "ionize",
"ionised": "ionized",
"ioniser": "ionizer",
"ionisers": "ionizers",
"ionises": "ionizes",
"ionising": "ionizing",
"italicise": "italicize",
"italicised": "italicized",
"italicises": "italicizes",
"italicising": "italicizing",
"itemise": "itemize",
"itemised": "itemized",
"itemises": "itemizes",
"itemising": "itemizing",
"jeopardise": "jeopardize",
"jeopardised": "jeopardized",
"jeopardises": "jeopardizes",
"jeopardising": "jeopardizing",
"jewelled": "jeweled",
"jeweller": "jeweler",
"jewellers": "jewelers",
"jewellery": "jewelry",
"judgement": "judgment",
"kilogramme": "kilogram",
"kilogrammes": "kilograms",
"kilometre": "kilometer",
"kilometres": "kilometers",
"labelled": "labeled",
"labelling": "labeling",
"labour": "labor",
"laboured": "labored",
"labourer": "laborer",
"labourers": "laborers",
"labouring": "laboring",
"labours": "labors",
"lacklustre": "lackluster",
"legalisation": "legalization",
"legalise": "legalize",
"legalised": "legalized",
"legalises": "legalizes",
"legalising": "legalizing",
"legitimise": "legitimize",
"legitimised": "legitimized",
"legitimises": "legitimizes",
"legitimising": "legitimizing",
"leukaemia": "leukemia",
"levelled": "leveled",
"leveller": "leveler",
"levellers": "levelers",
"levelling": "leveling",
"libelled": "libeled",
"libelling": "libeling",
"libellous": "libelous",
"liberalisation": "liberalization",
"liberalise": "liberalize",
"liberalised": "liberalized",
"liberalises": "liberalizes",
"liberalising": "liberalizing",
"licence": "license",
"licenced": "licensed",
"licences": "licenses",
"licencing": "licensing",
"likeable": "likable",
"lionisation": "lionization",
"lionise": "lionize",
"lionised": "lionized",
"lionises": "lionizes",
"lionising": "lionizing",
"liquidise": "liquidize",
"liquidised": "liquidized",
"liquidiser": "liquidizer",
"liquidisers": "liquidizers",
"liquidises": "liquidizes",
"liquidising": "liquidizing",
"litre": "liter",
"litres": "liters",
"localise": "localize",
"localised": "localized",
"localises": "localizes",
"localising": "localizing",
"louvre": "louver",
"louvred": "louvered",
"louvres": "louvers",
"lustre": "luster",
"magnetise": "magnetize",
"magnetised": "magnetized",
"magnetises": "magnetizes",
"magnetising": "magnetizing",
"manoeuvrability": "maneuverability",
"manoeuvrable": "maneuverable",
"manoeuvre": "maneuver",
"manoeuvred": "maneuvered",
"manoeuvres": "maneuvers",
"manoeuvring": "maneuvering",
"manoeuvrings": "maneuverings",
"marginalisation": "marginalization",
"marginalise": "marginalize",
"marginalised": "marginalized",
"marginalises": "marginalizes",
"marginalising": "marginalizing",
"marshalled": "marshaled",
"marshalling": "marshaling",
"marvelled": "marveled",
"marvelling": "marveling",
"marvellous": "marvelous",
"marvellously": "marvelously",
"materialisation": "materialization",
"materialise": "materialize",
"materialised": "materialized",
"materialises": "materializes",
"materialising": "materializing",
"maximisation": "maximization",
"maximise": "maximize",
"maximised": "maximized",
"maximises": "maximizes",
"maximising": "maximizing",
"meagre": "meager",
"mechanisation": "mechanization",
"mechanise": "mechanize",
"mechanised": "mechanized",
"mechanises": "mechanizes",
"mechanising": "mechanizing",
"mediaeval": "medieval",
"memorialise": "memorialize",
"memorialised": "memorialized",
"memorialises": "memorializes",
"memorialising": "memorializing",
"memorise": "memorize",
"memorised": "memorized",
"memorises": "memorizes",
"memorising": "memorizing",
"mesmerise": "mesmerize",
"mesmerised": "mesmerized",
"mesmerises": "mesmerizes",
"mesmerising": "mesmerizing",
"metabolise": "metabolize",
"metabolised": "metabolized",
"metabolises": "metabolizes",
"metabolising": "metabolizing",
"metre": "meter",
"metres": "meters",
"micrometre": "micrometer",
"micrometres": "micrometers",
"militarise": "militarize",
"militarised": "militarized",
"militarises": "militarizes",
"militarising": "militarizing",
"milligramme": "milligram",
"milligrammes": "milligrams",
"millilitre": "milliliter",
"millilitres": "milliliters",
"millimetre": "millimeter",
"millimetres": "millimeters",
"miniaturisation": "miniaturization",
"miniaturise": "miniaturize",
"miniaturised": "miniaturized",
"miniaturises": "miniaturizes",
"miniaturising": "miniaturizing",
"minibusses": "minibuses",
"minimise": "minimize",
"minimised": "minimized",
"minimises": "minimizes",
"minimising": "minimizing",
"misbehaviour": "misbehavior",
"misdemeanour": "misdemeanor",
"misdemeanours": "misdemeanors",
"misspelt": "misspelled",
"mitre": "miter",
"mitres": "miters",
"mobilisation": "mobilization",
"mobilise": "mobilize",
"mobilised": "mobilized",
"mobilises": "mobilizes",
"mobilising": "mobilizing",
"modelled": "modeled",
"modeller": "modeler",
"modellers": "modelers",
"modelling": "modeling",
"modernise": "modernize",
"modernised": "modernized",
"modernises": "modernizes",
"modernising": "modernizing",
"moisturise": "moisturize",
"moisturised": "moisturized",
"moisturiser": "moisturizer",
"moisturisers": "moisturizers",
"moisturises": "moisturizes",
"moisturising": "moisturizing",
"monologue": "monolog",
"monologues": "monologs",
"monopolisation": "monopolization",
"monopolise": "monopolize",
"monopolised": "monopolized",
"monopolises": "monopolizes",
"monopolising": "monopolizing",
"moralise": "moralize",
"moralised": "moralized",
"moralises": "moralizes",
"moralising": "moralizing",
"motorised": "motorized",
"mould": "mold",
"moulded": "molded",
"moulder": "molder",
"mouldered": "moldered",
"mouldering": "moldering",
"moulders": "molders",
"mouldier": "moldier",
"mouldiest": "moldiest",
"moulding": "molding",
"mouldings": "moldings",
"moulds": "molds",
"mouldy": "moldy",
"moult": "molt",
"moulted": "molted",
"moulting": "molting",
"moults": "molts",
"moustache": "mustache",
"moustached": "mustached",
"moustaches": "mustaches",
"moustachioed": "mustachioed",
"multicoloured": "multicolored",
"nationalisation": "nationalization",
"nationalisations": "nationalizations",
"nationalise": "nationalize",
"nationalised": "nationalized",
"nationalises": "nationalizes",
"nationalising": "nationalizing",
"naturalisation": "naturalization",
"naturalise": "naturalize",
"naturalised": "naturalized",
"naturalises": "naturalizes",
"naturalising": "naturalizing",
"neighbour": "neighbor",
"neighbourhood": "neighborhood",
"neighbourhoods": "neighborhoods",
"neighbouring": "neighboring",
"neighbourliness": "neighborliness",
"neighbourly": "neighborly",
