### model model_name_or_path: microsoft/phi-4 ### method stage: sft do_train: true finetuning_type: lora lora_target: all ### dataset dataset: identity,alpaca_en_demo template: phi4 cutoff_len: 1024 max_samples: 1000 overwrite_cache: true preprocessing_num_workers: 16 ### output output_dir: saves/phi-4-14b/lora/sft2 logging_steps: 10 save_steps: 500 plot_loss: true overwrite_output_dir: true ### train per_device_train_batch_size: 1 gradient_accumulation_steps: 1 learning_rate: 1.0e-5 num_train_epochs: 3.0 lr_scheduler_type: cosine warmup_ratio: 0.2 bf16: true ddp_timeout: 180000000 ### eval val_size: 0.2 per_device_eval_batch_size: 1 eval_strategy: steps eval_steps: 300