Commit 70a8a9e0 authored by wangwei990215's avatar wangwei990215
Browse files

initial commit

parents
Pipeline #1738 failed with stages
in 0 seconds
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
# To install requirements: pip3 install -U openai-whisper
# method2, inference from local model
# for more input type, please ref to readme.md
input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav"
output_dir="./outputs/debug"
workspace=`pwd`
# download model
local_path_root=${workspace}/modelscope_models
mkdir -p ${local_path_root}
#Whisper-large-v2
#local_path=${local_path_root}/speech_whisper-large_asr_multilingual
#git clone https://www.modelscope.cn/iic/speech_whisper-large_asr_multilingual.git ${local_path}
#init_param="${local_path}/large-v2.pt"
#Whisper-large-v3
local_path=${local_path_root}/Whisper-large-v3
git clone https://www.modelscope.cn/iic/Whisper-large-v3.git ${local_path}
init_param="${local_path}/large-v3.pt"
device="cuda:0" # "cuda:0" for gpu0, "cuda:1" for gpu1, "cpu"
config="config.yaml"
python -m funasr.bin.inference \
--config-path "${local_path}" \
--config-name "${config}" \
++init_param="${init_param}" \
++input="${input}" \
++output_dir="${output_dir}" \
++device="${device}" \
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
# To install requirements: pip3 install -U openai-whisper
# method1, inference from model hub
# for more input type, please ref to readme.md
input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav"
output_dir="./outputs/debug"
#model="Whisper-small"
#model="Whisper-medium"
model="Whisper-large-v2"
#model="Whisper-large-v3"
hub="openai"
device="cuda:0" # "cuda:0" for gpu0, "cuda:1" for gpu1, "cpu"
python -m funasr.bin.inference \
++model=${model} \
++hub=${hub} \
++input="${input}" \
++output_dir="${output_dir}" \
++device="${device}" \
# Conformer Result
## Training Config
- Feature info: using 80 dims fbank, global cmvn, speed perturb(0.9, 1.0, 1.1), specaugment
- Train info: lr 5e-4, batch_size 25000, 2 gpu(Tesla V100), acc_grad 1, 50 epochs
- Train config: conf/train_asr_transformer.yaml
- LM config: LM was not used
- Model size: 46M
## Results (CER)
| testset | CER(%) |
|:-----------:|:-------:|
| dev | 4.42 |
| test | 4.87 |
\ No newline at end of file
# This is an example that demonstrates how to configure a model file.
# You can modify the configuration according to your own requirements.
# to print the register_table:
# from funasr.register import tables
# tables.print()
# network architecture
model: Conformer
model_conf:
ctc_weight: 0.3
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false
# encoder
encoder: ConformerEncoder
encoder_conf:
output_size: 512 # dimension of attention
attention_heads: 8
linear_units: 2048 # the number of units of position-wise feed forward
num_blocks: 12 # the number of encoder blocks
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.0
input_layer: conv2d # encoder architecture type
normalize_before: true
rel_pos_type: latest
pos_enc_layer_type: rel_pos
selfattention_layer_type: rel_selfattn
activation_type: swish
macaron_style: true
use_cnn_module: true
cnn_module_kernel: 15
# decoder
decoder: TransformerDecoder
decoder_conf:
attention_heads: 8
linear_units: 2048
num_blocks: 6
dropout_rate: 0.1
positional_dropout_rate: 0.1
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
# frontend related
frontend: WavFrontend
frontend_conf:
fs: 16000
window: hamming
n_mels: 80
frame_length: 25
frame_shift: 10
lfr_m: 1
lfr_n: 1
specaug: SpecAug
specaug_conf:
apply_time_warp: true
time_warp_window: 5
time_warp_mode: bicubic
apply_freq_mask: true
freq_mask_width_range:
- 0
- 30
num_freq_mask: 2
apply_time_mask: true
time_mask_width_range:
- 0
- 40
num_time_mask: 2
train_conf:
accum_grad: 4
grad_clip: 5
max_epoch: 30
keep_nbest_models: 10
log_interval: 50
optim: adam
optim_conf:
lr: 0.0015
scheduler: warmuplr
scheduler_conf:
warmup_steps: 30000
dataset: AudioDataset
dataset_conf:
index_ds: IndexDSJsonl
batch_sampler: EspnetStyleBatchSampler
batch_type: length # example or length
batch_size: 3200 # if batch_type is example, batch_size is the numbers of samples; if length, batch_size is source_token_len+target_token_len;
max_token_length: 2048 # filter samples if source_token_len+target_token_len > max_token_length,
buffer_size: 1024
shuffle: True
num_workers: 4
preprocessor_speech: SpeechPreprocessSpeedPerturb
preprocessor_speech_conf:
speed_perturb: [0.9, 1.0, 1.1]
tokenizer: CharTokenizer
tokenizer_conf:
unk_symbol: <unk>
ctc_conf:
dropout_rate: 0.0
ctc_type: builtin
reduce: true
ignore_nan_grad: true
normalize: null
../paraformer/demo_infer.sh
\ No newline at end of file
../paraformer/demo_train_or_finetune.sh
\ No newline at end of file
#!/bin/bash
# Copyright 2017 Xingyu Na
# Apache 2.0
#. ./path.sh || exit 1;
if [ $# != 3 ]; then
echo "Usage: $0 <audio-path> <text-path> <output-path>"
echo " $0 /export/a05/xna/data/data_aishell/wav /export/a05/xna/data/data_aishell/transcript data"
exit 1;
fi
aishell_audio_dir=$1
aishell_text=$2/aishell_transcript_v0.8.txt
output_dir=$3
train_dir=$output_dir/data/local/train
dev_dir=$output_dir/data/local/dev
test_dir=$output_dir/data/local/test
tmp_dir=$output_dir/data/local/tmp
mkdir -p $train_dir
mkdir -p $dev_dir
mkdir -p $test_dir
mkdir -p $tmp_dir
# data directory check
if [ ! -d $aishell_audio_dir ] || [ ! -f $aishell_text ]; then
echo "Error: $0 requires two directory arguments"
exit 1;
fi
# find wav audio file for train, dev and test resp.
find $aishell_audio_dir -iname "*.wav" > $tmp_dir/wav.flist
n=`cat $tmp_dir/wav.flist | wc -l`
[ $n -ne 141925 ] && \
echo Warning: expected 141925 data data files, found $n
grep -i "wav/train" $tmp_dir/wav.flist > $train_dir/wav.flist || exit 1;
grep -i "wav/dev" $tmp_dir/wav.flist > $dev_dir/wav.flist || exit 1;
grep -i "wav/test" $tmp_dir/wav.flist > $test_dir/wav.flist || exit 1;
rm -r $tmp_dir
# Transcriptions preparation
for dir in $train_dir $dev_dir $test_dir; do
echo Preparing $dir transcriptions
sed -e 's/\.wav//' $dir/wav.flist | awk -F '/' '{print $NF}' > $dir/utt.list
paste -d' ' $dir/utt.list $dir/wav.flist > $dir/wav.scp_all
utils/filter_scp.pl -f 1 $dir/utt.list $aishell_text > $dir/transcripts.txt
awk '{print $1}' $dir/transcripts.txt > $dir/utt.list
utils/filter_scp.pl -f 1 $dir/utt.list $dir/wav.scp_all | sort -u > $dir/wav.scp
sort -u $dir/transcripts.txt > $dir/text
done
mkdir -p $output_dir/data/train $output_dir/data/dev $output_dir/data/test
for f in wav.scp text; do
cp $train_dir/$f $output_dir/data/train/$f || exit 1;
cp $dev_dir/$f $output_dir/data/dev/$f || exit 1;
cp $test_dir/$f $output_dir/data/test/$f || exit 1;
done
echo "$0: AISHELL data preparation succeeded"
exit 0;
#!/usr/bin/env bash
# Copyright 2014 Johns Hopkins University (author: Daniel Povey)
# 2017 Xingyu Na
# Apache 2.0
remove_archive=false
if [ "$1" == --remove-archive ]; then
remove_archive=true
shift
fi
if [ $# -ne 3 ]; then
echo "Usage: $0 [--remove-archive] <data-base> <url-base> <corpus-part>"
echo "e.g.: $0 /export/a05/xna/data www.openslr.org/resources/33 data_aishell"
echo "With --remove-archive it will remove the archive after successfully un-tarring it."
echo "<corpus-part> can be one of: data_aishell, resource_aishell."
fi
data=$1
url=$2
part=$3
if [ ! -d "$data" ]; then
echo "$0: no such directory $data"
exit 1;
fi
part_ok=false
list="data_aishell resource_aishell"
for x in $list; do
if [ "$part" == $x ]; then part_ok=true; fi
done
if ! $part_ok; then
echo "$0: expected <corpus-part> to be one of $list, but got '$part'"
exit 1;
fi
if [ -z "$url" ]; then
echo "$0: empty URL base."
exit 1;
fi
if [ -f $data/$part/.complete ]; then
echo "$0: data part $part was already successfully extracted, nothing to do."
exit 0;
fi
# sizes of the archive files in bytes.
sizes="15582913665 1246920"
if [ -f $data/$part.tgz ]; then
size=$(/bin/ls -l $data/$part.tgz | awk '{print $5}')
size_ok=false
for s in $sizes; do if [ $s == $size ]; then size_ok=true; fi; done
if ! $size_ok; then
echo "$0: removing existing file $data/$part.tgz because its size in bytes $size"
echo "does not equal the size of one of the archives."
rm $data/$part.tgz
else
echo "$data/$part.tgz exists and appears to be complete."
fi
fi
if [ ! -f $data/$part.tgz ]; then
if ! command -v wget >/dev/null; then
echo "$0: wget is not installed."
exit 1;
fi
full_url=$url/$part.tgz
echo "$0: downloading data from $full_url. This may take some time, please be patient."
cd $data || exit 1
if ! wget --no-check-certificate $full_url; then
echo "$0: error executing wget $full_url"
exit 1;
fi
fi
cd $data || exit 1
if ! tar -xvzf $part.tgz; then
echo "$0: error un-tarring archive $data/$part.tgz"
exit 1;
fi
touch $data/$part/.complete
if [ $part == "data_aishell" ]; then
cd $data/$part/wav || exit 1
for wav in ./*.tar.gz; do
echo "Extracting wav from $wav"
tar -zxf $wav && rm $wav
done
fi
echo "$0: Successfully downloaded and un-tarred $data/$part.tgz"
if $remove_archive; then
echo "$0: removing $data/$part.tgz file since --remove-archive option was supplied."
rm $data/$part.tgz
fi
exit 0;
#!/usr/bin/env bash
CUDA_VISIBLE_DEVICES="0,1"
# general configuration
feats_dir="../DATA" #feature output dictionary
exp_dir=`pwd`
lang=zh
token_type=char
stage=0
stop_stage=5
# feature configuration
nj=32
inference_device="cuda" #"cpu", "cuda:0", "cuda:1"
inference_checkpoint="model.pt.avg10"
inference_scp="wav.scp"
inference_batch_size=1
# data
raw_data=../raw_data
data_url=www.openslr.org/resources/33
# exp tag
tag="exp1"
workspace=`pwd`
master_port=12345
. utils/parse_options.sh || exit 1;
# Set bash to 'debug' mode, it will exit on :
# -e 'error', -u 'undefined variable', -o ... 'error in pipeline', -x 'print commands',
set -e
set -u
set -o pipefail
set=L
train_set=train_l
valid_set=dev
test_sets="dev test_net test_meeting"
config=conformer_12e_6d_2048_512.yaml
model_dir="baseline_$(basename "${config}" .yaml)_${lang}_${token_type}_${tag}"
if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
echo "For downloading data, please refer to https://github.com/wenet-e2e/WenetSpeech."
exit 0;
fi
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
echo "stage 0: Data preparation"
# Data preparation
local/data.sh --set ${set} --nj $nj --data_dir $feats_dir --WENETSPEECH $raw_data --train_cmd $train_cmd
mkdir $feats_dir/data
mv $feats_dir/$train_set $feats_dir/data/$train_set
for x in $test_sets; do
mv $feats_dir/$x $feats_dir/data/
# convert wav.scp text to jsonl
scp_file_list_arg="++scp_file_list='[\"${feats_dir}/data/${x}/wav.scp\",\"${feats_dir}/data/${x}/text\"]'"
python ../../../funasr/datasets/audio_datasets/scp2jsonl.py \
++data_type_list='["source", "target"]' \
++jsonl_file_out=${feats_dir}/data/${x}/audio_datasets.jsonl \
${scp_file_list_arg}
done
fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
echo "stage 1: Feature and CMVN Generation"
python ../../../funasr/bin/compute_audio_cmvn.py \
--config-path "${workspace}/conf" \
--config-name "${config}" \
++scale=0.1 \
++train_data_set_list="${feats_dir}/data/${train_set}/audio_datasets.jsonl" \
++cmvn_file="${feats_dir}/data/${train_set}/cmvn.json" \
fi
token_list=${feats_dir}/data/${lang}_token_list/$token_type/tokens.txt
echo "dictionary: ${token_list}"
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
echo "stage 2: Dictionary Preparation"
mkdir -p ${feats_dir}/data/${lang}_token_list/$token_type/
echo "make a dictionary"
echo "<blank>" > ${token_list}
echo "<s>" >> ${token_list}
echo "</s>" >> ${token_list}
utils/text2token.py -s 1 -n 1 --space "" ${feats_dir}/data/$train_set/text | cut -f 2- -d" " | tr " " "\n" \
| sort | uniq | grep -a -v -e '^\s*$' | awk '{print $0}' >> ${token_list}
echo "<unk>" >> ${token_list}
fi
# LM Training Stage
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
echo "stage 3: LM Training"
fi
# ASR Training Stage
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
echo "stage 4: ASR Training"
mkdir -p ${exp_dir}/exp/${model_dir}
current_time=$(date "+%Y-%m-%d_%H-%M")
log_file="${exp_dir}/exp/${model_dir}/train.log.txt.${current_time}"
echo "log_file: ${log_file}"
export CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES
gpu_num=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
torchrun \
--nnodes 1 \
--nproc_per_node ${gpu_num} \
--master_port ${master_port} \
../../../funasr/bin/train.py \
--config-path "${workspace}/conf" \
--config-name "${config}" \
++train_data_set_list="${feats_dir}/data/${train_set}/audio_datasets.jsonl" \
++valid_data_set_list="${feats_dir}/data/${valid_set}/audio_datasets.jsonl" \
++tokenizer_conf.token_list="${token_list}" \
++frontend_conf.cmvn_file="${feats_dir}/data/${train_set}/am.mvn" \
++output_dir="${exp_dir}/exp/${model_dir}" &> ${log_file}
fi
# Testing Stage
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
echo "stage 5: Inference"
if [ ${inference_device} == "cuda" ]; then
nj=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
else
inference_batch_size=1
CUDA_VISIBLE_DEVICES=""
for JOB in $(seq ${nj}); do
CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES"-1,"
done
fi
for dset in ${test_sets}; do
inference_dir="${exp_dir}/exp/${model_dir}/inference-${inference_checkpoint}/${dset}"
_logdir="${inference_dir}/logdir"
echo "inference_dir: ${inference_dir}"
mkdir -p "${_logdir}"
data_dir="${feats_dir}/data/${dset}"
key_file=${data_dir}/${inference_scp}
split_scps=
for JOB in $(seq "${nj}"); do
split_scps+=" ${_logdir}/keys.${JOB}.scp"
done
utils/split_scp.pl "${key_file}" ${split_scps}
gpuid_list_array=(${CUDA_VISIBLE_DEVICES//,/ })
for JOB in $(seq ${nj}); do
{
id=$((JOB-1))
gpuid=${gpuid_list_array[$id]}
export CUDA_VISIBLE_DEVICES=${gpuid}
python ../../../funasr/bin/inference.py \
--config-path="${exp_dir}/exp/${model_dir}" \
--config-name="config.yaml" \
++init_param="${exp_dir}/exp/${model_dir}/${inference_checkpoint}" \
++tokenizer_conf.token_list="${token_list}" \
++frontend_conf.cmvn_file="${feats_dir}/data/${train_set}/am.mvn" \
++input="${_logdir}/keys.${JOB}.scp" \
++output_dir="${inference_dir}/${JOB}" \
++device="${inference_device}" \
++ncpu=1 \
++disable_log=true \
++batch_size="${inference_batch_size}" &> ${_logdir}/log.${JOB}.txt
}&
done
wait
mkdir -p ${inference_dir}/1best_recog
for f in token score text; do
if [ -f "${inference_dir}/${JOB}/1best_recog/${f}" ]; then
for JOB in $(seq "${nj}"); do
cat "${inference_dir}/${JOB}/1best_recog/${f}"
done | sort -k1 >"${inference_dir}/1best_recog/${f}"
fi
done
echo "Computing WER ..."
python utils/postprocess_text_zh.py ${inference_dir}/1best_recog/text ${inference_dir}/1best_recog/text.proc
python utils/postprocess_text_zh.py ${data_dir}/text ${inference_dir}/1best_recog/text.ref
python utils/compute_wer.py ${inference_dir}/1best_recog/text.ref ${inference_dir}/1best_recog/text.proc ${inference_dir}/1best_recog/text.cer
tail -n 3 ${inference_dir}/1best_recog/text.cer
done
fi
../../aishell/paraformer/utils
\ No newline at end of file
**Fundamental Text Processing (FunTextProcessing)**
==========================
### Introduction
FunTextProcessing is a Python toolkit for fundamental text processing in ASR including text processing , inverse text processing, num2words, which is included in the `FunASR`.
### Highlights
- FunTextProcessing supports inverse text processing (ITN), text processing (TN), number to words (num2words).
- FunTextProcessing supports multilingual, 10+ languages for ITN, 5 languages for TN, 50+ languages for num2words.
### Example
#### Inverse Text Processing (ITN)
Given text inputs, such as speech recognition results, use `fun_text_processing/inverse_text_normalization/inverse_normalize.py` to output ITN results. You may refer to the following example scripts.
```
test_file=fun_text_processing/inverse_text_normalization/id/id_itn_test_input.txt
python fun_text_processing/inverse_text_normalization/inverse_normalize.py --input_file $test_file --cache_dir ./itn_model/ --output_file output.txt --language=id
```
### Acknowledge
1. We borrowed a lot of codes from [NeMo](https://github.com/NVIDIA/NeMo).
2. We refered the codes from [WeTextProcessing](https://github.com/wenet-e2e/WeTextProcessing) for Chinese inverse text normalization.
3. We borrowed a lot of codes from [num2words](https://pypi.org/project/num2words/) library for convert the number to words function in some languages.
### License
This project is licensed under the [The MIT License](https://opensource.org/licenses/MIT). FunTextProcessing also contains various third-party components and some code modified from other repos under other open source licenses.
#!/bin/bash
if [[ $OSTYPE == 'darwin'* ]]; then
conda install -c conda-forge -y pynini=2.1.5
else
pip install pynini==2.1.5
fi
\ No newline at end of file
from fun_text_processing.inverse_text_normalization.en.taggers.tokenize_and_classify import (
ClassifyFst,
)
from fun_text_processing.inverse_text_normalization.en.verbalizers.verbalize import VerbalizeFst
from fun_text_processing.inverse_text_normalization.en.verbalizers.verbalize_final import (
VerbalizeFinalFst,
)
import pynini
from fun_text_processing.text_normalization.en.graph_utils import DAMO_SIGMA, GraphFst
from pynini.lib import pynutil
class CardinalFst(GraphFst):
"""
Finite state transducer for classifying cardinals. Numbers below ten are not converted.
Allows both compound numeral strings or separated by whitespace.
"und" (en: "and") can be inserted between "hundert" and following number or "tausend" and following single or double digit number.
e.g. minus drei und zwanzig -> cardinal { negative: "-" integer: "23" } }
e.g. minus dreiundzwanzig -> cardinal { integer: "23" } }
e.g. dreizehn -> cardinal { integer: "13" } }
e.g. ein hundert -> cardinal { integer: "100" } }
e.g. einhundert -> cardinal { integer: "100" } }
e.g. ein tausend -> cardinal { integer: "1000" } }
e.g. eintausend -> cardinal { integer: "1000" } }
e.g. ein tausend zwanzig -> cardinal { integer: "1020" } }
Args:
tn_cardinal_tagger: TN cardinal tagger
"""
def __init__(self, tn_cardinal_tagger: GraphFst, deterministic: bool = True):
super().__init__(name="cardinal", kind="classify", deterministic=deterministic)
# add_space_between_chars = pynini.cdrewrite(pynini.closure(insert_space, 0, 1), DAMO_CHAR, DAMO_CHAR, DAMO_SIGMA)
optional_delete_space = pynini.closure(DAMO_SIGMA | pynutil.delete(" "))
graph = (tn_cardinal_tagger.graph @ optional_delete_space).invert().optimize()
self.graph_hundred_component_at_least_one_none_zero_digit = (
(
tn_cardinal_tagger.graph_hundred_component_at_least_one_none_zero_digit
@ optional_delete_space
)
.invert()
.optimize()
)
self.graph_ties = (
(tn_cardinal_tagger.two_digit_non_zero @ optional_delete_space).invert().optimize()
)
# this is to make sure if there is an ambiguity with decimal, decimal is chosen, e.g. 1000000 vs. 1 million
graph = pynutil.add_weight(graph, weight=0.001)
self.graph_no_exception = graph
self.digit = (
pynini.arcmap(tn_cardinal_tagger.digit, map_type="rmweight").invert().optimize()
)
graph_exception = pynini.project(self.digit, "input")
self.graph = (pynini.project(graph, "input") - graph_exception.arcsort()) @ graph
self.optional_minus_graph = pynini.closure(
pynutil.insert("negative: ") + pynini.cross("minus ", '"-" '), 0, 1
)
final_graph = (
self.optional_minus_graph
+ pynutil.insert('integer: "')
+ self.graph
+ pynutil.insert('"')
)
final_graph = self.add_tokens(final_graph)
self.fst = final_graph.optimize()
import pynini
from fun_text_processing.text_normalization.en.graph_utils import (
DAMO_DIGIT,
DAMO_NOT_QUOTE,
DAMO_SIGMA,
GraphFst,
convert_space,
)
from pynini.lib import pynutil
class DateFst(GraphFst):
"""
Finite state transducer for classifying date, in the form of (day) month (year) or year
e.g. vierundzwanzigster juli zwei tausend dreizehn -> tokens { name: "24. Jul. 2013" }
e.g. neunzehnachtzig -> tokens { name: "1980" }
e.g. vierzehnter januar -> tokens { name: "14. Jan." }
e.g. zweiter dritter -> tokens { name: "02.03." }
e.g. januar neunzehnachtzig -> tokens { name: "Jan. 1980" }
e.g. zwanzigzwanzig -> tokens { name: "2020" }
Args:
itn_cardinal_tagger: ITN cardinal tagger
tn_date_tagger: TN date tagger
tn_date_verbalizer: TN date verbalizer
"""
def __init__(
self,
itn_cardinal_tagger: GraphFst,
tn_date_tagger: GraphFst,
tn_date_verbalizer: GraphFst,
deterministic: bool = True,
):
super().__init__(name="date", kind="classify", deterministic=deterministic)
add_leading_zero_to_double_digit = (DAMO_DIGIT + DAMO_DIGIT) | (
pynutil.insert("0") + DAMO_DIGIT
)
optional_delete_space = pynini.closure(DAMO_SIGMA | pynutil.delete(" ", weight=0.0001))
tagger = tn_date_verbalizer.graph.invert().optimize()
delete_day_marker = (
pynutil.delete('day: "') + pynini.closure(DAMO_NOT_QUOTE, 1) + pynutil.delete('"')
) @ itn_cardinal_tagger.graph_no_exception
month_as_number = (
pynutil.delete('month: "')
+ itn_cardinal_tagger.graph_no_exception
+ pynutil.delete('"')
)
month_as_string = (
pynutil.delete('month: "') + tn_date_tagger.month_abbr.invert() + pynutil.delete('"')
)
convert_year = (tn_date_tagger.year @ optional_delete_space).invert().optimize()
delete_year_marker = (
pynutil.delete('year: "') + pynini.closure(DAMO_NOT_QUOTE, 1) + pynutil.delete('"')
) @ convert_year
# day. month as string (year)
verbalizer = (
pynini.closure(delete_day_marker + pynutil.insert(".") + pynini.accep(" "), 0, 1)
+ month_as_string
+ pynini.closure(pynini.accep(" ") + delete_year_marker, 0, 1)
)
# day. month as number (year)
verbalizer |= (
delete_day_marker @ add_leading_zero_to_double_digit
+ pynutil.insert(".")
+ pynutil.delete(" ")
+ month_as_number @ add_leading_zero_to_double_digit
+ pynutil.insert(".")
+ pynini.closure(pynutil.delete(" ") + delete_year_marker, 0, 1)
)
# year
verbalizer |= delete_year_marker
final_graph = tagger @ verbalizer
graph = pynutil.insert('name: "') + convert_space(final_graph) + pynutil.insert('"')
self.fst = graph.optimize()
import pynini
from fun_text_processing.text_normalization.de.taggers.decimal import get_quantity, quantities
from fun_text_processing.text_normalization.en.graph_utils import DAMO_SIGMA, GraphFst
from pynini.lib import pynutil
class DecimalFst(GraphFst):
"""
Finite state transducer for classifying decimal
e.g. minus elf komma zwei null null sechs billionen -> decimal { negative: "true" integer_part: "11" fractional_part: "2006" quantity: "billionen" }
e.g. eine billion -> decimal { integer_part: "1" quantity: "billion" }
Args:
itn_cardinal_tagger: ITN Cardinal tagger
tn_decimal_tagger: TN decimal tagger
"""
def __init__(
self, itn_cardinal_tagger: GraphFst, tn_decimal_tagger: GraphFst, deterministic: bool = True
):
super().__init__(name="decimal", kind="classify", deterministic=deterministic)
self.graph = tn_decimal_tagger.graph.invert().optimize()
delete_point = pynutil.delete(" komma")
allow_spelling = pynini.cdrewrite(
pynini.cross("eine ", "eins ") + quantities, "[BOS]", "[EOS]", DAMO_SIGMA
)
graph_fractional = pynutil.insert('fractional_part: "') + self.graph + pynutil.insert('"')
graph_integer = (
pynutil.insert('integer_part: "')
+ itn_cardinal_tagger.graph_no_exception
+ pynutil.insert('"')
)
final_graph_wo_sign = graph_integer + delete_point + pynini.accep(" ") + graph_fractional
self.final_graph_wo_negative = (
allow_spelling
@ (
final_graph_wo_sign
| get_quantity(
final_graph_wo_sign,
itn_cardinal_tagger.graph_hundred_component_at_least_one_none_zero_digit,
)
).optimize()
)
final_graph = itn_cardinal_tagger.optional_minus_graph + self.final_graph_wo_negative
final_graph += pynutil.insert(" preserve_order: true")
final_graph = self.add_tokens(final_graph)
self.fst = final_graph.optimize()
import pynini
from fun_text_processing.text_normalization.en.graph_utils import GraphFst
from pynini.lib import pynutil
class ElectronicFst(GraphFst):
"""
Finite state transducer for classifying electronic: email addresses, etc.
e.g. c d f eins at a b c punkt e d u -> tokens { name: "cdf1.abc.edu" }
Args:
tn_electronic_tagger: TN eletronic tagger
tn_electronic_verbalizer: TN eletronic verbalizer
"""
def __init__(
self,
tn_electronic_tagger: GraphFst,
tn_electronic_verbalizer: GraphFst,
deterministic: bool = True,
):
super().__init__(name="electronic", kind="classify", deterministic=deterministic)
tagger = pynini.invert(tn_electronic_verbalizer.graph).optimize()
verbalizer = pynini.invert(tn_electronic_tagger.graph).optimize()
final_graph = tagger @ verbalizer
graph = pynutil.insert('name: "') + final_graph + pynutil.insert('"')
self.fst = graph.optimize()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment