data_root = '/data/data' data = dict(type='InternalData', root='images', image_list_json=['data_info.json'], transform='default_train', load_vae_feat=True) image_size = 256 # the generated image resolution train_batch_size = 32 eval_batch_size = 16 use_fsdp=False # if use FSDP mode valid_num=0 # take as valid aspect-ratio when sample number >= valid_num # model setting model = 'PixArt_XL_2' aspect_ratio_type = None # base aspect ratio [ASPECT_RATIO_512 or ASPECT_RATIO_256] multi_scale = False # if use multiscale dataset model training lewei_scale = 1.0 # lewei_scale for positional embedding interpolation # training setting num_workers=4 train_sampling_steps = 1000 eval_sampling_steps = 250 model_max_length = 120 lora_rank = 4 num_epochs = 80 gradient_accumulation_steps = 1 grad_checkpointing = False gradient_clip = 1.0 gc_step = 1 auto_lr = dict(rule='sqrt') # we use different weight decay with the official implementation since it results better result optimizer = dict(type='AdamW', lr=1e-4, weight_decay=3e-2, eps=1e-10) lr_schedule = 'constant' lr_schedule_args = dict(num_warmup_steps=500) save_image_epochs = 1 save_model_epochs = 1 save_model_steps=1000000 sample_posterior = True mixed_precision = 'fp16' scale_factor = 0.18215 ema_rate = 0.9999 tensorboard_mox_interval = 50 log_interval = 50 cfg_scale = 4 mask_type='null' num_group_tokens=0 mask_loss_coef=0. load_mask_index=False # load prepared mask_type index # load model settings vae_pretrained = "/cache/pretrained_models/sd-vae-ft-ema" load_from = None resume_from = dict(checkpoint=None, load_ema=False, resume_optimizer=True, resume_lr_scheduler=True) snr_loss=False # work dir settings work_dir = '/cache/exps/' s3_work_dir = None seed = 43