# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """ Functions for downloading pre-trained PixArt models """ from torchvision.datasets.utils import download_url import torch import os import argparse pretrained_models = {'PixArt-XL-2-512x512.pth', 'PixArt-XL-2-1024-MS.pth'} vae_models = { 'sd-vae-ft-ema/config.json', 'sd-vae-ft-ema/diffusion_pytorch_model.bin' } t5_models = { 't5-v1_1-xxl/config.json', 't5-v1_1-xxl/pytorch_model-00001-of-00002.bin', 't5-v1_1-xxl/pytorch_model-00002-of-00002.bin', 't5-v1_1-xxl/pytorch_model.bin.index.json', 't5-v1_1-xxl/special_tokens_map.json', 't5-v1_1-xxl/spiece.model', 't5-v1_1-xxl/tokenizer_config.json', } def find_model(model_name): """ Finds a pre-trained G.pt model, downloading it if necessary. Alternatively, loads a model from a local path. """ if model_name in pretrained_models: return download_model(model_name) assert os.path.isfile(model_name), f'Could not find PixArt checkpoint at {model_name}' return torch.load(model_name, map_location=lambda storage, loc: storage) def download_model(model_name): """ Downloads a pre-trained PixArt model from the web. """ assert model_name in pretrained_models local_path = f'output/pretrained_models/{model_name}' if not os.path.isfile(local_path): os.makedirs('output/pretrained_models', exist_ok=True) web_path = f'https://huggingface.co/PixArt-alpha/PixArt-alpha/resolve/main/{model_name}' download_url(web_path, 'output/pretrained_models') return torch.load(local_path, map_location=lambda storage, loc: storage) def download_other(model_name, model_zoo, output_dir): """ Downloads a pre-trained PixArt model from the web. """ assert model_name in model_zoo local_path = os.path.join(output_dir, model_name) if not os.path.isfile(local_path): os.makedirs(output_dir, exist_ok=True) web_path = f'https://huggingface.co/PixArt-alpha/PixArt-alpha/resolve/main/{model_name}' print(web_path) download_url(web_path, os.path.join(output_dir, model_name.split('/')[0])) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--model_names', nargs='+', type=str, default=pretrained_models) args = parser.parse_args() model_names = args.model_names model_names = set(model_names) # Download PixArt checkpoints for t5_model in t5_models: download_other(t5_model, t5_models, 'output/pretrained_models/t5_ckpts') for vae_model in vae_models: download_other(vae_model, vae_models, 'output/pretrained_models/') for model in model_names: download_model(model) # for vae_model in vae_models: print('Done.')