Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
Paraformer_FunASR_pytorch
Commits
70a8a9e0
Commit
70a8a9e0
authored
Oct 03, 2024
by
wangwei990215
Browse files
initial commit
parents
Pipeline
#1738
failed with stages
in 0 seconds
Changes
827
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
496 additions
and
0 deletions
+496
-0
FunASR/examples/industrial_data_pretraining/bicif_paraformer/export.sh
...es/industrial_data_pretraining/bicif_paraformer/export.sh
+24
-0
FunASR/examples/industrial_data_pretraining/bicif_paraformer/finetune.sh
.../industrial_data_pretraining/bicif_paraformer/finetune.sh
+85
-0
FunASR/examples/industrial_data_pretraining/campplus_sv/demo.py
.../examples/industrial_data_pretraining/campplus_sv/demo.py
+13
-0
FunASR/examples/industrial_data_pretraining/conformer/demo.py
...SR/examples/industrial_data_pretraining/conformer/demo.py
+14
-0
FunASR/examples/industrial_data_pretraining/conformer/demo.sh
...SR/examples/industrial_data_pretraining/conformer/demo.sh
+9
-0
FunASR/examples/industrial_data_pretraining/contextual_paraformer/demo.py
...industrial_data_pretraining/contextual_paraformer/demo.py
+14
-0
FunASR/examples/industrial_data_pretraining/contextual_paraformer/demo.sh
...industrial_data_pretraining/contextual_paraformer/demo.sh
+11
-0
FunASR/examples/industrial_data_pretraining/contextual_paraformer/demo2.sh
...ndustrial_data_pretraining/contextual_paraformer/demo2.sh
+9
-0
FunASR/examples/industrial_data_pretraining/contextual_paraformer/finetune.sh
...strial_data_pretraining/contextual_paraformer/finetune.sh
+86
-0
FunASR/examples/industrial_data_pretraining/contextual_paraformer/path.sh
...industrial_data_pretraining/contextual_paraformer/path.sh
+6
-0
FunASR/examples/industrial_data_pretraining/ct_transformer/demo.py
...amples/industrial_data_pretraining/ct_transformer/demo.py
+23
-0
FunASR/examples/industrial_data_pretraining/ct_transformer/demo.sh
...amples/industrial_data_pretraining/ct_transformer/demo.sh
+12
-0
FunASR/examples/industrial_data_pretraining/ct_transformer/export.py
...ples/industrial_data_pretraining/ct_transformer/export.py
+26
-0
FunASR/examples/industrial_data_pretraining/ct_transformer/export.sh
...ples/industrial_data_pretraining/ct_transformer/export.sh
+27
-0
FunASR/examples/industrial_data_pretraining/ct_transformer_streaming/demo.py
...ustrial_data_pretraining/ct_transformer_streaming/demo.py
+18
-0
FunASR/examples/industrial_data_pretraining/ct_transformer_streaming/demo.sh
...ustrial_data_pretraining/ct_transformer_streaming/demo.sh
+9
-0
FunASR/examples/industrial_data_pretraining/ct_transformer_streaming/export.py
...trial_data_pretraining/ct_transformer_streaming/export.py
+26
-0
FunASR/examples/industrial_data_pretraining/ct_transformer_streaming/export.sh
...trial_data_pretraining/ct_transformer_streaming/export.sh
+29
-0
FunASR/examples/industrial_data_pretraining/ctc/demo.py
FunASR/examples/industrial_data_pretraining/ctc/demo.py
+24
-0
FunASR/examples/industrial_data_pretraining/ctc/infer_from_local.sh
...mples/industrial_data_pretraining/ctc/infer_from_local.sh
+31
-0
No files found.
Too many changes to show.
To preserve performance only
827 of 827+
files are displayed.
Plain diff
Email patch
FunASR/examples/industrial_data_pretraining/bicif_paraformer/export.sh
0 → 100644
View file @
70a8a9e0
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
# method1, inference from model hub
export
HYDRA_FULL_ERROR
=
1
model
=
"iic/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
python
-m
funasr.bin.export
\
++model
=
${
model
}
\
++type
=
"onnx"
\
++quantize
=
false
\
++device
=
"cpu"
# method2, inference from local path
model
=
"/Users/zhifu/.cache/modelscope/hub/iic/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
python
-m
funasr.bin.export
\
++model
=
${
model
}
\
++type
=
"onnx"
\
++quantize
=
false
\
++device
=
"cpu"
\ No newline at end of file
FunASR/examples/industrial_data_pretraining/bicif_paraformer/finetune.sh
0 → 100644
View file @
70a8a9e0
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
workspace
=
`
pwd
`
# method1, finetune from model hub
# which gpu to train or finetune
export
CUDA_VISIBLE_DEVICES
=
"0,1"
gpu_num
=
$(
echo
$CUDA_VISIBLE_DEVICES
|
awk
-F
","
'{print NF}'
)
# model_name from model_hub, or model_dir in local path
## option 1, download model automatically
model_name_or_model_dir
=
"iic/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
## option 2, download model by git
#local_path_root=${workspace}/modelscope_models
#mkdir -p ${local_path_root}/${model_name_or_model_dir}
#git clone https://www.modelscope.cn/${model_name_or_model_dir}.git ${local_path_root}/${model_name_or_model_dir}
#model_name_or_model_dir=${local_path_root}/${model_name_or_model_dir}
# data dir, which contains: train.json, val.json
data_dir
=
"../../../data/list"
train_data
=
"
${
data_dir
}
/train.jsonl"
val_data
=
"
${
data_dir
}
/val.jsonl"
# generate train.jsonl and val.jsonl from wav.scp and text.txt
scp2jsonl
\
++scp_file_list
=
'["../../../data/list/train_wav.scp", "../../../data/list/train_text.txt"]'
\
++data_type_list
=
'["source", "target"]'
\
++jsonl_file_out
=
"
${
train_data
}
"
scp2jsonl
\
++scp_file_list
=
'["../../../data/list/val_wav.scp", "../../../data/list/val_text.txt"]'
\
++data_type_list
=
'["source", "target"]'
\
++jsonl_file_out
=
"
${
val_data
}
"
# exp output dir
output_dir
=
"./outputs"
log_file
=
"
${
output_dir
}
/log.txt"
mkdir
-p
${
output_dir
}
echo
"log_file:
${
log_file
}
"
deepspeed_config
=
${
workspace
}
/../../ds_stage1.json
DISTRIBUTED_ARGS
=
"
--nnodes
${
WORLD_SIZE
:-
1
}
\
--nproc_per_node
$gpu_num
\
--node_rank
${
RANK
:-
0
}
\
--master_addr
${
MASTER_ADDR
:-
127
.0.0.1
}
\
--master_port
${
MASTER_PORT
:-
26669
}
"
echo
$DISTRIBUTED_ARGS
torchrun
$DISTRIBUTED_ARGS
\
../../../funasr/bin/train_ds.py
\
++model
=
"
${
model_name_or_model_dir
}
"
\
++train_data_set_list
=
"
${
train_data
}
"
\
++valid_data_set_list
=
"
${
val_data
}
"
\
++dataset
=
"AudioDataset"
\
++dataset_conf.index_ds
=
"IndexDSJsonl"
\
++dataset_conf.data_split_num
=
1
\
++dataset_conf.batch_sampler
=
"BatchSampler"
\
++dataset_conf.batch_size
=
6000
\
++dataset_conf.sort_size
=
1024
\
++dataset_conf.batch_type
=
"token"
\
++dataset_conf.num_workers
=
4
\
++train_conf.max_epoch
=
50
\
++train_conf.log_interval
=
1
\
++train_conf.resume
=
true
\
++train_conf.validate_interval
=
2000
\
++train_conf.save_checkpoint_interval
=
2000
\
++train_conf.keep_nbest_models
=
20
\
++train_conf.use_deepspeed
=
false
\
++train_conf.deepspeed_config
=
${
deepspeed_config
}
\
++optim_conf.lr
=
0.0002
\
++output_dir
=
"
${
output_dir
}
"
&>
${
log_file
}
\ No newline at end of file
FunASR/examples/industrial_data_pretraining/campplus_sv/demo.py
0 → 100644
View file @
70a8a9e0
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
from
funasr
import
AutoModel
model
=
AutoModel
(
model
=
"iic/speech_campplus_sv_zh-cn_16k-common"
)
res
=
model
.
generate
(
input
=
"https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav"
)
print
(
res
)
FunASR/examples/industrial_data_pretraining/conformer/demo.py
0 → 100644
View file @
70a8a9e0
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
from
funasr
import
AutoModel
model
=
AutoModel
(
model
=
"iic/speech_conformer_asr_nat-zh-cn-16k-aishell2-vocab5212-pytorch"
)
res
=
model
.
generate
(
input
=
"https://modelscope.oss-cn-beijing.aliyuncs.com/test/audios/asr_example.wav"
,
decoding_ctc_weight
=
0.0
,
)
print
(
res
)
FunASR/examples/industrial_data_pretraining/conformer/demo.sh
0 → 100644
View file @
70a8a9e0
model
=
"iic/speech_conformer_asr_nat-zh-cn-16k-aishell1-vocab4234-pytorch"
python funasr/bin/inference.py
\
+model
=
${
model
}
\
+input
=
"https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav"
\
+output_dir
=
"./outputs/debug"
\
+device
=
"cpu"
\
FunASR/examples/industrial_data_pretraining/contextual_paraformer/demo.py
0 → 100755
View file @
70a8a9e0
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
from
funasr
import
AutoModel
model
=
AutoModel
(
model
=
"iic/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404"
)
res
=
model
.
generate
(
input
=
"https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav"
,
hotword
=
"达摩院 魔搭"
,
)
print
(
res
)
FunASR/examples/industrial_data_pretraining/contextual_paraformer/demo.sh
0 → 100755
View file @
70a8a9e0
model
=
"iic/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404"
python ../../../funasr/bin/inference.py
\
+model
=
${
model
}
\
+input
=
"https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav"
\
+output_dir
=
"./outputs/debug"
\
+device
=
"cpu"
\
+
"hotword='达摩院 魔搭'"
FunASR/examples/industrial_data_pretraining/contextual_paraformer/demo2.sh
0 → 100755
View file @
70a8a9e0
python
-m
funasr.bin.inference
\
--config-path
=
"/nfs/yufan.yf/workspace/model_download/modelscope/hub/damo/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404"
\
--config-name
=
"config.yaml"
\
++init_param
=
"/nfs/yufan.yf/workspace/model_download/modelscope/hub/damo/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404/model.pb"
\
++tokenizer_conf.token_list
=
"/nfs/yufan.yf/workspace/model_download/modelscope/hub/damo/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404/tokens.txt"
\
++frontend_conf.cmvn_file
=
"/nfs/yufan.yf/workspace/model_download/modelscope/hub/damo/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404/am.mvn"
\
++input
=
"/nfs/yufan.yf/workspace/model_download/modelscope/hub/damo/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404/asr_example_zh.wav"
\
++output_dir
=
"./outputs/debug2"
\
++device
=
""
\
FunASR/examples/industrial_data_pretraining/contextual_paraformer/finetune.sh
0 → 100644
View file @
70a8a9e0
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
workspace
=
`
pwd
`
# method1, finetune from model hub
# which gpu to train or finetune
export
CUDA_VISIBLE_DEVICES
=
"0,1"
gpu_num
=
$(
echo
$CUDA_VISIBLE_DEVICES
|
awk
-F
","
'{print NF}'
)
# model_name from model_hub, or model_dir in local path
## option 1, download model automatically
model_name_or_model_dir
=
"iic/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404"
## option 2, download model by git
#local_path_root=${workspace}/modelscope_models
#mkdir -p ${local_path_root}/${model_name_or_model_dir}
#git clone https://www.modelscope.cn/${model_name_or_model_dir}.git ${local_path_root}/${model_name_or_model_dir}
#model_name_or_model_dir=${local_path_root}/${model_name_or_model_dir}
# data dir, which contains: train.json, val.json
data_dir
=
"../../../data/list"
train_data
=
"
${
data_dir
}
/train.jsonl"
val_data
=
"
${
data_dir
}
/val.jsonl"
# generate train.jsonl and val.jsonl from wav.scp and text.txt
scp2jsonl
\
++scp_file_list
=
'["../../../data/list/train_wav.scp", "../../../data/list/train_text.txt"]'
\
++data_type_list
=
'["source", "target"]'
\
++jsonl_file_out
=
"
${
train_data
}
"
scp2jsonl
\
++scp_file_list
=
'["../../../data/list/val_wav.scp", "../../../data/list/val_text.txt"]'
\
++data_type_list
=
'["source", "target"]'
\
++jsonl_file_out
=
"
${
val_data
}
"
# exp output dir
output_dir
=
"./outputs"
log_file
=
"
${
output_dir
}
/log.txt"
mkdir
-p
${
output_dir
}
echo
"log_file:
${
log_file
}
"
deepspeed_config
=
${
workspace
}
/../../ds_stage1.json
DISTRIBUTED_ARGS
=
"
--nnodes
${
WORLD_SIZE
:-
1
}
\
--nproc_per_node
$gpu_num
\
--node_rank
${
RANK
:-
0
}
\
--master_addr
${
MASTER_ADDR
:-
127
.0.0.1
}
\
--master_port
${
MASTER_PORT
:-
26669
}
"
echo
$DISTRIBUTED_ARGS
torchrun
$DISTRIBUTED_ARGS
\
../../../funasr/bin/train_ds.py
\
++model
=
"
${
model_name_or_model_dir
}
"
\
++train_data_set_list
=
"
${
train_data
}
"
\
++valid_data_set_list
=
"
${
val_data
}
"
\
++dataset
=
"AudioDatasetHotword"
\
++dataset_conf.index_ds
=
"IndexDSJsonl"
\
++dataset_conf.data_split_num
=
1
\
++dataset_conf.batch_sampler
=
"BatchSampler"
\
++dataset_conf.batch_size
=
6000
\
++dataset_conf.sort_size
=
1024
\
++dataset_conf.batch_type
=
"token"
\
++dataset_conf.num_workers
=
4
\
++train_conf.max_epoch
=
50
\
++train_conf.log_interval
=
1
\
++train_conf.resume
=
true
\
++train_conf.validate_interval
=
2000
\
++train_conf.save_checkpoint_interval
=
2000
\
++train_conf.keep_nbest_models
=
20
\
++train_conf.use_deepspeed
=
false
\
++train_conf.deepspeed_config
=
${
deepspeed_config
}
\
++optim_conf.lr
=
0.0002
\
++output_dir
=
"
${
output_dir
}
"
&>
${
log_file
}
\ No newline at end of file
FunASR/examples/industrial_data_pretraining/contextual_paraformer/path.sh
0 → 100755
View file @
70a8a9e0
export
FUNASR_DIR
=
$PWD
/../../../
# NOTE(kan-bayashi): Use UTF-8 in Python to avoid UnicodeDecodeError when LC_ALL=C
export
PYTHONIOENCODING
=
UTF-8
export
PATH
=
$FUNASR_DIR
/funasr/bin:
$PATH
export
PYTHONPATH
=
$FUNASR_DIR
/funasr/bin:
$FUNASR_DIR
/funasr:
$FUNASR_DIR
:
$PYTHONPATH
FunASR/examples/industrial_data_pretraining/ct_transformer/demo.py
0 → 100644
View file @
70a8a9e0
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
from
funasr
import
AutoModel
model
=
AutoModel
(
model
=
"iic/punc_ct-transformer_zh-cn-common-vocab272727-pytorch"
)
res
=
model
.
generate
(
input
=
"https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_text/punc_example.txt"
)
print
(
res
)
from
funasr
import
AutoModel
model
=
AutoModel
(
model
=
"iic/punc_ct-transformer_cn-en-common-vocab471067-large"
)
res
=
model
.
generate
(
input
=
"https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_text/punc_example.txt"
)
print
(
res
)
FunASR/examples/industrial_data_pretraining/ct_transformer/demo.sh
0 → 100644
View file @
70a8a9e0
#model="iic/punc_ct-transformer_zh-cn-common-vocab272727-pytorch"
#
model
=
"iic/punc_ct-transformer_cn-en-common-vocab471067-large"
python funasr/bin/inference.py
\
+model
=
${
model
}
\
+input
=
"https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_text/punc_example.txt"
\
+output_dir
=
"./outputs/debug"
\
+device
=
"cpu"
FunASR/examples/industrial_data_pretraining/ct_transformer/export.py
0 → 100644
View file @
70a8a9e0
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
# method1, inference from model hub
from
funasr
import
AutoModel
model
=
AutoModel
(
model
=
"iic/punc_ct-transformer_zh-cn-common-vocab272727-pytorch"
,
)
res
=
model
.
export
(
type
=
"onnx"
,
quantize
=
False
)
print
(
res
)
# method2, inference from local path
from
funasr
import
AutoModel
model
=
AutoModel
(
model
=
"/Users/zhifu/.cache/modelscope/hub/iic/punc_ct-transformer_zh-cn-common-vocab272727-pytorch"
)
res
=
model
.
export
(
type
=
"onnx"
,
quantize
=
False
)
print
(
res
)
FunASR/examples/industrial_data_pretraining/ct_transformer/export.sh
0 → 100644
View file @
70a8a9e0
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
# method1, inference from model hub
export
HYDRA_FULL_ERROR
=
1
model
=
"iic/punc_ct-transformer_zh-cn-common-vocab272727-pytorch"
python
-m
funasr.bin.export
\
++model
=
${
model
}
\
++model_revision
=
${
model_revision
}
\
++type
=
"onnx"
\
++quantize
=
false
\
++device
=
"cpu"
# method2, inference from local path
model
=
"/Users/zhifu/.cache/modelscope/hub/iic/punc_ct-transformer_zh-cn-common-vocab272727-pytorch"
python
-m
funasr.bin.export
\
++model
=
${
model
}
\
++type
=
"onnx"
\
++quantize
=
false
\
++device
=
"cpu"
\ No newline at end of file
FunASR/examples/industrial_data_pretraining/ct_transformer_streaming/demo.py
0 → 100644
View file @
70a8a9e0
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
from
funasr
import
AutoModel
model
=
AutoModel
(
model
=
"iic/punc_ct-transformer_zh-cn-common-vad_realtime-vocab272727"
)
inputs
=
"跨境河流是养育沿岸|人民的生命之源长期以来为帮助下游地区防灾减灾中方技术人员|在上游地区极为恶劣的自然条件下克服巨大困难甚至冒着生命危险|向印方提供汛期水文资料处理紧急事件中方重视印方在跨境河流问题上的关切|愿意进一步完善双方联合工作机制|凡是|中方能做的我们|都会去做而且会做得更好我请印度朋友们放心中国在上游的|任何开发利用都会经过科学|规划和论证兼顾上下游的利益"
vads
=
inputs
.
split
(
"|"
)
rec_result_all
=
"outputs: "
cache
=
{}
for
vad
in
vads
:
rec_result
=
model
.
generate
(
input
=
vad
,
cache
=
cache
)
rec_result_all
+=
rec_result
[
0
][
"text"
]
print
(
rec_result_all
)
FunASR/examples/industrial_data_pretraining/ct_transformer_streaming/demo.sh
0 → 100644
View file @
70a8a9e0
model
=
"iic/punc_ct-transformer_zh-cn-common-vad_realtime-vocab272727"
python funasr/bin/inference.py
\
+model
=
${
model
}
\
+input
=
"https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_text/punc_example.txt"
\
+output_dir
=
"./outputs/debug"
\
+device
=
"cpu"
FunASR/examples/industrial_data_pretraining/ct_transformer_streaming/export.py
0 → 100644
View file @
70a8a9e0
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
# method1, inference from model hub
from
funasr
import
AutoModel
model
=
AutoModel
(
model
=
"iic/punc_ct-transformer_zh-cn-common-vad_realtime-vocab272727"
,
)
res
=
model
.
export
(
type
=
"onnx"
,
quantize
=
False
)
print
(
res
)
# method2, inference from local path
from
funasr
import
AutoModel
model
=
AutoModel
(
model
=
"/Users/zhifu/.cache/modelscope/hub/iic/punc_ct-transformer_zh-cn-common-vad_realtime-vocab272727"
)
res
=
model
.
export
(
type
=
"onnx"
,
quantize
=
False
)
print
(
res
)
FunASR/examples/industrial_data_pretraining/ct_transformer_streaming/export.sh
0 → 100644
View file @
70a8a9e0
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
# method1, inference from model hub
export
HYDRA_FULL_ERROR
=
1
model
=
"iic/punc_ct-transformer_zh-cn-common-vad_realtime-vocab272727"
python
-m
funasr.bin.export
\
++model
=
${
model
}
\
++model_revision
=
${
model_revision
}
\
++input
=
"https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/vad_example.wav"
\
++type
=
"onnx"
\
++quantize
=
false
\
++device
=
"cpu"
# method2, inference from local path
model
=
"/Users/zhifu/.cache/modelscope/hub/iic/punc_ct-transformer_zh-cn-common-vad_realtime-vocab272727"
python
-m
funasr.bin.export
\
++model
=
${
model
}
\
++input
=
"https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/vad_example.wav"
\
++type
=
"onnx"
\
++quantize
=
false
\
++device
=
"cpu"
\ No newline at end of file
FunASR/examples/industrial_data_pretraining/ctc/demo.py
0 → 100644
View file @
70a8a9e0
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import
sys
from
funasr
import
AutoModel
model_dir
=
"/Users/zhifu/Downloads/modelscope_models/ctc_model"
input_file
=
(
"https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav"
)
model
=
AutoModel
(
model
=
model_dir
,
)
res
=
model
.
generate
(
input
=
input_file
,
cache
=
{},
)
print
(
res
)
FunASR/examples/industrial_data_pretraining/ctc/infer_from_local.sh
0 → 100644
View file @
70a8a9e0
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
# method2, inference from local model
# for more input type, please ref to readme.md
model_dir
=
$1
input_file
=
$2
output_dir
=
$3
# download model
device
=
"cuda:0"
# "cuda:0" for gpu0, "cuda:1" for gpu1, "cpu"
tokens
=
"
${
model_dir
}
/tokens.json"
cmvn_file
=
"
${
model_dir
}
/am.mvn"
config
=
"config.yaml"
init_param
=
"
${
model_dir
}
/model.pt"
mkdir
-p
${
output_dir
}
python
-m
funasr.bin.inference
\
--config-path
"
${
model_dir
}
"
\
--config-name
"
${
config
}
"
\
++init_param
=
"
${
init_param
}
"
\
++tokenizer_conf.token_list
=
"
${
tokens
}
"
\
++frontend_conf.cmvn_file
=
"
${
cmvn_file
}
"
\
++input
=
"
${
input_file
}
"
\
++output_dir
=
"
${
output_dir
}
"
\
++device
=
"
${
device
}
"
\
Prev
1
…
4
5
6
7
8
9
10
11
12
…
42
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment