import numpy as np import paddle from paddle.nn import functional as F import re class BaseRecLabelDecode(object): """ Convert between text-label and text-index """ def __init__(self, character_dict_path=None, use_space_char=False): self.beg_str = "sos" self.end_str = "eos" self.character_str = [] if character_dict_path is None: self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz" dict_character = list(self.character_str) else: with open(character_dict_path, "rb") as fin: lines = fin.readlines() for line in lines: line = line.decode('utf-8').strip("\n").strip("\r\n") self.character_str.append(line) if use_space_char: self.character_str.append(" ") dict_character = list(self.character_str) dict_character = self.add_special_char(dict_character) self.dict = {} for i, char in enumerate(dict_character): self.dict[char] = i self.character = dict_character def add_special_char(self, dict_character): return dict_character def decode(self, text_index, text_prob=None, is_remove_duplicate=False): """ convert text-index into text-label. """ result_list = [] ignored_tokens = self.get_ignored_tokens() batch_size = len(text_index) for batch_idx in range(batch_size): selection = np.ones(len(text_index[batch_idx]), dtype=bool) if is_remove_duplicate: selection[1:] = text_index[batch_idx][1:] != text_index[ batch_idx][:-1] for ignored_token in ignored_tokens: selection &= text_index[batch_idx] != ignored_token char_list = [ self.character[text_id] for text_id in text_index[batch_idx][selection] ] if text_prob is not None: conf_list = text_prob[batch_idx][selection] else: conf_list = [1] * len(selection) if len(conf_list) == 0: conf_list = [0] text = ''.join(char_list) result_list.append((text, np.mean(conf_list).tolist())) return result_list def get_ignored_tokens(self): return [0] # for ctc blank class CTCLabelDecode(BaseRecLabelDecode): """ Convert between text-label and text-index """ def __init__(self, character_dict_path=None, use_space_char=False, **kwargs): super(CTCLabelDecode, self).__init__(character_dict_path, use_space_char) def __call__(self, preds, label=None, *args, **kwargs): if isinstance(preds, tuple) or isinstance(preds, list): preds = preds[-1] if isinstance(preds, paddle.Tensor): preds = preds.numpy() preds_idx = preds.argmax(axis=2) preds_prob = preds.max(axis=2) text = self.decode(preds_idx, preds_prob, is_remove_duplicate=True) if label is None: return text label = self.decode(label) return text, label def add_special_char(self, dict_character): dict_character = ['blank'] + dict_character return dict_character