import torch from transformers import AutoTokenizer from vllm import LLM, SamplingParams def main(): # Initialize the tokenizer tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-4", trust_remote_code=True) # Create a sampling params object. sampling_params = SamplingParams(temperature=0.8, repetition_penalty=1.05, max_tokens=512) # Create an LLM object with model path and configuration. llm = LLM(model="microsoft/phi-4", tensor_parallel_size=2, trust_remote_code=True, gpu_memory_utilization=0.95, dtype="float16", max_model_len=512, enforce_eager=True) # Prepare your prompts prompt = "Tell me something about large language models." messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) # generate outputs outputs = llm.generate([text], sampling_params) # Print the outputs. for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") if __name__ == '__main__': main()