"neighbours": "neighbors",
"neutralisation": "neutralization",
"neutralise": "neutralize",
"neutralised": "neutralized",
"neutralises": "neutralizes",
"neutralising": "neutralizing",
"normalisation": "normalization",
"normalise": "normalize",
"normalised": "normalized",
"normalises": "normalizes",
"normalising": "normalizing",
"odour": "odor",
"odourless": "odorless",
"odours": "odors",
"oesophagus": "esophagus",
"oesophaguses": "esophaguses",
"oestrogen": "estrogen",
"offence": "offense",
"offences": "offenses",
"omelette": "omelet",
"omelettes": "omelets",
"optimise": "optimize",
"optimised": "optimized",
"optimises": "optimizes",
"optimising": "optimizing",
"organisation": "organization",
"organisational": "organizational",
"organisations": "organizations",
"organise": "organize",
"organised": "organized",
"organiser": "organizer",
"organisers": "organizers",
"organises": "organizes",
"organising": "organizing",
"orthopaedic": "orthopedic",
"orthopaedics": "orthopedics",
"ostracise": "ostracize",
"ostracised": "ostracized",
"ostracises": "ostracizes",
"ostracising": "ostracizing",
"outmanoeuvre": "outmaneuver",
"outmanoeuvred": "outmaneuvered",
"outmanoeuvres": "outmaneuvers",
"outmanoeuvring": "outmaneuvering",
"overemphasise": "overemphasize",
"overemphasised": "overemphasized",
"overemphasises": "overemphasizes",
"overemphasising": "overemphasizing",
"oxidisation": "oxidization",
"oxidise": "oxidize",
"oxidised": "oxidized",
"oxidises": "oxidizes",
"oxidising": "oxidizing",
"paederast": "pederast",
"paederasts": "pederasts",
"paediatric": "pediatric",
"paediatrician": "pediatrician",
"paediatricians": "pediatricians",
"paediatrics": "pediatrics",
"paedophile": "pedophile",
"paedophiles": "pedophiles",
"paedophilia": "pedophilia",
"palaeolithic": "paleolithic",
"palaeontologist": "paleontologist",
"palaeontologists": "paleontologists",
"palaeontology": "paleontology",
"panelled": "paneled",
"panelling": "paneling",
"panellist": "panelist",
"panellists": "panelists",
"paralyse": "paralyze",
"paralysed": "paralyzed",
"paralyses": "paralyzes",
"paralysing": "paralyzing",
"parcelled": "parceled",
"parcelling": "parceling",
"parlour": "parlor",
"parlours": "parlors",
"particularise": "particularize",
"particularised": "particularized",
"particularises": "particularizes",
"particularising": "particularizing",
"passivisation": "passivization",
"passivise": "passivize",
"passivised": "passivized",
"passivises": "passivizes",
"passivising": "passivizing",
"pasteurisation": "pasteurization",
"pasteurise": "pasteurize",
"pasteurised": "pasteurized",
"pasteurises": "pasteurizes",
"pasteurising": "pasteurizing",
"patronise": "patronize",
"patronised": "patronized",
"patronises": "patronizes",
"patronising": "patronizing",
"patronisingly": "patronizingly",
"pedalled": "pedaled",
"pedalling": "pedaling",
"pedestrianisation": "pedestrianization",
"pedestrianise": "pedestrianize",
"pedestrianised": "pedestrianized",
"pedestrianises": "pedestrianizes",
"pedestrianising": "pedestrianizing",
"penalise": "penalize",
"penalised": "penalized",
"penalises": "penalizes",
"penalising": "penalizing",
"pencilled": "penciled",
"pencilling": "penciling",
"personalise": "personalize",
"personalised": "personalized",
"personalises": "personalizes",
"personalising": "personalizing",
"pharmacopoeia": "pharmacopeia",
"pharmacopoeias": "pharmacopeias",
"philosophise": "philosophize",
"philosophised": "philosophized",
"philosophises": "philosophizes",
"philosophising": "philosophizing",
"philtre": "filter",
"philtres": "filters",
"phoney": "phony",
"plagiarise": "plagiarize",
"plagiarised": "plagiarized",
"plagiarises": "plagiarizes",
"plagiarising": "plagiarizing",
"plough": "plow",
"ploughed": "plowed",
"ploughing": "plowing",
"ploughman": "plowman",
"ploughmen": "plowmen",
"ploughs": "plows",
"ploughshare": "plowshare",
"ploughshares": "plowshares",
"polarisation": "polarization",
"polarise": "polarize",
"polarised": "polarized",
"polarises": "polarizes",
"polarising": "polarizing",
"politicisation": "politicization",
"politicise": "politicize",
"politicised": "politicized",
"politicises": "politicizes",
"politicising": "politicizing",
"popularisation": "popularization",
"popularise": "popularize",
"popularised": "popularized",
"popularises": "popularizes",
"popularising": "popularizing",
"pouffe": "pouf",
"pouffes": "poufs",
"practise": "practice",
"practised": "practiced",
"practises": "practices",
"practising": "practicing",
"praesidium": "presidium",
"praesidiums": "presidiums",
"pressurisation": "pressurization",
"pressurise": "pressurize",
"pressurised": "pressurized",
"pressurises": "pressurizes",
"pressurising": "pressurizing",
"pretence": "pretense",
"pretences": "pretenses",
"primaeval": "primeval",
"prioritisation": "prioritization",
"prioritise": "prioritize",
"prioritised": "prioritized",
"prioritises": "prioritizes",
"prioritising": "prioritizing",
"privatisation": "privatization",
"privatisations": "privatizations",
"privatise": "privatize",
"privatised": "privatized",
"privatises": "privatizes",
"privatising": "privatizing",
"professionalisation": "professionalization",
"professionalise": "professionalize",
"professionalised": "professionalized",
"professionalises": "professionalizes",
"professionalising": "professionalizing",
"programme": "program",
"programmes": "programs",
"prologue": "prolog",
"prologues": "prologs",
"propagandise": "propagandize",
"propagandised": "propagandized",
"propagandises": "propagandizes",
"propagandising": "propagandizing",
"proselytise": "proselytize",
"proselytised": "proselytized",
"proselytiser": "proselytizer",
"proselytisers": "proselytizers",
"proselytises": "proselytizes",
"proselytising": "proselytizing",
"psychoanalyse": "psychoanalyze",
"psychoanalysed": "psychoanalyzed",
"psychoanalyses": "psychoanalyzes",
"psychoanalysing": "psychoanalyzing",
"publicise": "publicize",
"publicised": "publicized",
"publicises": "publicizes",
"publicising": "publicizing",
"pulverisation": "pulverization",
"pulverise": "pulverize",
"pulverised": "pulverized",
"pulverises": "pulverizes",
"pulverising": "pulverizing",
"pummelled": "pummel",
"pummelling": "pummeled",
"pyjama": "pajama",
"pyjamas": "pajamas",
"pzazz": "pizzazz",
"quarrelled": "quarreled",
"quarrelling": "quarreling",
"radicalise": "radicalize",
"radicalised": "radicalized",
"radicalises": "radicalizes",
"radicalising": "radicalizing",
"rancour": "rancor",
"randomise": "randomize",
"randomised": "randomized",
"randomises": "randomizes",
"randomising": "randomizing",
"rationalisation": "rationalization",
"rationalisations": "rationalizations",
"rationalise": "rationalize",
"rationalised": "rationalized",
"rationalises": "rationalizes",
"rationalising": "rationalizing",
"ravelled": "raveled",
"ravelling": "raveling",
"realisable": "realizable",
"realisation": "realization",
"realisations": "realizations",
"realise": "realize",
"realised": "realized",
"realises": "realizes",
"realising": "realizing",
"recognisable": "recognizable",
"recognisably": "recognizably",
"recognisance": "recognizance",
"recognise": "recognize",
"recognised": "recognized",
"recognises": "recognizes",
"recognising": "recognizing",
"reconnoitre": "reconnoiter",
"reconnoitred": "reconnoitered",
"reconnoitres": "reconnoiters",
"reconnoitring": "reconnoitering",
"refuelled": "refueled",
"refuelling": "refueling",
"regularisation": "regularization",
"regularise": "regularize",
"regularised": "regularized",
"regularises": "regularizes",
"regularising": "regularizing",
"remodelled": "remodeled",
"remodelling": "remodeling",
"remould": "remold",
"remoulded": "remolded",
"remoulding": "remolding",
"remoulds": "remolds",
"reorganisation": "reorganization",
"reorganisations": "reorganizations",
"reorganise": "reorganize",
"reorganised": "reorganized",
"reorganises": "reorganizes",
"reorganising": "reorganizing",
"revelled": "reveled",
"reveller": "reveler",
"revellers": "revelers",
"revelling": "reveling",
"revitalise": "revitalize",
"revitalised": "revitalized",
"revitalises": "revitalizes",
"revitalising": "revitalizing",
"revolutionise": "revolutionize",
"revolutionised": "revolutionized",
"revolutionises": "revolutionizes",
"revolutionising": "revolutionizing",
"rhapsodise": "rhapsodize",
"rhapsodised": "rhapsodized",
"rhapsodises": "rhapsodizes",
"rhapsodising": "rhapsodizing",
"rigour": "rigor",
"rigours": "rigors",
"ritualised": "ritualized",
"rivalled": "rivaled",
"rivalling": "rivaling",
"romanticise": "romanticize",
"romanticised": "romanticized",
"romanticises": "romanticizes",
"romanticising": "romanticizing",
"rumour": "rumor",
"rumoured": "rumored",
"rumours": "rumors",
"sabre": "saber",
"sabres": "sabers",
"saltpetre": "saltpeter",
"sanitise": "sanitize",
"sanitised": "sanitized",
"sanitises": "sanitizes",
"sanitising": "sanitizing",
"satirise": "satirize",
"satirised": "satirized",
"satirises": "satirizes",
"satirising": "satirizing",
"saviour": "savior",
"saviours": "saviors",
"savour": "savor",
"savoured": "savored",
"savouries": "savories",
"savouring": "savoring",
"savours": "savors",
"savoury": "savory",
"scandalise": "scandalize",
"scandalised": "scandalized",
"scandalises": "scandalizes",
"scandalising": "scandalizing",
"sceptic": "skeptic",
"sceptical": "skeptical",
"sceptically": "skeptically",
"scepticism": "skepticism",
"sceptics": "skeptics",
"sceptre": "scepter",
"sceptres": "scepters",
"scrutinise": "scrutinize",
"scrutinised": "scrutinized",
"scrutinises": "scrutinizes",
"scrutinising": "scrutinizing",
"secularisation": "secularization",
"secularise": "secularize",
"secularised": "secularized",
"secularises": "secularizes",
"secularising": "secularizing",
"sensationalise": "sensationalize",
"sensationalised": "sensationalized",
"sensationalises": "sensationalizes",
"sensationalising": "sensationalizing",
"sensitise": "sensitize",
"sensitised": "sensitized",
"sensitises": "sensitizes",
"sensitising": "sensitizing",
"sentimentalise": "sentimentalize",
"sentimentalised": "sentimentalized",
"sentimentalises": "sentimentalizes",
"sentimentalising": "sentimentalizing",
"sepulchre": "sepulcher",
"sepulchres": "sepulchers",
"serialisation": "serialization",
"serialisations": "serializations",
"serialise": "serialize",
"serialised": "serialized",
"serialises": "serializes",
"serialising": "serializing",
"sermonise": "sermonize",
"sermonised": "sermonized",
"sermonises": "sermonizes",
"sermonising": "sermonizing",
"sheikh": "sheik",
"shovelled": "shoveled",
"shovelling": "shoveling",
"shrivelled": "shriveled",
"shrivelling": "shriveling",
"signalise": "signalize",
"signalised": "signalized",
"signalises": "signalizes",
"signalising": "signalizing",
"signalled": "signaled",
"signalling": "signaling",
"smoulder": "smolder",
"smouldered": "smoldered",
"smouldering": "smoldering",
"smoulders": "smolders",
"snivelled": "sniveled",
"snivelling": "sniveling",
"snorkelled": "snorkeled",
"snorkelling": "snorkeling",
"snowplough": "snowplow",
"snowploughs": "snowplow",
"socialisation": "socialization",
"socialise": "socialize",
"socialised": "socialized",
"socialises": "socializes",
"socialising": "socializing",
"sodomise": "sodomize",
"sodomised": "sodomized",
"sodomises": "sodomizes",
"sodomising": "sodomizing",
"solemnise": "solemnize",
"solemnised": "solemnized",
"solemnises": "solemnizes",
"solemnising": "solemnizing",
"sombre": "somber",
"specialisation": "specialization",
"specialisations": "specializations",
"specialise": "specialize",
"specialised": "specialized",
"specialises": "specializes",
"specialising": "specializing",
"spectre": "specter",
"spectres": "specters",
"spiralled": "spiraled",
"spiralling": "spiraling",
"splendour": "splendor",
"splendours": "splendors",
"squirrelled": "squirreled",
"squirrelling": "squirreling",
"stabilisation": "stabilization",
"stabilise": "stabilize",
"stabilised": "stabilized",
"stabiliser": "stabilizer",
"stabilisers": "stabilizers",
"stabilises": "stabilizes",
"stabilising": "stabilizing",
"standardisation": "standardization",
"standardise": "standardize",
"standardised": "standardized",
"standardises": "standardizes",
"standardising": "standardizing",
"stencilled": "stenciled",
"stencilling": "stenciling",
"sterilisation": "sterilization",
"sterilisations": "sterilizations",
"sterilise": "sterilize",
"sterilised": "sterilized",
"steriliser": "sterilizer",
"sterilisers": "sterilizers",
"sterilises": "sterilizes",
"sterilising": "sterilizing",
"stigmatisation": "stigmatization",
"stigmatise": "stigmatize",
"stigmatised": "stigmatized",
"stigmatises": "stigmatizes",
"stigmatising": "stigmatizing",
"storey": "story",
"storeys": "stories",
"subsidisation": "subsidization",
"subsidise": "subsidize",
"subsidised": "subsidized",
"subsidiser": "subsidizer",
"subsidisers": "subsidizers",
"subsidises": "subsidizes",
"subsidising": "subsidizing",
"succour": "succor",
"succoured": "succored",
"succouring": "succoring",
"succours": "succors",
"sulphate": "sulfate",
"sulphates": "sulfates",
"sulphide": "sulfide",
"sulphides": "sulfides",
"sulphur": "sulfur",
"sulphurous": "sulfurous",
"summarise": "summarize",
"summarised": "summarized",
"summarises": "summarizes",
"summarising": "summarizing",
"swivelled": "swiveled",
"swivelling": "swiveling",
"symbolise": "symbolize",
"symbolised": "symbolized",
"symbolises": "symbolizes",
"symbolising": "symbolizing",
"sympathise": "sympathize",
"sympathised": "sympathized",
"sympathiser": "sympathizer",
"sympathisers": "sympathizers",
"sympathises": "sympathizes",
"sympathising": "sympathizing",
"synchronisation": "synchronization",
"synchronise": "synchronize",
"synchronised": "synchronized",
"synchronises": "synchronizes",
"synchronising": "synchronizing",
"synthesise": "synthesize",
"synthesised": "synthesized",
"synthesiser": "synthesizer",
"synthesisers": "synthesizers",
"synthesises": "synthesizes",
"synthesising": "synthesizing",
"syphon": "siphon",
"syphoned": "siphoned",
"syphoning": "siphoning",
"syphons": "siphons",
"systematisation": "systematization",
"systematise": "systematize",
"systematised": "systematized",
"systematises": "systematizes",
"systematising": "systematizing",
"tantalise": "tantalize",
"tantalised": "tantalized",
"tantalises": "tantalizes",
"tantalising": "tantalizing",
"tantalisingly": "tantalizingly",
"tasselled": "tasseled",
"technicolour": "technicolor",
"temporise": "temporize",
"temporised": "temporized",
"temporises": "temporizes",
"temporising": "temporizing",
"tenderise": "tenderize",
"tenderised": "tenderized",
"tenderises": "tenderizes",
"tenderising": "tenderizing",
"terrorise": "terrorize",
"terrorised": "terrorized",
"terrorises": "terrorizes",
"terrorising": "terrorizing",
"theatre": "theater",
"theatregoer": "theatergoer",
"theatregoers": "theatergoers",
"theatres": "theaters",
"theorise": "theorize",
"theorised": "theorized",
"theorises": "theorizes",
"theorising": "theorizing",
"tonne": "ton",
"tonnes": "tons",
"towelled": "toweled",
"towelling": "toweling",
"toxaemia": "toxemia",
"tranquillise": "tranquilize",
"tranquillised": "tranquilized",
"tranquilliser": "tranquilizer",
"tranquillisers": "tranquilizers",
"tranquillises": "tranquilizes",
"tranquillising": "tranquilizing",
"tranquillity": "tranquility",
"tranquillize": "tranquilize",
"tranquillized": "tranquilized",
"tranquillizer": "tranquilizer",
"tranquillizers": "tranquilizers",
"tranquillizes": "tranquilizes",
"tranquillizing": "tranquilizing",
"tranquilly": "tranquility",
"transistorised": "transistorized",
"traumatise": "traumatize",
"traumatised": "traumatized",
"traumatises": "traumatizes",
"traumatising": "traumatizing",
"travelled": "traveled",
"traveller": "traveler",
"travellers": "travelers",
"travelling": "traveling",
"travelog": "travelogue",
"travelogs": "travelogues",
"trialled": "trialed",
"trialling": "trialing",
"tricolour": "tricolor",
"tricolours": "tricolors",
"trivialise": "trivialize",
"trivialised": "trivialized",
"trivialises": "trivializes",
"trivialising": "trivializing",
"tumour": "tumor",
"tumours": "tumors",
"tunnelled": "tunneled",
"tunnelling": "tunneling",
"tyrannise": "tyrannize",
"tyrannised": "tyrannized",
"tyrannises": "tyrannizes",
"tyrannising": "tyrannizing",
"tyre": "tire",
"tyres": "tires",
"unauthorised": "unauthorized",
"uncivilised": "uncivilized",
"underutilised": "underutilized",
"unequalled": "unequaled",
"unfavourable": "unfavorable",
"unfavourably": "unfavorably",
"unionisation": "unionization",
"unionise": "unionize",
"unionised": "unionized",
"unionises": "unionizes",
"unionising": "unionizing",
"unorganised": "unorganized",
"unravelled": "unraveled",
"unravelling": "unraveling",
"unrecognisable": "unrecognizable",
"unrecognised": "unrecognized",
"unrivalled": "unrivaled",
"unsavoury": "unsavory",
"untrammelled": "untrammeled",
"urbanisation": "urbanization",
"urbanise": "urbanize",
"urbanised": "urbanized",
"urbanises": "urbanizes",
"urbanising": "urbanizing",
"utilisable": "utilizable",
"utilisation": "utilization",
"utilise": "utilize",
"utilised": "utilized",
"utilises": "utilizes",
"utilising": "utilizing",
"valour": "valor",
"vandalise": "vandalize",
"vandalised": "vandalized",
"vandalises": "vandalizes",
"vandalising": "vandalizing",
"vaporisation": "vaporization",
"vaporise": "vaporize",
"vaporised": "vaporized",
"vaporises": "vaporizes",
"vaporising": "vaporizing",
"vapour": "vapor",
"vapours": "vapors",
"verbalise": "verbalize",
"verbalised": "verbalized",
"verbalises": "verbalizes",
"verbalising": "verbalizing",
"victimisation": "victimization",
"victimise": "victimize",
"victimised": "victimized",
"victimises": "victimizes",
"victimising": "victimizing",
"videodisc": "videodisk",
"videodiscs": "videodisks",
"vigour": "vigor",
"visualisation": "visualization",
"visualisations": "visualizations",
"visualise": "visualize",
"visualised": "visualized",
"visualises": "visualizes",
"visualising": "visualizing",
"vocalisation": "vocalization",
"vocalisations": "vocalizations",
"vocalise": "vocalize",
"vocalised": "vocalized",
"vocalises": "vocalizes",
"vocalising": "vocalizing",
"vulcanised": "vulcanized",
"vulgarisation": "vulgarization",
"vulgarise": "vulgarize",
"vulgarised": "vulgarized",
"vulgarises": "vulgarizes",
"vulgarising": "vulgarizing",
"waggon": "wagon",
"waggons": "wagons",
"watercolour": "watercolor",
"watercolours": "watercolors",
"weaselled": "weaseled",
"weaselling": "weaseling",
"westernisation": "westernization",
"westernise": "westernize",
"westernised": "westernized",
"westernises": "westernizes",
"westernising": "westernizing",
"womanise": "womanize",
"womanised": "womanized",
"womaniser": "womanizer",
"womanisers": "womanizers",
"womanises": "womanizes",
"womanising": "womanizing",
"woollen": "woolen",
"woollens": "woolens",
"woollies": "woolies",
"woolly": "wooly",
"worshipped": "worshiped",
"worshipping": "worshiping",
"worshipper": "worshiper",
"yodelled": "yodeled",
"yodelling": "yodeling",
"yoghourt": "yogurt",
"yoghourts": "yogurts",
"yoghurt": "yogurt",
"yoghurts": "yogurts",
"mhm": "hmm",
"mmm": "hmm"
}
\ No newline at end of file
import json
import os
import re
from fractions import Fraction
from typing import Iterator, List, Match, Optional, Union
from more_itertools import windowed
from .basic import remove_symbols_and_diacritics
class EnglishNumberNormalizer:
"""
Convert any spelled-out numbers into arabic numbers, while handling:
- remove any commas
- keep the suffixes such as: `1960s`, `274th`, `32nd`, etc.
- spell out currency symbols after the number. e.g. `$20 million` -> `20000000 dollars`
- spell out `one` and `ones`
- interpret successive single-digit numbers as nominal: `one oh one` -> `101`
"""
def __init__(self):
super().__init__()
self.zeros = {"o", "oh", "zero"}
self.ones = {
name: i
for i, name in enumerate(
[
"one",
"two",
"three",
"four",
"five",
"six",
"seven",
"eight",
"nine",
"ten",
"eleven",
"twelve",
"thirteen",
"fourteen",
"fifteen",
"sixteen",
"seventeen",
"eighteen",
"nineteen",
],
start=1,
)
}
self.ones_plural = {
"sixes" if name == "six" else name + "s": (value, "s")
for name, value in self.ones.items()
}
self.ones_ordinal = {
"zeroth": (0, "th"),
"first": (1, "st"),
"second": (2, "nd"),
"third": (3, "rd"),
"fifth": (5, "th"),
"twelfth": (12, "th"),
**{
name + ("h" if name.endswith("t") else "th"): (value, "th")
for name, value in self.ones.items()
if value > 3 and value != 5 and value != 12
},
}
self.ones_suffixed = {**self.ones_plural, **self.ones_ordinal}
self.tens = {
"twenty": 20,
"thirty": 30,
"forty": 40,
"fifty": 50,
"sixty": 60,
"seventy": 70,
"eighty": 80,
"ninety": 90,
}
self.tens_plural = {
name.replace("y", "ies"): (value, "s") for name, value in self.tens.items()
}
self.tens_ordinal = {
name.replace("y", "ieth"): (value, "th")
for name, value in self.tens.items()
}
self.tens_suffixed = {**self.tens_plural, **self.tens_ordinal}
self.multipliers = {
"hundred": 100,
"thousand": 1_000,
"million": 1_000_000,
"billion": 1_000_000_000,
"trillion": 1_000_000_000_000,
"quadrillion": 1_000_000_000_000_000,
"quintillion": 1_000_000_000_000_000_000,
"sextillion": 1_000_000_000_000_000_000_000,
"septillion": 1_000_000_000_000_000_000_000_000,
"octillion": 1_000_000_000_000_000_000_000_000_000,
"nonillion": 1_000_000_000_000_000_000_000_000_000_000,
"decillion": 1_000_000_000_000_000_000_000_000_000_000_000,
}
self.multipliers_plural = {
name + "s": (value, "s") for name, value in self.multipliers.items()
}
self.multipliers_ordinal = {
name + "th": (value, "th") for name, value in self.multipliers.items()
}
self.multipliers_suffixed = {
**self.multipliers_plural,
**self.multipliers_ordinal,
}
self.decimals = {*self.ones, *self.tens, *self.zeros}
self.preceding_prefixers = {
"minus": "-",
"negative": "-",
"plus": "+",
"positive": "+",
}
self.following_prefixers = {
"pound": "£",
"pounds": "£",
"euro": "€",
"euros": "€",
"dollar": "$",
"dollars": "$",
"cent": "¢",
"cents": "¢",
}
self.prefixes = set(
list(self.preceding_prefixers.values())
+ list(self.following_prefixers.values())
)
self.suffixers = {
"per": {"cent": "%"},
"percent": "%",
}
self.specials = {"and", "double", "triple", "point"}
self.words = set(
[
key
for mapping in [
self.zeros,
self.ones,
self.ones_suffixed,
self.tens,
self.tens_suffixed,
self.multipliers,
self.multipliers_suffixed,
self.preceding_prefixers,
self.following_prefixers,
self.suffixers,
self.specials,
]
for key in mapping
]
)
self.literal_words = {"one", "ones"}
def process_words(self, words: List[str]) -> Iterator[str]:
prefix: Optional[str] = None
value: Optional[Union[str, int]] = None
skip = False
def to_fraction(s: str):
try:
return Fraction(s)
except ValueError:
return None
def output(result: Union[str, int]):
nonlocal prefix, value
result = str(result)
if prefix is not None:
result = prefix + result
value = None
prefix = None
return result
if len(words) == 0:
return
for prev, current, next in windowed([None] + words + [None], 3):
if skip:
skip = False
continue
next_is_numeric = next is not None and re.match(r"^\d+(\.\d+)?$", next)
has_prefix = current[0] in self.prefixes
current_without_prefix = current[1:] if has_prefix else current
if re.match(r"^\d+(\.\d+)?$", current_without_prefix):
# arabic numbers (potentially with signs and fractions)
f = to_fraction(current_without_prefix)
assert f is not None
if value is not None:
if isinstance(value, str) and value.endswith("."):
# concatenate decimals / ip address components
value = str(value) + str(current)
continue
else:
yield output(value)
prefix = current[0] if has_prefix else prefix
if f.denominator == 1:
value = f.numerator # store integers as int
else:
value = current_without_prefix
elif current not in self.words:
# non-numeric words
if value is not None:
yield output(value)
yield output(current)
elif current in self.zeros:
value = str(value or "") + "0"
elif current in self.ones:
ones = self.ones[current]
if value is None:
value = ones
elif isinstance(value, str) or prev in self.ones:
if (
prev in self.tens and ones < 10
): # replace the last zero with the digit
assert value[-1] == "0"
value = value[:-1] + str(ones)
else:
value = str(value) + str(ones)
elif ones < 10:
if value % 10 == 0:
value += ones
else:
value = str(value) + str(ones)
else: # eleven to nineteen
if value % 100 == 0:
value += ones
else:
value = str(value) + str(ones)
elif current in self.ones_suffixed:
# ordinal or cardinal; yield the number right away
ones, suffix = self.ones_suffixed[current]
if value is None:
yield output(str(ones) + suffix)
elif isinstance(value, str) or prev in self.ones:
if prev in self.tens and ones < 10:
assert value[-1] == "0"
yield output(value[:-1] + str(ones) + suffix)
else:
yield output(str(value) + str(ones) + suffix)
elif ones < 10:
if value % 10 == 0:
yield output(str(value + ones) + suffix)
else:
yield output(str(value) + str(ones) + suffix)
else: # eleven to nineteen
if value % 100 == 0:
yield output(str(value + ones) + suffix)
else:
yield output(str(value) + str(ones) + suffix)
value = None
elif current in self.tens:
tens = self.tens[current]
if value is None:
value = tens
elif isinstance(value, str):
value = str(value) + str(tens)
else:
if value % 100 == 0:
value += tens
else:
value = str(value) + str(tens)
elif current in self.tens_suffixed:
# ordinal or cardinal; yield the number right away
tens, suffix = self.tens_suffixed[current]
if value is None:
yield output(str(tens) + suffix)
elif isinstance(value, str):
yield output(str(value) + str(tens) + suffix)
else:
if value % 100 == 0:
yield output(str(value + tens) + suffix)
else:
yield output(str(value) + str(tens) + suffix)
elif current in self.multipliers:
multiplier = self.multipliers[current]
if value is None:
value = multiplier
elif isinstance(value, str) or value == 0:
f = to_fraction(value)
p = f * multiplier if f is not None else None
if f is not None and p.denominator == 1:
value = p.numerator
else:
yield output(value)
value = multiplier
else:
before = value // 1000 * 1000
residual = value % 1000
value = before + residual * multiplier
elif current in self.multipliers_suffixed:
multiplier, suffix = self.multipliers_suffixed[current]
if value is None:
yield output(str(multiplier) + suffix)
elif isinstance(value, str):
f = to_fraction(value)
p = f * multiplier if f is not None else None
if f is not None and p.denominator == 1:
yield output(str(p.numerator) + suffix)
else:
yield output(value)
yield output(str(multiplier) + suffix)
else: # int
before = value // 1000 * 1000
residual = value % 1000
value = before + residual * multiplier
yield output(str(value) + suffix)
value = None
elif current in self.preceding_prefixers:
# apply prefix (positive, minus, etc.) if it precedes a number
if value is not None:
yield output(value)
if next in self.words or next_is_numeric:
prefix = self.preceding_prefixers[current]
else:
yield output(current)
elif current in self.following_prefixers:
# apply prefix (dollars, cents, etc.) only after a number
if value is not None:
prefix = self.following_prefixers[current]
yield output(value)
else:
yield output(current)
elif current in self.suffixers:
# apply suffix symbols (percent -> '%')
if value is not None:
suffix = self.suffixers[current]
if isinstance(suffix, dict):
if next in suffix:
yield output(str(value) + suffix[next])
skip = True
else:
yield output(value)
yield output(current)
else:
yield output(str(value) + suffix)
else:
yield output(current)
elif current in self.specials:
if next not in self.words and not next_is_numeric:
# apply special handling only if the next word can be numeric
if value is not None:
yield output(value)
yield output(current)
elif current == "and":
# ignore "and" after hundreds, thousands, etc.
if prev not in self.multipliers:
if value is not None:
yield output(value)
yield output(current)
elif current == "double" or current == "triple":
if next in self.ones or next in self.zeros:
repeats = 2 if current == "double" else 3
ones = self.ones.get(next, 0)
value = str(value or "") + str(ones) * repeats
skip = True
else:
if value is not None:
yield output(value)
yield output(current)
elif current == "point":
if next in self.decimals or next_is_numeric:
value = str(value or "") + "."
else:
# should all have been covered at this point
raise ValueError(f"Unexpected token: {current}")
else:
# all should have been covered at this point
raise ValueError(f"Unexpected token: {current}")
if value is not None:
yield output(value)
def preprocess(self, s: str):
# replace "<number> and a half" with "<number> point five"
results = []
segments = re.split(r"\band\s+a\s+half\b", s)
for i, segment in enumerate(segments):
if len(segment.strip()) == 0:
continue
if i == len(segments) - 1:
results.append(segment)
else:
results.append(segment)
last_word = segment.rsplit(maxsplit=2)[-1]
if last_word in self.decimals or last_word in self.multipliers:
results.append("point five")
else:
results.append("and a half")
s = " ".join(results)
# put a space at number/letter boundary
s = re.sub(r"([a-z])([0-9])", r"\1 \2", s)
s = re.sub(r"([0-9])([a-z])", r"\1 \2", s)
# but remove spaces which could be a suffix
s = re.sub(r"([0-9])\s+(st|nd|rd|th|s)\b", r"\1\2", s)
return s
def postprocess(self, s: str):
def combine_cents(m: Match):
try:
currency = m.group(1)
integer = m.group(2)
cents = int(m.group(3))
return f"{currency}{integer}.{cents:02d}"
except ValueError:
return m.string
def extract_cents(m: Match):
try:
return f{int(m.group(1))}"
except ValueError:
return m.string
# apply currency postprocessing; "$2 and ¢7" -> "$2.07"
s = re.sub(r"([€£$])([0-9]+) (?:and )?¢([0-9]{1,2})\b", combine_cents, s)
s = re.sub(r"[€£$]0.([0-9]{1,2})\b", extract_cents, s)
# write "one(s)" instead of "1(s)", just for the readability
s = re.sub(r"\b1(s?)\b", r"one\1", s)
return s
def __call__(self, s: str):
s = self.preprocess(s)
s = " ".join(word for word in self.process_words(s.split()) if word is not None)
s = self.postprocess(s)
return s
class EnglishSpellingNormalizer:
"""
Applies British-American spelling mappings as listed in [1].
[1] https://www.tysto.com/uk-us-spelling-list.html
"""
def __init__(self):
mapping_path = os.path.join(os.path.dirname(__file__), "english.json")
self.mapping = json.load(open(mapping_path))
def __call__(self, s: str):
return " ".join(self.mapping.get(word, word) for word in s.split())
class EnglishTextNormalizer:
def __init__(self):
self.ignore_patterns = r"\b(hmm|mm|mhm|mmm|uh|um)\b"
self.replacers = {
# common contractions
r"\bwon't\b": "will not",
r"\bcan't\b": "can not",
r"\blet's\b": "let us",
r"\bain't\b": "aint",
r"\by'all\b": "you all",
r"\bwanna\b": "want to",
r"\bgotta\b": "got to",
r"\bgonna\b": "going to",
r"\bi'ma\b": "i am going to",
r"\bimma\b": "i am going to",
r"\bwoulda\b": "would have",
r"\bcoulda\b": "could have",
r"\bshoulda\b": "should have",
r"\bma'am\b": "madam",
# contractions in titles/prefixes
r"\bmr\b": "mister ",
r"\bmrs\b": "missus ",
r"\bst\b": "saint ",
r"\bdr\b": "doctor ",
r"\bprof\b": "professor ",
r"\bcapt\b": "captain ",
r"\bgov\b": "governor ",
r"\bald\b": "alderman ",
r"\bgen\b": "general ",
r"\bsen\b": "senator ",
r"\brep\b": "representative ",
r"\bpres\b": "president ",
r"\brev\b": "reverend ",
r"\bhon\b": "honorable ",
r"\basst\b": "assistant ",
r"\bassoc\b": "associate ",
r"\blt\b": "lieutenant ",
r"\bcol\b": "colonel ",
r"\bjr\b": "junior ",
r"\bsr\b": "senior ",
r"\besq\b": "esquire ",
# prefect tenses, ideally it should be any past participles, but it's harder..
r"'d been\b": " had been",
r"'s been\b": " has been",
r"'d gone\b": " had gone",
r"'s gone\b": " has gone",
r"'d done\b": " had done", # "'s done" is ambiguous
r"'s got\b": " has got",
# general contractions
r"n't\b": " not",
r"'re\b": " are",
r"'s\b": " is",
r"'d\b": " would",
r"'ll\b": " will",
r"'t\b": " not",
r"'ve\b": " have",
r"'m\b": " am",
}
self.standardize_numbers = EnglishNumberNormalizer()
self.standardize_spellings = EnglishSpellingNormalizer()
def __call__(self, s: str):
s = s.lower()
s = re.sub(r"[<\[][^>\]]*[>\]]", "", s) # remove words between brackets
s = re.sub(r"\(([^)]+?)\)", "", s) # remove words between parenthesis
s = re.sub(self.ignore_patterns, "", s)
s = re.sub(r"\s+'", "'", s) # when there's a space before an apostrophe
for pattern, replacement in self.replacers.items():
s = re.sub(pattern, replacement, s)
s = re.sub(r"(\d),(\d)", r"\1\2", s) # remove commas between digits
s = re.sub(r"\.([^0-9]|$)", r" \1", s) # remove periods not followed by numbers
s = remove_symbols_and_diacritics(s, keep=".%$¢€£") # keep numeric symbols
s = self.standardize_numbers(s)
s = self.standardize_spellings(s)
# now remove prefix/suffix symbols that are not preceded/followed by numbers
s = re.sub(r"[.$¢€£]([^0-9])", r" \1", s)
s = re.sub(r"([^0-9])%", r"\1 ", s)
s = re.sub(r"\s+", " ", s) # replace any successive whitespaces with a space
return s
\ No newline at end of file
compute_environment: LOCAL_MACHINE
debug: false
deepspeed_config:
deepspeed_multinode_launcher: standard
gradient_accumulation_steps: 1
gradient_clipping: 1.0
zero3_init_flag: false
zero_stage: 1
distributed_type: DEEPSPEED
downcast_bf16: 'no'
enable_cpu_affinity: false
machine_rank: 0
main_process_ip: localhost
main_process_port: 9999
main_training_function: main
mixed_precision: bf16
num_machines: 2
num_processes: 16
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false
compute_environment: LOCAL_MACHINE
debug: false
deepspeed_config:
deepspeed_multinode_launcher: standard
gradient_accumulation_steps: 1
gradient_clipping: 1.0
offload_optimizer_device: none
offload_param_device: none
zero3_init_flag: false
zero_stage: 2
distributed_type: DEEPSPEED
downcast_bf16: 'no'
enable_cpu_affinity: false
machine_rank: 0
main_process_ip: localhost
main_process_port: 9999
main_training_function: main
mixed_precision: bf16
num_machines: 2
num_processes: 16
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false
compute_environment: LOCAL_MACHINE
debug: false
deepspeed_config:
deepspeed_multinode_launcher: standard
gradient_accumulation_steps: 1
gradient_clipping: 1.0
offload_optimizer_device: cpu
offload_param_device: cpu
zero3_init_flag: true
zero3_save_16bit_model: false
zero_stage: 3
distributed_type: DEEPSPEED
downcast_bf16: 'no'
enable_cpu_affinity: false
machine_rank: 0
main_process_ip: localhost
main_process_port: 999
main_training_function: main
mixed_precision: bf16
num_machines: 1
num_processes: 8
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false
\ No newline at end of file
import json
import os
import sys
import math
import random
import logging
import argparse
import numpy as np
from pathlib import Path
from tqdm.auto import tqdm
from collections import defaultdict
import librosa
from io import BytesIO
from urllib.request import urlopen
from peft import get_peft_model
from peft import LoraConfig, TaskType
import torch
from torch.utils.data import DataLoader
from datasets import IterableDataset
from accelerate.utils import set_seed
from accelerate.logging import get_logger
from accelerate import Accelerator, DistributedType
import transformers
from transformers import (
AutoConfig,
AutoProcessor,
Qwen2AudioForConditionalGeneration,
SchedulerType,
get_scheduler,
)
logger = get_logger(__name__)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_name_or_path",
type=str,
default="qwen2-audio",
help="Path to pretrained model or model identifier from huggingface.co/models",
)
parser.add_argument(
"--output_dir",
type=str,
default="output",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--seed", type=int, default=42, help="Random seed"
)
parser.add_argument(
"--learning_rate", type=float, default=5e-5, help="The initial learning rate for AdamW."
)
parser.add_argument(
"--weight_decay", type=float, default=0.0, help="Weight decay for AdamW."
)
parser.add_argument(
"--per_device_train_batch_size",
type=int,
default=1,
help="Batch size per GPU/TPU core/CPU for training.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--steps_per_print",
type=int,
default=1,
help="Number of steps before printing the loss.",
)
parser.add_argument(
"--trust_remote_code",
action="store_true",
help="Trust remote code for the model and tokenizer.",
)
parser.add_argument(
"--low_cpu_mem_usage",
action="store_true",
help="Use low CPU memory usage for the model.",
)
parser.add_argument(
"--flash_attention",
action="store_true",
help="Use FlashAttention for the model.",
)
parser.add_argument(
"--max_train_steps",
type=int,
default=1000,
help="Total number of training steps to perform.",
)
parser.add_argument(
"--num_warmup_steps",
type=int,
default=0,
help="Number of steps for the warmup in the lr scheduler.",
)
parser.add_argument(
"--lr_scheduler_type",
type=SchedulerType,
default=SchedulerType.LINEAR,
help="The learning rate scheduler type to use.",
)
parser.add_argument(
"--save_interval",
type=int,
default=100,
help="Number of steps before saving the model.",
)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Use gradient checkpointing to save memory.",
)
parser.add_argument(
"--lora",
action="store_true",
help="Use lora to finetune.",
)
return parser.parse_args()
def toy_data():
conversation = [
{
"role": "system", "content": "You are a helpful assistant."
},
{
"role": "user",
"content": [
{
"type": "audio",
"audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/guess_age_gender.wav"
}
]
},
{
"role": "assistant", "content": "Yes, the speaker is female and in her twenties."
},
{
"role": "user",
"content": [
{
"type": "audio",
"audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/translate_to_chinese.wav"
}
]
}
]
conversation1 = [
{
"role": "system", "content": "You are a helpful assistant."
},
{
"role": "user",
"content": [
{
"type": "audio",
"audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/glass-breaking-151256.mp3"
},
{
"type": "text", "text": "What's that sound?"
},
]
},
{
"role": "assistant", "content": "It is the sound of glass shattering."
},
{
"role": "user",
"content": [
{"type": "text", "text": "What can you do when you hear that?"},
]
},
{
"role": "assistant",
"content": "Stay alert and cautious, and check if anyone is hurt or if there is any damage to property."
},
{
"role": "user", "content": [
{
"type": "audio",
"audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/1272-128104-0000.flac"
},
{"type": "text", "text": "What does the person say?"},
]
}
]
while True:
if random.random() < 0.5:
yield {"conversations": conversation}
else:
yield {"conversations": conversation1}
def main(args):
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
accelerator_log_kwargs = {"dispatch_batches": False}
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
**accelerator_log_kwargs
)
def init_dataloader(processor):
def _func(batch):
# copy from `https://huggingface.co/Qwen/Qwen2-Audio-7B-Instruct`
conversations = batch["conversations"]
text = [
processor.apply_chat_template(
conversation,
add_generation_prompt=False,
tokeni_in_conversationze=False
)
for conversation in conversations
]
audios, audio_num_for_each_conversation = [], []
for conversation in conversations:
audio_num = 0
for message in conversation:
if isinstance(message["content"], list):
for ele in message["content"]:
if ele["type"] == "audio":
audios.append(
librosa.load(
BytesIO(
urlopen(ele['audio_url']).read()
),
sr=processor.feature_extractor.sampling_rate)[0]
)
audio_num += 1
audio_num_for_each_conversation.append(audio_num)
inputs = processor(
text=text,
audios=audios if audios else None,
return_tensors="pt",
padding=True
)
# Split the tensors for each conversation, make sure the dataset is iterable
inputs["feature_attention_mask"] = [
x for x in torch.split(
inputs["feature_attention_mask"],
audio_num_for_each_conversation, dim=0)
]
inputs["input_features"] = [
x for x in torch.split(
inputs["input_features"],
audio_num_for_each_conversation,
dim=0
)
]
logger.warning(
"We automatically learn from all tokens except for `audio` in the conversation. If you want to learn about a specific `role` or `content`, please modify the code accordingly."
)
# Qwen2AudioForConditionalGeneration will automatically shift the input_ids for you
inputs["labels"] = inputs["input_ids"]
return inputs
# Load dataset
dataset = IterableDataset.from_generator(toy_data)
dataset = dataset.map(
_func,
batched=True,
remove_columns=["conversations"],
batch_size=2
)
def collate_fn(batch):
flatten_batch = defaultdict(list)
for k in batch[0]:
for instance in batch:
if isinstance(instance[k], list):
flatten_batch[k] += instance[k]
else:
flatten_batch[k].append(instance[k])
return {
k: torch.cat(v, dim=0)
if k in ["feature_attention_mask", "input_features"] else torch.stack(v)
for k, v in flatten_batch.items()
}
dataloader = DataLoader(
dataset,
batch_size=args.per_device_train_batch_size,
num_workers=0,
collate_fn=collate_fn,
)
return dataloader
accelerator.state.deepspeed_plugin.deepspeed_config[
'train_micro_batch_size_per_gpu'] = args.per_device_train_batch_size
accelerator.state.deepspeed_plugin.deepspeed_config[
'gradient_accumulation_steps'] = args.gradient_accumulation_steps
accelerator.state.deepspeed_plugin.deepspeed_config[
'steps_per_print'] = args.steps_per_print
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
os.makedirs(args.output_dir, exist_ok=True)
accelerator.wait_for_everyone()
config = AutoConfig.from_pretrained(
args.model_name_or_path,
trust_remote_code=args.trust_remote_code,
)
processor = AutoProcessor.from_pretrained(args.model_name_or_path)
model = Qwen2AudioForConditionalGeneration.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
low_cpu_mem_usage=args.low_cpu_mem_usage,
trust_remote_code=args.trust_remote_code,
# Qwen2AudioForConditionalGeneration can not support `flash_attention` but we keep it here for demonstration
attn_implementation="flash_attention_2" if args.flash_attention else None,
torch_dtype=config.torch_dtype
)
if args.lora:
logger.info("Use lora to finetune...")
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
r=8,
lora_alpha=32,
lora_dropout=0.1,
init_lora_weights="gaussian",
target_modules=["q_proj", "k_proj", "v_proj"]
)
model.enable_input_require_grads()
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
if args.gradient_checkpointing:
model.gradient_checkpointing_enable()
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
# on a small vocab and want a smaller embedding size, remove this test.
embedding_size = model.get_input_embeddings().weight.shape[0]
if len(processor.tokenizer) > embedding_size:
model.resize_token_embeddings(len(processor.tokenizer))
# Prepare the dataloader
train_dataloader = init_dataloader(processor)
# Optimizer
# Split weights in two groups, one with weight decay and the other not.
no_decay = ["bias", "layer_norm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) and p.requires_grad],
"weight_decay": args.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay) and p.requires_grad],
"weight_decay": 0.0,
},
]
optimizer = torch.optim.AdamW(
optimizer_grouped_parameters,
lr=args.learning_rate
)
# Scheduler and math around the number of training steps.
lr_scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps * accelerator.num_processes,
num_training_steps=args.max_train_steps * accelerator.num_processes
)
# Prepare everything with our `accelerator`.
model, optimizer, lr_scheduler, train_dataloader = accelerator.prepare(
model, optimizer, lr_scheduler, train_dataloader
)
# Train!
total_batch_size = args.per_device_train_batch_size * \
accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(
f" Instantaneous batch size per device = {args.per_device_train_batch_size}")
logger.info(
f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(
f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
logger.info(f" Num processes: {accelerator.num_processes}")
logger.info(f" Process index: {accelerator.process_index}")
completed_steps = 0
for _, batch in enumerate(train_dataloader):
model.train()
with accelerator.accumulate(model):
# Move the batch to the device (should be done by the accelerator)
for k, v in batch.items():
if isinstance(v, torch.Tensor) and v.device == torch.device("cpu"):
batch[k] = v.cuda()
outputs = model(**batch)
loss = outputs.loss
# We keep track of the loss at each step
local_loss = loss.detach().float()
logger.info(
f"Steps = {completed_steps + 1}, Local loss = {local_loss}...")
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
completed_steps += 1
if args.output_dir is not None and completed_steps % args.save_interval == 0:
accelerator.wait_for_everyone()
output_dir = os.path.join(
args.output_dir,
f"checkpoint_{completed_steps}"
)
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(
output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save
)
if accelerator.is_main_process:
processor.save_pretrained(output_dir)
if completed_steps >= args.max_train_steps:
return
if __name__ == "__main__":
# Parse arguments
args = parse_args()
main(args)
export GPUS_PER_NODE=8
export NCCL_IB_QPS_PER_CONNECTION=8
export WORLD_SIZE=1
export MASTER_ADDR=localhost
export MASTER_PORT=29500
export RANK=0
# Only test deepspeed_z1.yaml but it should be the same for other configs
accelerate launch \
--config_file accelerate_configs/deepspeed_z1.yaml \
--main_process_ip $MASTER_ADDR \
--main_process_port $MASTER_PORT \
--machine_rank $RANK \
--num_machines $WORLD_SIZE \
--num_processes $(($WORLD_SIZE * $GPUS_PER_NODE)) \
run.py \
--model_name_or_path Qwen/Qwen2-Audio-7B-Instruct \
--per_device_train_batch_size 2 \
--gradient_accumulation_steps 1 \
--learning_rate 3e-5 \
--max_train_steps 20000 \
--trust_remote_code \
--save_interval 5 \
--gradient_checkpointing \
--lora \
$@
\ No newline at end of file
icon.png

53.8 KB

# 模型唯一标识
modelCode = 1092
# 模型名称
modelName=mplug-docowl_pytorch
# 模型描述
modelDescription=多模态OCR大模型,端侧可用
# 应用场景
appScenario=推理,OCR,金融,教育,政府,科研,交通,广媒
# 框架类型
frameType=pytorch
from io import BytesIO
from urllib.request import urlopen
import librosa
from transformers import Qwen2AudioForConditionalGeneration, AutoProcessor
processor = AutoProcessor.from_pretrained("/home/wanglch/Qwen2-Audio/Qwen2-Audio-7B-Instruct/", trust_remote_code=True)
model = Qwen2AudioForConditionalGeneration.from_pretrained("/home/wanglch/Qwen2-Audio/Qwen2-Audio-7B-Instruct/", trust_remote_code=True, device_map="auto")
conversation = [
{"role": "user", "content": [
{"type": "audio", "audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/guess_age_gender.wav"},
]},
{"role": "assistant", "content": "Yes, the speaker is female and in her twenties."},
{"role": "user", "content": [
{"type": "audio", "audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/translate_to_chinese.wav"},
]},
]
text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
audios = []
for message in conversation:
if isinstance(message["content"], list):
for ele in message["content"]:
if ele["type"] == "audio":
audios.append(librosa.load(
BytesIO(urlopen(ele['audio_url']).read()),
sr=processor.feature_extractor.sampling_rate)[0]
)
inputs = processor(text=text, audios=audios, return_tensors="pt", padding=True)
inputs.input_ids = inputs.input_ids.to("cuda")
generate_ids = model.generate(**inputs, max_length=256)
generate_ids = generate_ids[:, inputs.input_ids.size(1):]
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
print("Qwen_Audio Output:", response)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment