Commit f1506916 authored by sugon_cxj's avatar sugon_cxj
Browse files

first commit

parent 55c28ed5
Pipeline #266 canceled with stages
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import numpy as np
class AttentionHead(nn.Layer):
def __init__(self, in_channels, out_channels, hidden_size, **kwargs):
super(AttentionHead, self).__init__()
self.input_size = in_channels
self.hidden_size = hidden_size
self.num_classes = out_channels
self.attention_cell = AttentionGRUCell(
in_channels, hidden_size, out_channels, use_gru=False)
self.generator = nn.Linear(hidden_size, out_channels)
def _char_to_onehot(self, input_char, onehot_dim):
input_ont_hot = F.one_hot(input_char, onehot_dim)
return input_ont_hot
def forward(self, inputs, targets=None, batch_max_length=25):
batch_size = paddle.shape(inputs)[0]
num_steps = batch_max_length
hidden = paddle.zeros((batch_size, self.hidden_size))
output_hiddens = []
if targets is not None:
for i in range(num_steps):
char_onehots = self._char_to_onehot(
targets[:, i], onehot_dim=self.num_classes)
(outputs, hidden), alpha = self.attention_cell(hidden, inputs,
char_onehots)
output_hiddens.append(paddle.unsqueeze(outputs, axis=1))
output = paddle.concat(output_hiddens, axis=1)
probs = self.generator(output)
else:
targets = paddle.zeros(shape=[batch_size], dtype="int32")
probs = None
char_onehots = None
outputs = None
alpha = None
for i in range(num_steps):
char_onehots = self._char_to_onehot(
targets, onehot_dim=self.num_classes)
(outputs, hidden), alpha = self.attention_cell(hidden, inputs,
char_onehots)
probs_step = self.generator(outputs)
if probs is None:
probs = paddle.unsqueeze(probs_step, axis=1)
else:
probs = paddle.concat(
[probs, paddle.unsqueeze(
probs_step, axis=1)], axis=1)
next_input = probs_step.argmax(axis=1)
targets = next_input
if not self.training:
probs = paddle.nn.functional.softmax(probs, axis=2)
return probs
class AttentionGRUCell(nn.Layer):
def __init__(self, input_size, hidden_size, num_embeddings, use_gru=False):
super(AttentionGRUCell, self).__init__()
self.i2h = nn.Linear(input_size, hidden_size, bias_attr=False)
self.h2h = nn.Linear(hidden_size, hidden_size)
self.score = nn.Linear(hidden_size, 1, bias_attr=False)
self.rnn = nn.GRUCell(
input_size=input_size + num_embeddings, hidden_size=hidden_size)
self.hidden_size = hidden_size
def forward(self, prev_hidden, batch_H, char_onehots):
batch_H_proj = self.i2h(batch_H)
prev_hidden_proj = paddle.unsqueeze(self.h2h(prev_hidden), axis=1)
res = paddle.add(batch_H_proj, prev_hidden_proj)
res = paddle.tanh(res)
e = self.score(res)
alpha = F.softmax(e, axis=1)
alpha = paddle.transpose(alpha, [0, 2, 1])
context = paddle.squeeze(paddle.mm(alpha, batch_H), axis=1)
concat_context = paddle.concat([context, char_onehots], 1)
cur_hidden = self.rnn(concat_context, prev_hidden)
return cur_hidden, alpha
class AttentionLSTM(nn.Layer):
def __init__(self, in_channels, out_channels, hidden_size, **kwargs):
super(AttentionLSTM, self).__init__()
self.input_size = in_channels
self.hidden_size = hidden_size
self.num_classes = out_channels
self.attention_cell = AttentionLSTMCell(
in_channels, hidden_size, out_channels, use_gru=False)
self.generator = nn.Linear(hidden_size, out_channels)
def _char_to_onehot(self, input_char, onehot_dim):
input_ont_hot = F.one_hot(input_char, onehot_dim)
return input_ont_hot
def forward(self, inputs, targets=None, batch_max_length=25):
batch_size = inputs.shape[0]
num_steps = batch_max_length
hidden = (paddle.zeros((batch_size, self.hidden_size)), paddle.zeros(
(batch_size, self.hidden_size)))
output_hiddens = []
if targets is not None:
for i in range(num_steps):
# one-hot vectors for a i-th char
char_onehots = self._char_to_onehot(
targets[:, i], onehot_dim=self.num_classes)
hidden, alpha = self.attention_cell(hidden, inputs,
char_onehots)
hidden = (hidden[1][0], hidden[1][1])
output_hiddens.append(paddle.unsqueeze(hidden[0], axis=1))
output = paddle.concat(output_hiddens, axis=1)
probs = self.generator(output)
else:
targets = paddle.zeros(shape=[batch_size], dtype="int32")
probs = None
for i in range(num_steps):
char_onehots = self._char_to_onehot(
targets, onehot_dim=self.num_classes)
hidden, alpha = self.attention_cell(hidden, inputs,
char_onehots)
probs_step = self.generator(hidden[0])
hidden = (hidden[1][0], hidden[1][1])
if probs is None:
probs = paddle.unsqueeze(probs_step, axis=1)
else:
probs = paddle.concat(
[probs, paddle.unsqueeze(
probs_step, axis=1)], axis=1)
next_input = probs_step.argmax(axis=1)
targets = next_input
return probs
class AttentionLSTMCell(nn.Layer):
def __init__(self, input_size, hidden_size, num_embeddings, use_gru=False):
super(AttentionLSTMCell, self).__init__()
self.i2h = nn.Linear(input_size, hidden_size, bias_attr=False)
self.h2h = nn.Linear(hidden_size, hidden_size)
self.score = nn.Linear(hidden_size, 1, bias_attr=False)
if not use_gru:
self.rnn = nn.LSTMCell(
input_size=input_size + num_embeddings, hidden_size=hidden_size)
else:
self.rnn = nn.GRUCell(
input_size=input_size + num_embeddings, hidden_size=hidden_size)
self.hidden_size = hidden_size
def forward(self, prev_hidden, batch_H, char_onehots):
batch_H_proj = self.i2h(batch_H)
prev_hidden_proj = paddle.unsqueeze(self.h2h(prev_hidden[0]), axis=1)
res = paddle.add(batch_H_proj, prev_hidden_proj)
res = paddle.tanh(res)
e = self.score(res)
alpha = F.softmax(e, axis=1)
alpha = paddle.transpose(alpha, [0, 2, 1])
context = paddle.squeeze(paddle.mm(alpha, batch_H), axis=1)
concat_context = paddle.concat([context, char_onehots], 1)
cur_hidden = self.rnn(concat_context, prev_hidden)
return cur_hidden, alpha
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
from paddle import ParamAttr, nn
from paddle.nn import functional as F
def get_para_bias_attr(l2_decay, k):
regularizer = paddle.regularizer.L2Decay(l2_decay)
stdv = 1.0 / math.sqrt(k * 1.0)
initializer = nn.initializer.Uniform(-stdv, stdv)
weight_attr = ParamAttr(regularizer=regularizer, initializer=initializer)
bias_attr = ParamAttr(regularizer=regularizer, initializer=initializer)
return [weight_attr, bias_attr]
class CTCHead(nn.Layer):
def __init__(self,
in_channels,
out_channels,
fc_decay=0.0004,
mid_channels=None,
return_feats=False,
**kwargs):
super(CTCHead, self).__init__()
if mid_channels is None:
weight_attr, bias_attr = get_para_bias_attr(
l2_decay=fc_decay, k=in_channels)
self.fc = nn.Linear(
in_channels,
out_channels,
weight_attr=weight_attr,
bias_attr=bias_attr)
else:
weight_attr1, bias_attr1 = get_para_bias_attr(
l2_decay=fc_decay, k=in_channels)
self.fc1 = nn.Linear(
in_channels,
mid_channels,
weight_attr=weight_attr1,
bias_attr=bias_attr1)
weight_attr2, bias_attr2 = get_para_bias_attr(
l2_decay=fc_decay, k=mid_channels)
self.fc2 = nn.Linear(
mid_channels,
out_channels,
weight_attr=weight_attr2,
bias_attr=bias_attr2)
self.out_channels = out_channels
self.mid_channels = mid_channels
self.return_feats = return_feats
def forward(self, x, targets=None):
if self.mid_channels is None:
predicts = self.fc(x)
else:
x = self.fc1(x)
predicts = self.fc2(x)
if self.return_feats:
result = (x, predicts)
else:
result = predicts
if not self.training:
predicts = F.softmax(predicts, axis=2)
result = predicts
return result
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from ppocr.modeling.necks.rnn import Im2Seq, EncoderWithRNN, EncoderWithFC, SequenceEncoder, EncoderWithSVTR
from .rec_ctc_head import CTCHead
from .rec_sar_head import SARHead
class MultiHead(nn.Layer):
def __init__(self, in_channels, out_channels_list, **kwargs):
super().__init__()
self.head_list = kwargs.pop('head_list')
self.gtc_head = 'sar'
assert len(self.head_list) >= 2
for idx, head_name in enumerate(self.head_list):
name = list(head_name)[0]
if name == 'SARHead':
# sar head
sar_args = self.head_list[idx][name]
self.sar_head = eval(name)(in_channels=in_channels, \
out_channels=out_channels_list['SARLabelDecode'], **sar_args)
elif name == 'CTCHead':
# ctc neck
self.encoder_reshape = Im2Seq(in_channels)
neck_args = self.head_list[idx][name]['Neck']
encoder_type = neck_args.pop('name')
self.encoder = encoder_type
self.ctc_encoder = SequenceEncoder(in_channels=in_channels, \
encoder_type=encoder_type, **neck_args)
# ctc head
head_args = self.head_list[idx][name]['Head']
self.ctc_head = eval(name)(in_channels=self.ctc_encoder.out_channels, \
out_channels=out_channels_list['CTCLabelDecode'], **head_args)
else:
raise NotImplementedError(
'{} is not supported in MultiHead yet'.format(name))
def forward(self, x, targets=None):
ctc_encoder = self.ctc_encoder(x)
ctc_out = self.ctc_head(ctc_encoder, targets)
head_out = dict()
head_out['ctc'] = ctc_out
head_out['ctc_neck'] = ctc_encoder
# eval mode
if not self.training:
return ctc_out
if self.gtc_head == 'sar':
sar_out = self.sar_head(x, targets[1:])
head_out['sar'] = sar_out
return head_out
else:
return head_out
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import paddle
import copy
from paddle import nn
import paddle.nn.functional as F
from paddle.nn import LayerList
from paddle.nn.initializer import XavierNormal as xavier_uniform_
from paddle.nn import Dropout, Linear, LayerNorm, Conv2D
import numpy as np
from ppocr.modeling.heads.multiheadAttention import MultiheadAttention
from paddle.nn.initializer import Constant as constant_
from paddle.nn.initializer import XavierNormal as xavier_normal_
zeros_ = constant_(value=0.)
ones_ = constant_(value=1.)
class Transformer(nn.Layer):
"""A transformer model. User is able to modify the attributes as needed. The architechture
is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer,
Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and
Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information
Processing Systems, pages 6000-6010.
Args:
d_model: the number of expected features in the encoder/decoder inputs (default=512).
nhead: the number of heads in the multiheadattention models (default=8).
num_encoder_layers: the number of sub-encoder-layers in the encoder (default=6).
num_decoder_layers: the number of sub-decoder-layers in the decoder (default=6).
dim_feedforward: the dimension of the feedforward network model (default=2048).
dropout: the dropout value (default=0.1).
custom_encoder: custom encoder (default=None).
custom_decoder: custom decoder (default=None).
"""
def __init__(self,
d_model=512,
nhead=8,
num_encoder_layers=6,
beam_size=0,
num_decoder_layers=6,
dim_feedforward=1024,
attention_dropout_rate=0.0,
residual_dropout_rate=0.1,
custom_encoder=None,
custom_decoder=None,
in_channels=0,
out_channels=0,
scale_embedding=True):
super(Transformer, self).__init__()
self.out_channels = out_channels + 1
self.embedding = Embeddings(
d_model=d_model,
vocab=self.out_channels,
padding_idx=0,
scale_embedding=scale_embedding)
self.positional_encoding = PositionalEncoding(
dropout=residual_dropout_rate,
dim=d_model, )
if custom_encoder is not None:
self.encoder = custom_encoder
else:
if num_encoder_layers > 0:
encoder_layer = TransformerEncoderLayer(
d_model, nhead, dim_feedforward, attention_dropout_rate,
residual_dropout_rate)
self.encoder = TransformerEncoder(encoder_layer,
num_encoder_layers)
else:
self.encoder = None
if custom_decoder is not None:
self.decoder = custom_decoder
else:
decoder_layer = TransformerDecoderLayer(
d_model, nhead, dim_feedforward, attention_dropout_rate,
residual_dropout_rate)
self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers)
self._reset_parameters()
self.beam_size = beam_size
self.d_model = d_model
self.nhead = nhead
self.tgt_word_prj = nn.Linear(
d_model, self.out_channels, bias_attr=False)
w0 = np.random.normal(0.0, d_model**-0.5,
(d_model, self.out_channels)).astype(np.float32)
self.tgt_word_prj.weight.set_value(w0)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Conv2D):
xavier_normal_(m.weight)
if m.bias is not None:
zeros_(m.bias)
def forward_train(self, src, tgt):
tgt = tgt[:, :-1]
tgt_key_padding_mask = self.generate_padding_mask(tgt)
tgt = self.embedding(tgt).transpose([1, 0, 2])
tgt = self.positional_encoding(tgt)
tgt_mask = self.generate_square_subsequent_mask(tgt.shape[0])
if self.encoder is not None:
src = self.positional_encoding(src.transpose([1, 0, 2]))
memory = self.encoder(src)
else:
memory = src.squeeze(2).transpose([2, 0, 1])
output = self.decoder(
tgt,
memory,
tgt_mask=tgt_mask,
memory_mask=None,
tgt_key_padding_mask=tgt_key_padding_mask,
memory_key_padding_mask=None)
output = output.transpose([1, 0, 2])
logit = self.tgt_word_prj(output)
return logit
def forward(self, src, targets=None):
"""Take in and process masked source/target sequences.
Args:
src: the sequence to the encoder (required).
tgt: the sequence to the decoder (required).
Shape:
- src: :math:`(S, N, E)`.
- tgt: :math:`(T, N, E)`.
Examples:
>>> output = transformer_model(src, tgt)
"""
if self.training:
max_len = targets[1].max()
tgt = targets[0][:, :2 + max_len]
return self.forward_train(src, tgt)
else:
if self.beam_size > 0:
return self.forward_beam(src)
else:
return self.forward_test(src)
def forward_test(self, src):
bs = paddle.shape(src)[0]
if self.encoder is not None:
src = self.positional_encoding(paddle.transpose(src, [1, 0, 2]))
memory = self.encoder(src)
else:
memory = paddle.transpose(paddle.squeeze(src, 2), [2, 0, 1])
dec_seq = paddle.full((bs, 1), 2, dtype=paddle.int64)
dec_prob = paddle.full((bs, 1), 1., dtype=paddle.float32)
for len_dec_seq in range(1, 25):
dec_seq_embed = paddle.transpose(self.embedding(dec_seq), [1, 0, 2])
dec_seq_embed = self.positional_encoding(dec_seq_embed)
tgt_mask = self.generate_square_subsequent_mask(
paddle.shape(dec_seq_embed)[0])
output = self.decoder(
dec_seq_embed,
memory,
tgt_mask=tgt_mask,
memory_mask=None,
tgt_key_padding_mask=None,
memory_key_padding_mask=None)
dec_output = paddle.transpose(output, [1, 0, 2])
dec_output = dec_output[:, -1, :]
word_prob = F.softmax(self.tgt_word_prj(dec_output), axis=1)
preds_idx = paddle.argmax(word_prob, axis=1)
if paddle.equal_all(
preds_idx,
paddle.full(
paddle.shape(preds_idx), 3, dtype='int64')):
break
preds_prob = paddle.max(word_prob, axis=1)
dec_seq = paddle.concat(
[dec_seq, paddle.reshape(preds_idx, [-1, 1])], axis=1)
dec_prob = paddle.concat(
[dec_prob, paddle.reshape(preds_prob, [-1, 1])], axis=1)
return [dec_seq, dec_prob]
def forward_beam(self, images):
''' Translation work in one batch '''
def get_inst_idx_to_tensor_position_map(inst_idx_list):
''' Indicate the position of an instance in a tensor. '''
return {
inst_idx: tensor_position
for tensor_position, inst_idx in enumerate(inst_idx_list)
}
def collect_active_part(beamed_tensor, curr_active_inst_idx,
n_prev_active_inst, n_bm):
''' Collect tensor parts associated to active instances. '''
beamed_tensor_shape = paddle.shape(beamed_tensor)
n_curr_active_inst = len(curr_active_inst_idx)
new_shape = (n_curr_active_inst * n_bm, beamed_tensor_shape[1],
beamed_tensor_shape[2])
beamed_tensor = beamed_tensor.reshape([n_prev_active_inst, -1])
beamed_tensor = beamed_tensor.index_select(
curr_active_inst_idx, axis=0)
beamed_tensor = beamed_tensor.reshape(new_shape)
return beamed_tensor
def collate_active_info(src_enc, inst_idx_to_position_map,
active_inst_idx_list):
# Sentences which are still active are collected,
# so the decoder will not run on completed sentences.
n_prev_active_inst = len(inst_idx_to_position_map)
active_inst_idx = [
inst_idx_to_position_map[k] for k in active_inst_idx_list
]
active_inst_idx = paddle.to_tensor(active_inst_idx, dtype='int64')
active_src_enc = collect_active_part(
src_enc.transpose([1, 0, 2]), active_inst_idx,
n_prev_active_inst, n_bm).transpose([1, 0, 2])
active_inst_idx_to_position_map = get_inst_idx_to_tensor_position_map(
active_inst_idx_list)
return active_src_enc, active_inst_idx_to_position_map
def beam_decode_step(inst_dec_beams, len_dec_seq, enc_output,
inst_idx_to_position_map, n_bm,
memory_key_padding_mask):
''' Decode and update beam status, and then return active beam idx '''
def prepare_beam_dec_seq(inst_dec_beams, len_dec_seq):
dec_partial_seq = [
b.get_current_state() for b in inst_dec_beams if not b.done
]
dec_partial_seq = paddle.stack(dec_partial_seq)
dec_partial_seq = dec_partial_seq.reshape([-1, len_dec_seq])
return dec_partial_seq
def predict_word(dec_seq, enc_output, n_active_inst, n_bm,
memory_key_padding_mask):
dec_seq = paddle.transpose(self.embedding(dec_seq), [1, 0, 2])
dec_seq = self.positional_encoding(dec_seq)
tgt_mask = self.generate_square_subsequent_mask(
paddle.shape(dec_seq)[0])
dec_output = self.decoder(
dec_seq,
enc_output,
tgt_mask=tgt_mask,
tgt_key_padding_mask=None,
memory_key_padding_mask=memory_key_padding_mask, )
dec_output = paddle.transpose(dec_output, [1, 0, 2])
dec_output = dec_output[:,
-1, :] # Pick the last step: (bh * bm) * d_h
word_prob = F.softmax(self.tgt_word_prj(dec_output), axis=1)
word_prob = paddle.reshape(word_prob, [n_active_inst, n_bm, -1])
return word_prob
def collect_active_inst_idx_list(inst_beams, word_prob,
inst_idx_to_position_map):
active_inst_idx_list = []
for inst_idx, inst_position in inst_idx_to_position_map.items():
is_inst_complete = inst_beams[inst_idx].advance(word_prob[
inst_position])
if not is_inst_complete:
active_inst_idx_list += [inst_idx]
return active_inst_idx_list
n_active_inst = len(inst_idx_to_position_map)
dec_seq = prepare_beam_dec_seq(inst_dec_beams, len_dec_seq)
word_prob = predict_word(dec_seq, enc_output, n_active_inst, n_bm,
None)
# Update the beam with predicted word prob information and collect incomplete instances
active_inst_idx_list = collect_active_inst_idx_list(
inst_dec_beams, word_prob, inst_idx_to_position_map)
return active_inst_idx_list
def collect_hypothesis_and_scores(inst_dec_beams, n_best):
all_hyp, all_scores = [], []
for inst_idx in range(len(inst_dec_beams)):
scores, tail_idxs = inst_dec_beams[inst_idx].sort_scores()
all_scores += [scores[:n_best]]
hyps = [
inst_dec_beams[inst_idx].get_hypothesis(i)
for i in tail_idxs[:n_best]
]
all_hyp += [hyps]
return all_hyp, all_scores
with paddle.no_grad():
#-- Encode
if self.encoder is not None:
src = self.positional_encoding(images.transpose([1, 0, 2]))
src_enc = self.encoder(src)
else:
src_enc = images.squeeze(2).transpose([0, 2, 1])
n_bm = self.beam_size
src_shape = paddle.shape(src_enc)
inst_dec_beams = [Beam(n_bm) for _ in range(1)]
active_inst_idx_list = list(range(1))
# Repeat data for beam search
src_enc = paddle.tile(src_enc, [1, n_bm, 1])
inst_idx_to_position_map = get_inst_idx_to_tensor_position_map(
active_inst_idx_list)
# Decode
for len_dec_seq in range(1, 25):
src_enc_copy = src_enc.clone()
active_inst_idx_list = beam_decode_step(
inst_dec_beams, len_dec_seq, src_enc_copy,
inst_idx_to_position_map, n_bm, None)
if not active_inst_idx_list:
break # all instances have finished their path to <EOS>
src_enc, inst_idx_to_position_map = collate_active_info(
src_enc_copy, inst_idx_to_position_map,
active_inst_idx_list)
batch_hyp, batch_scores = collect_hypothesis_and_scores(inst_dec_beams,
1)
result_hyp = []
hyp_scores = []
for bs_hyp, score in zip(batch_hyp, batch_scores):
l = len(bs_hyp[0])
bs_hyp_pad = bs_hyp[0] + [3] * (25 - l)
result_hyp.append(bs_hyp_pad)
score = float(score) / l
hyp_score = [score for _ in range(25)]
hyp_scores.append(hyp_score)
return [
paddle.to_tensor(
np.array(result_hyp), dtype=paddle.int64),
paddle.to_tensor(hyp_scores)
]
def generate_square_subsequent_mask(self, sz):
"""Generate a square mask for the sequence. The masked positions are filled with float('-inf').
Unmasked positions are filled with float(0.0).
"""
mask = paddle.zeros([sz, sz], dtype='float32')
mask_inf = paddle.triu(
paddle.full(
shape=[sz, sz], dtype='float32', fill_value='-inf'),
diagonal=1)
mask = mask + mask_inf
return mask
def generate_padding_mask(self, x):
padding_mask = paddle.equal(x, paddle.to_tensor(0, dtype=x.dtype))
return padding_mask
def _reset_parameters(self):
"""Initiate parameters in the transformer model."""
for p in self.parameters():
if p.dim() > 1:
xavier_uniform_(p)
class TransformerEncoder(nn.Layer):
"""TransformerEncoder is a stack of N encoder layers
Args:
encoder_layer: an instance of the TransformerEncoderLayer() class (required).
num_layers: the number of sub-encoder-layers in the encoder (required).
norm: the layer normalization component (optional).
"""
def __init__(self, encoder_layer, num_layers):
super(TransformerEncoder, self).__init__()
self.layers = _get_clones(encoder_layer, num_layers)
self.num_layers = num_layers
def forward(self, src):
"""Pass the input through the endocder layers in turn.
Args:
src: the sequnce to the encoder (required).
mask: the mask for the src sequence (optional).
src_key_padding_mask: the mask for the src keys per batch (optional).
"""
output = src
for i in range(self.num_layers):
output = self.layers[i](output,
src_mask=None,
src_key_padding_mask=None)
return output
class TransformerDecoder(nn.Layer):
"""TransformerDecoder is a stack of N decoder layers
Args:
decoder_layer: an instance of the TransformerDecoderLayer() class (required).
num_layers: the number of sub-decoder-layers in the decoder (required).
norm: the layer normalization component (optional).
"""
def __init__(self, decoder_layer, num_layers):
super(TransformerDecoder, self).__init__()
self.layers = _get_clones(decoder_layer, num_layers)
self.num_layers = num_layers
def forward(self,
tgt,
memory,
tgt_mask=None,
memory_mask=None,
tgt_key_padding_mask=None,
memory_key_padding_mask=None):
"""Pass the inputs (and mask) through the decoder layer in turn.
Args:
tgt: the sequence to the decoder (required).
memory: the sequnce from the last layer of the encoder (required).
tgt_mask: the mask for the tgt sequence (optional).
memory_mask: the mask for the memory sequence (optional).
tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
memory_key_padding_mask: the mask for the memory keys per batch (optional).
"""
output = tgt
for i in range(self.num_layers):
output = self.layers[i](
output,
memory,
tgt_mask=tgt_mask,
memory_mask=memory_mask,
tgt_key_padding_mask=tgt_key_padding_mask,
memory_key_padding_mask=memory_key_padding_mask)
return output
class TransformerEncoderLayer(nn.Layer):
"""TransformerEncoderLayer is made up of self-attn and feedforward network.
This standard encoder layer is based on the paper "Attention Is All You Need".
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
in a different way during application.
Args:
d_model: the number of expected features in the input (required).
nhead: the number of heads in the multiheadattention models (required).
dim_feedforward: the dimension of the feedforward network model (default=2048).
dropout: the dropout value (default=0.1).
"""
def __init__(self,
d_model,
nhead,
dim_feedforward=2048,
attention_dropout_rate=0.0,
residual_dropout_rate=0.1):
super(TransformerEncoderLayer, self).__init__()
self.self_attn = MultiheadAttention(
d_model, nhead, dropout=attention_dropout_rate)
self.conv1 = Conv2D(
in_channels=d_model,
out_channels=dim_feedforward,
kernel_size=(1, 1))
self.conv2 = Conv2D(
in_channels=dim_feedforward,
out_channels=d_model,
kernel_size=(1, 1))
self.norm1 = LayerNorm(d_model)
self.norm2 = LayerNorm(d_model)
self.dropout1 = Dropout(residual_dropout_rate)
self.dropout2 = Dropout(residual_dropout_rate)
def forward(self, src, src_mask=None, src_key_padding_mask=None):
"""Pass the input through the endocder layer.
Args:
src: the sequnce to the encoder layer (required).
src_mask: the mask for the src sequence (optional).
src_key_padding_mask: the mask for the src keys per batch (optional).
"""
src2 = self.self_attn(
src,
src,
src,
attn_mask=src_mask,
key_padding_mask=src_key_padding_mask)
src = src + self.dropout1(src2)
src = self.norm1(src)
src = paddle.transpose(src, [1, 2, 0])
src = paddle.unsqueeze(src, 2)
src2 = self.conv2(F.relu(self.conv1(src)))
src2 = paddle.squeeze(src2, 2)
src2 = paddle.transpose(src2, [2, 0, 1])
src = paddle.squeeze(src, 2)
src = paddle.transpose(src, [2, 0, 1])
src = src + self.dropout2(src2)
src = self.norm2(src)
return src
class TransformerDecoderLayer(nn.Layer):
"""TransformerDecoderLayer is made up of self-attn, multi-head-attn and feedforward network.
This standard decoder layer is based on the paper "Attention Is All You Need".
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
in a different way during application.
Args:
d_model: the number of expected features in the input (required).
nhead: the number of heads in the multiheadattention models (required).
dim_feedforward: the dimension of the feedforward network model (default=2048).
dropout: the dropout value (default=0.1).
"""
def __init__(self,
d_model,
nhead,
dim_feedforward=2048,
attention_dropout_rate=0.0,
residual_dropout_rate=0.1):
super(TransformerDecoderLayer, self).__init__()
self.self_attn = MultiheadAttention(
d_model, nhead, dropout=attention_dropout_rate)
self.multihead_attn = MultiheadAttention(
d_model, nhead, dropout=attention_dropout_rate)
self.conv1 = Conv2D(
in_channels=d_model,
out_channels=dim_feedforward,
kernel_size=(1, 1))
self.conv2 = Conv2D(
in_channels=dim_feedforward,
out_channels=d_model,
kernel_size=(1, 1))
self.norm1 = LayerNorm(d_model)
self.norm2 = LayerNorm(d_model)
self.norm3 = LayerNorm(d_model)
self.dropout1 = Dropout(residual_dropout_rate)
self.dropout2 = Dropout(residual_dropout_rate)
self.dropout3 = Dropout(residual_dropout_rate)
def forward(self,
tgt,
memory,
tgt_mask=None,
memory_mask=None,
tgt_key_padding_mask=None,
memory_key_padding_mask=None):
"""Pass the inputs (and mask) through the decoder layer.
Args:
tgt: the sequence to the decoder layer (required).
memory: the sequnce from the last layer of the encoder (required).
tgt_mask: the mask for the tgt sequence (optional).
memory_mask: the mask for the memory sequence (optional).
tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
memory_key_padding_mask: the mask for the memory keys per batch (optional).
"""
tgt2 = self.self_attn(
tgt,
tgt,
tgt,
attn_mask=tgt_mask,
key_padding_mask=tgt_key_padding_mask)
tgt = tgt + self.dropout1(tgt2)
tgt = self.norm1(tgt)
tgt2 = self.multihead_attn(
tgt,
memory,
memory,
attn_mask=memory_mask,
key_padding_mask=memory_key_padding_mask)
tgt = tgt + self.dropout2(tgt2)
tgt = self.norm2(tgt)
# default
tgt = paddle.transpose(tgt, [1, 2, 0])
tgt = paddle.unsqueeze(tgt, 2)
tgt2 = self.conv2(F.relu(self.conv1(tgt)))
tgt2 = paddle.squeeze(tgt2, 2)
tgt2 = paddle.transpose(tgt2, [2, 0, 1])
tgt = paddle.squeeze(tgt, 2)
tgt = paddle.transpose(tgt, [2, 0, 1])
tgt = tgt + self.dropout3(tgt2)
tgt = self.norm3(tgt)
return tgt
def _get_clones(module, N):
return LayerList([copy.deepcopy(module) for i in range(N)])
class PositionalEncoding(nn.Layer):
"""Inject some information about the relative or absolute position of the tokens
in the sequence. The positional encodings have the same dimension as
the embeddings, so that the two can be summed. Here, we use sine and cosine
functions of different frequencies.
.. math::
\text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model))
\text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model))
\text{where pos is the word position and i is the embed idx)
Args:
d_model: the embed dim (required).
dropout: the dropout value (default=0.1).
max_len: the max. length of the incoming sequence (default=5000).
Examples:
>>> pos_encoder = PositionalEncoding(d_model)
"""
def __init__(self, dropout, dim, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = paddle.zeros([max_len, dim])
position = paddle.arange(0, max_len, dtype=paddle.float32).unsqueeze(1)
div_term = paddle.exp(
paddle.arange(0, dim, 2).astype('float32') *
(-math.log(10000.0) / dim))
pe[:, 0::2] = paddle.sin(position * div_term)
pe[:, 1::2] = paddle.cos(position * div_term)
pe = paddle.unsqueeze(pe, 0)
pe = paddle.transpose(pe, [1, 0, 2])
self.register_buffer('pe', pe)
def forward(self, x):
"""Inputs of forward function
Args:
x: the sequence fed to the positional encoder model (required).
Shape:
x: [sequence length, batch size, embed dim]
output: [sequence length, batch size, embed dim]
Examples:
>>> output = pos_encoder(x)
"""
x = x + self.pe[:paddle.shape(x)[0], :]
return self.dropout(x)
class PositionalEncoding_2d(nn.Layer):
"""Inject some information about the relative or absolute position of the tokens
in the sequence. The positional encodings have the same dimension as
the embeddings, so that the two can be summed. Here, we use sine and cosine
functions of different frequencies.
.. math::
\text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model))
\text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model))
\text{where pos is the word position and i is the embed idx)
Args:
d_model: the embed dim (required).
dropout: the dropout value (default=0.1).
max_len: the max. length of the incoming sequence (default=5000).
Examples:
>>> pos_encoder = PositionalEncoding(d_model)
"""
def __init__(self, dropout, dim, max_len=5000):
super(PositionalEncoding_2d, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = paddle.zeros([max_len, dim])
position = paddle.arange(0, max_len, dtype=paddle.float32).unsqueeze(1)
div_term = paddle.exp(
paddle.arange(0, dim, 2).astype('float32') *
(-math.log(10000.0) / dim))
pe[:, 0::2] = paddle.sin(position * div_term)
pe[:, 1::2] = paddle.cos(position * div_term)
pe = paddle.transpose(paddle.unsqueeze(pe, 0), [1, 0, 2])
self.register_buffer('pe', pe)
self.avg_pool_1 = nn.AdaptiveAvgPool2D((1, 1))
self.linear1 = nn.Linear(dim, dim)
self.linear1.weight.data.fill_(1.)
self.avg_pool_2 = nn.AdaptiveAvgPool2D((1, 1))
self.linear2 = nn.Linear(dim, dim)
self.linear2.weight.data.fill_(1.)
def forward(self, x):
"""Inputs of forward function
Args:
x: the sequence fed to the positional encoder model (required).
Shape:
x: [sequence length, batch size, embed dim]
output: [sequence length, batch size, embed dim]
Examples:
>>> output = pos_encoder(x)
"""
w_pe = self.pe[:paddle.shape(x)[-1], :]
w1 = self.linear1(self.avg_pool_1(x).squeeze()).unsqueeze(0)
w_pe = w_pe * w1
w_pe = paddle.transpose(w_pe, [1, 2, 0])
w_pe = paddle.unsqueeze(w_pe, 2)
h_pe = self.pe[:paddle.shape(x).shape[-2], :]
w2 = self.linear2(self.avg_pool_2(x).squeeze()).unsqueeze(0)
h_pe = h_pe * w2
h_pe = paddle.transpose(h_pe, [1, 2, 0])
h_pe = paddle.unsqueeze(h_pe, 3)
x = x + w_pe + h_pe
x = paddle.transpose(
paddle.reshape(x,
[x.shape[0], x.shape[1], x.shape[2] * x.shape[3]]),
[2, 0, 1])
return self.dropout(x)
class Embeddings(nn.Layer):
def __init__(self, d_model, vocab, padding_idx, scale_embedding):
super(Embeddings, self).__init__()
self.embedding = nn.Embedding(vocab, d_model, padding_idx=padding_idx)
w0 = np.random.normal(0.0, d_model**-0.5,
(vocab, d_model)).astype(np.float32)
self.embedding.weight.set_value(w0)
self.d_model = d_model
self.scale_embedding = scale_embedding
def forward(self, x):
if self.scale_embedding:
x = self.embedding(x)
return x * math.sqrt(self.d_model)
return self.embedding(x)
class Beam():
''' Beam search '''
def __init__(self, size, device=False):
self.size = size
self._done = False
# The score for each translation on the beam.
self.scores = paddle.zeros((size, ), dtype=paddle.float32)
self.all_scores = []
# The backpointers at each time-step.
self.prev_ks = []
# The outputs at each time-step.
self.next_ys = [paddle.full((size, ), 0, dtype=paddle.int64)]
self.next_ys[0][0] = 2
def get_current_state(self):
"Get the outputs for the current timestep."
return self.get_tentative_hypothesis()
def get_current_origin(self):
"Get the backpointers for the current timestep."
return self.prev_ks[-1]
@property
def done(self):
return self._done
def advance(self, word_prob):
"Update beam status and check if finished or not."
num_words = word_prob.shape[1]
# Sum the previous scores.
if len(self.prev_ks) > 0:
beam_lk = word_prob + self.scores.unsqueeze(1).expand_as(word_prob)
else:
beam_lk = word_prob[0]
flat_beam_lk = beam_lk.reshape([-1])
best_scores, best_scores_id = flat_beam_lk.topk(self.size, 0, True,
True) # 1st sort
self.all_scores.append(self.scores)
self.scores = best_scores
# bestScoresId is flattened as a (beam x word) array,
# so we need to calculate which word and beam each score came from
prev_k = best_scores_id // num_words
self.prev_ks.append(prev_k)
self.next_ys.append(best_scores_id - prev_k * num_words)
# End condition is when top-of-beam is EOS.
if self.next_ys[-1][0] == 3:
self._done = True
self.all_scores.append(self.scores)
return self._done
def sort_scores(self):
"Sort the scores."
return self.scores, paddle.to_tensor(
[i for i in range(int(self.scores.shape[0]))], dtype='int32')
def get_the_best_score_and_idx(self):
"Get the score of the best in the beam."
scores, ids = self.sort_scores()
return scores[1], ids[1]
def get_tentative_hypothesis(self):
"Get the decoded sequence for the current timestep."
if len(self.next_ys) == 1:
dec_seq = self.next_ys[0].unsqueeze(1)
else:
_, keys = self.sort_scores()
hyps = [self.get_hypothesis(k) for k in keys]
hyps = [[2] + h for h in hyps]
dec_seq = paddle.to_tensor(hyps, dtype='int64')
return dec_seq
def get_hypothesis(self, k):
""" Walk back to construct the full hypothesis. """
hyp = []
for j in range(len(self.prev_ks) - 1, -1, -1):
hyp.append(self.next_ys[j + 1][k])
k = self.prev_ks[j][k]
return list(map(lambda x: x.item(), hyp[::-1]))
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from paddle import nn
from paddle.nn import functional as F
class PRENHead(nn.Layer):
def __init__(self, in_channels, out_channels, **kwargs):
super(PRENHead, self).__init__()
self.linear = nn.Linear(in_channels, out_channels)
def forward(self, x, targets=None):
predicts = self.linear(x)
if not self.training:
predicts = F.softmax(predicts, axis=2)
return predicts
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textrecog/encoders/sar_encoder.py
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textrecog/decoders/sar_decoder.py
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
class SAREncoder(nn.Layer):
"""
Args:
enc_bi_rnn (bool): If True, use bidirectional RNN in encoder.
enc_drop_rnn (float): Dropout probability of RNN layer in encoder.
enc_gru (bool): If True, use GRU, else LSTM in encoder.
d_model (int): Dim of channels from backbone.
d_enc (int): Dim of encoder RNN layer.
mask (bool): If True, mask padding in RNN sequence.
"""
def __init__(self,
enc_bi_rnn=False,
enc_drop_rnn=0.1,
enc_gru=False,
d_model=512,
d_enc=512,
mask=True,
**kwargs):
super().__init__()
assert isinstance(enc_bi_rnn, bool)
assert isinstance(enc_drop_rnn, (int, float))
assert 0 <= enc_drop_rnn < 1.0
assert isinstance(enc_gru, bool)
assert isinstance(d_model, int)
assert isinstance(d_enc, int)
assert isinstance(mask, bool)
self.enc_bi_rnn = enc_bi_rnn
self.enc_drop_rnn = enc_drop_rnn
self.mask = mask
# LSTM Encoder
if enc_bi_rnn:
direction = 'bidirectional'
else:
direction = 'forward'
kwargs = dict(
input_size=d_model,
hidden_size=d_enc,
num_layers=2,
time_major=False,
dropout=enc_drop_rnn,
direction=direction)
if enc_gru:
self.rnn_encoder = nn.GRU(**kwargs)
else:
self.rnn_encoder = nn.LSTM(**kwargs)
# global feature transformation
encoder_rnn_out_size = d_enc * (int(enc_bi_rnn) + 1)
self.linear = nn.Linear(encoder_rnn_out_size, encoder_rnn_out_size)
def forward(self, feat, img_metas=None):
if img_metas is not None:
assert len(img_metas[0]) == paddle.shape(feat)[0]
valid_ratios = None
if img_metas is not None and self.mask:
valid_ratios = img_metas[-1]
h_feat = feat.shape[2] # bsz c h w
feat_v = F.max_pool2d(
feat, kernel_size=(h_feat, 1), stride=1, padding=0)
feat_v = feat_v.squeeze(2) # bsz * C * W
feat_v = paddle.transpose(feat_v, perm=[0, 2, 1]) # bsz * W * C
holistic_feat = self.rnn_encoder(feat_v)[0] # bsz * T * C
if valid_ratios is not None:
valid_hf = []
T = paddle.shape(holistic_feat)[1]
for i in range(paddle.shape(valid_ratios)[0]):
valid_step = paddle.minimum(
T, paddle.ceil(valid_ratios[i] * T).astype('int32')) - 1
valid_hf.append(holistic_feat[i, valid_step, :])
valid_hf = paddle.stack(valid_hf, axis=0)
else:
valid_hf = holistic_feat[:, -1, :] # bsz * C
holistic_feat = self.linear(valid_hf) # bsz * C
return holistic_feat
class BaseDecoder(nn.Layer):
def __init__(self, **kwargs):
super().__init__()
def forward_train(self, feat, out_enc, targets, img_metas):
raise NotImplementedError
def forward_test(self, feat, out_enc, img_metas):
raise NotImplementedError
def forward(self,
feat,
out_enc,
label=None,
img_metas=None,
train_mode=True):
self.train_mode = train_mode
if train_mode:
return self.forward_train(feat, out_enc, label, img_metas)
return self.forward_test(feat, out_enc, img_metas)
class ParallelSARDecoder(BaseDecoder):
"""
Args:
out_channels (int): Output class number.
enc_bi_rnn (bool): If True, use bidirectional RNN in encoder.
dec_bi_rnn (bool): If True, use bidirectional RNN in decoder.
dec_drop_rnn (float): Dropout of RNN layer in decoder.
dec_gru (bool): If True, use GRU, else LSTM in decoder.
d_model (int): Dim of channels from backbone.
d_enc (int): Dim of encoder RNN layer.
d_k (int): Dim of channels of attention module.
pred_dropout (float): Dropout probability of prediction layer.
max_seq_len (int): Maximum sequence length for decoding.
mask (bool): If True, mask padding in feature map.
start_idx (int): Index of start token.
padding_idx (int): Index of padding token.
pred_concat (bool): If True, concat glimpse feature from
attention with holistic feature and hidden state.
"""
def __init__(
self,
out_channels, # 90 + unknown + start + padding
enc_bi_rnn=False,
dec_bi_rnn=False,
dec_drop_rnn=0.0,
dec_gru=False,
d_model=512,
d_enc=512,
d_k=64,
pred_dropout=0.1,
max_text_length=30,
mask=True,
pred_concat=True,
**kwargs):
super().__init__()
self.num_classes = out_channels
self.enc_bi_rnn = enc_bi_rnn
self.d_k = d_k
self.start_idx = out_channels - 2
self.padding_idx = out_channels - 1
self.max_seq_len = max_text_length
self.mask = mask
self.pred_concat = pred_concat
encoder_rnn_out_size = d_enc * (int(enc_bi_rnn) + 1)
decoder_rnn_out_size = encoder_rnn_out_size * (int(dec_bi_rnn) + 1)
# 2D attention layer
self.conv1x1_1 = nn.Linear(decoder_rnn_out_size, d_k)
self.conv3x3_1 = nn.Conv2D(
d_model, d_k, kernel_size=3, stride=1, padding=1)
self.conv1x1_2 = nn.Linear(d_k, 1)
# Decoder RNN layer
if dec_bi_rnn:
direction = 'bidirectional'
else:
direction = 'forward'
kwargs = dict(
input_size=encoder_rnn_out_size,
hidden_size=encoder_rnn_out_size,
num_layers=2,
time_major=False,
dropout=dec_drop_rnn,
direction=direction)
if dec_gru:
self.rnn_decoder = nn.GRU(**kwargs)
else:
self.rnn_decoder = nn.LSTM(**kwargs)
# Decoder input embedding
self.embedding = nn.Embedding(
self.num_classes,
encoder_rnn_out_size,
padding_idx=self.padding_idx)
# Prediction layer
self.pred_dropout = nn.Dropout(pred_dropout)
pred_num_classes = self.num_classes - 1
if pred_concat:
fc_in_channel = decoder_rnn_out_size + d_model + encoder_rnn_out_size
else:
fc_in_channel = d_model
self.prediction = nn.Linear(fc_in_channel, pred_num_classes)
def _2d_attention(self,
decoder_input,
feat,
holistic_feat,
valid_ratios=None):
y = self.rnn_decoder(decoder_input)[0]
# y: bsz * (seq_len + 1) * hidden_size
attn_query = self.conv1x1_1(y) # bsz * (seq_len + 1) * attn_size
bsz, seq_len, attn_size = attn_query.shape
attn_query = paddle.unsqueeze(attn_query, axis=[3, 4])
# (bsz, seq_len + 1, attn_size, 1, 1)
attn_key = self.conv3x3_1(feat)
# bsz * attn_size * h * w
attn_key = attn_key.unsqueeze(1)
# bsz * 1 * attn_size * h * w
attn_weight = paddle.tanh(paddle.add(attn_key, attn_query))
# bsz * (seq_len + 1) * attn_size * h * w
attn_weight = paddle.transpose(attn_weight, perm=[0, 1, 3, 4, 2])
# bsz * (seq_len + 1) * h * w * attn_size
attn_weight = self.conv1x1_2(attn_weight)
# bsz * (seq_len + 1) * h * w * 1
bsz, T, h, w, c = paddle.shape(attn_weight)
assert c == 1
if valid_ratios is not None:
# cal mask of attention weight
for i in range(paddle.shape(valid_ratios)[0]):
valid_width = paddle.minimum(
w, paddle.ceil(valid_ratios[i] * w).astype("int32"))
if valid_width < w:
attn_weight[i, :, :, valid_width:, :] = float('-inf')
attn_weight = paddle.reshape(attn_weight, [bsz, T, -1])
attn_weight = F.softmax(attn_weight, axis=-1)
attn_weight = paddle.reshape(attn_weight, [bsz, T, h, w, c])
attn_weight = paddle.transpose(attn_weight, perm=[0, 1, 4, 2, 3])
# attn_weight: bsz * T * c * h * w
# feat: bsz * c * h * w
attn_feat = paddle.sum(paddle.multiply(feat.unsqueeze(1), attn_weight),
(3, 4),
keepdim=False)
# bsz * (seq_len + 1) * C
# Linear transformation
if self.pred_concat:
hf_c = holistic_feat.shape[-1]
holistic_feat = paddle.expand(
holistic_feat, shape=[bsz, seq_len, hf_c])
y = self.prediction(paddle.concat((y, attn_feat, holistic_feat), 2))
else:
y = self.prediction(attn_feat)
# bsz * (seq_len + 1) * num_classes
if self.train_mode:
y = self.pred_dropout(y)
return y
def forward_train(self, feat, out_enc, label, img_metas):
'''
img_metas: [label, valid_ratio]
'''
if img_metas is not None:
assert paddle.shape(img_metas[0])[0] == paddle.shape(feat)[0]
valid_ratios = None
if img_metas is not None and self.mask:
valid_ratios = img_metas[-1]
lab_embedding = self.embedding(label)
# bsz * seq_len * emb_dim
out_enc = out_enc.unsqueeze(1)
# bsz * 1 * emb_dim
in_dec = paddle.concat((out_enc, lab_embedding), axis=1)
# bsz * (seq_len + 1) * C
out_dec = self._2d_attention(
in_dec, feat, out_enc, valid_ratios=valid_ratios)
return out_dec[:, 1:, :] # bsz * seq_len * num_classes
def forward_test(self, feat, out_enc, img_metas):
if img_metas is not None:
assert len(img_metas[0]) == feat.shape[0]
valid_ratios = None
if img_metas is not None and self.mask:
valid_ratios = img_metas[-1]
seq_len = self.max_seq_len
bsz = feat.shape[0]
start_token = paddle.full(
(bsz, ), fill_value=self.start_idx, dtype='int64')
# bsz
start_token = self.embedding(start_token)
# bsz * emb_dim
emb_dim = start_token.shape[1]
start_token = start_token.unsqueeze(1)
start_token = paddle.expand(start_token, shape=[bsz, seq_len, emb_dim])
# bsz * seq_len * emb_dim
out_enc = out_enc.unsqueeze(1)
# bsz * 1 * emb_dim
decoder_input = paddle.concat((out_enc, start_token), axis=1)
# bsz * (seq_len + 1) * emb_dim
outputs = []
for i in range(1, seq_len + 1):
decoder_output = self._2d_attention(
decoder_input, feat, out_enc, valid_ratios=valid_ratios)
char_output = decoder_output[:, i, :] # bsz * num_classes
char_output = F.softmax(char_output, -1)
outputs.append(char_output)
max_idx = paddle.argmax(char_output, axis=1, keepdim=False)
char_embedding = self.embedding(max_idx) # bsz * emb_dim
if i < seq_len:
decoder_input[:, i + 1, :] = char_embedding
outputs = paddle.stack(outputs, 1) # bsz * seq_len * num_classes
return outputs
class SARHead(nn.Layer):
def __init__(self,
in_channels,
out_channels,
enc_dim=512,
max_text_length=30,
enc_bi_rnn=False,
enc_drop_rnn=0.1,
enc_gru=False,
dec_bi_rnn=False,
dec_drop_rnn=0.0,
dec_gru=False,
d_k=512,
pred_dropout=0.1,
pred_concat=True,
**kwargs):
super(SARHead, self).__init__()
# encoder module
self.encoder = SAREncoder(
enc_bi_rnn=enc_bi_rnn,
enc_drop_rnn=enc_drop_rnn,
enc_gru=enc_gru,
d_model=in_channels,
d_enc=enc_dim)
# decoder module
self.decoder = ParallelSARDecoder(
out_channels=out_channels,
enc_bi_rnn=enc_bi_rnn,
dec_bi_rnn=dec_bi_rnn,
dec_drop_rnn=dec_drop_rnn,
dec_gru=dec_gru,
d_model=in_channels,
d_enc=enc_dim,
d_k=d_k,
pred_dropout=pred_dropout,
max_text_length=max_text_length,
pred_concat=pred_concat)
def forward(self, feat, targets=None):
'''
img_metas: [label, valid_ratio]
'''
holistic_feat = self.encoder(feat, targets) # bsz c
if self.training:
label = targets[0] # label
final_out = self.decoder(
feat, holistic_feat, label, img_metas=targets)
else:
final_out = self.decoder(
feat,
holistic_feat,
label=None,
img_metas=targets,
train_mode=False)
# (bsz, seq_len, num_classes)
return final_out
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
from paddle import nn, ParamAttr
from paddle.nn import functional as F
import numpy as np
from .self_attention import WrapEncoderForFeature
from .self_attention import WrapEncoder
from paddle.static import Program
from ppocr.modeling.backbones.rec_resnet_fpn import ResNetFPN
from collections import OrderedDict
gradient_clip = 10
class PVAM(nn.Layer):
def __init__(self, in_channels, char_num, max_text_length, num_heads,
num_encoder_tus, hidden_dims):
super(PVAM, self).__init__()
self.char_num = char_num
self.max_length = max_text_length
self.num_heads = num_heads
self.num_encoder_TUs = num_encoder_tus
self.hidden_dims = hidden_dims
# Transformer encoder
t = 256
c = 512
self.wrap_encoder_for_feature = WrapEncoderForFeature(
src_vocab_size=1,
max_length=t,
n_layer=self.num_encoder_TUs,
n_head=self.num_heads,
d_key=int(self.hidden_dims / self.num_heads),
d_value=int(self.hidden_dims / self.num_heads),
d_model=self.hidden_dims,
d_inner_hid=self.hidden_dims,
prepostprocess_dropout=0.1,
attention_dropout=0.1,
relu_dropout=0.1,
preprocess_cmd="n",
postprocess_cmd="da",
weight_sharing=True)
# PVAM
self.flatten0 = paddle.nn.Flatten(start_axis=0, stop_axis=1)
self.fc0 = paddle.nn.Linear(
in_features=in_channels,
out_features=in_channels, )
self.emb = paddle.nn.Embedding(
num_embeddings=self.max_length, embedding_dim=in_channels)
self.flatten1 = paddle.nn.Flatten(start_axis=0, stop_axis=2)
self.fc1 = paddle.nn.Linear(
in_features=in_channels, out_features=1, bias_attr=False)
def forward(self, inputs, encoder_word_pos, gsrm_word_pos):
b, c, h, w = inputs.shape
conv_features = paddle.reshape(inputs, shape=[-1, c, h * w])
conv_features = paddle.transpose(conv_features, perm=[0, 2, 1])
# transformer encoder
b, t, c = conv_features.shape
enc_inputs = [conv_features, encoder_word_pos, None]
word_features = self.wrap_encoder_for_feature(enc_inputs)
# pvam
b, t, c = word_features.shape
word_features = self.fc0(word_features)
word_features_ = paddle.reshape(word_features, [-1, 1, t, c])
word_features_ = paddle.tile(word_features_, [1, self.max_length, 1, 1])
word_pos_feature = self.emb(gsrm_word_pos)
word_pos_feature_ = paddle.reshape(word_pos_feature,
[-1, self.max_length, 1, c])
word_pos_feature_ = paddle.tile(word_pos_feature_, [1, 1, t, 1])
y = word_pos_feature_ + word_features_
y = F.tanh(y)
attention_weight = self.fc1(y)
attention_weight = paddle.reshape(
attention_weight, shape=[-1, self.max_length, t])
attention_weight = F.softmax(attention_weight, axis=-1)
pvam_features = paddle.matmul(attention_weight,
word_features) #[b, max_length, c]
return pvam_features
class GSRM(nn.Layer):
def __init__(self, in_channels, char_num, max_text_length, num_heads,
num_encoder_tus, num_decoder_tus, hidden_dims):
super(GSRM, self).__init__()
self.char_num = char_num
self.max_length = max_text_length
self.num_heads = num_heads
self.num_encoder_TUs = num_encoder_tus
self.num_decoder_TUs = num_decoder_tus
self.hidden_dims = hidden_dims
self.fc0 = paddle.nn.Linear(
in_features=in_channels, out_features=self.char_num)
self.wrap_encoder0 = WrapEncoder(
src_vocab_size=self.char_num + 1,
max_length=self.max_length,
n_layer=self.num_decoder_TUs,
n_head=self.num_heads,
d_key=int(self.hidden_dims / self.num_heads),
d_value=int(self.hidden_dims / self.num_heads),
d_model=self.hidden_dims,
d_inner_hid=self.hidden_dims,
prepostprocess_dropout=0.1,
attention_dropout=0.1,
relu_dropout=0.1,
preprocess_cmd="n",
postprocess_cmd="da",
weight_sharing=True)
self.wrap_encoder1 = WrapEncoder(
src_vocab_size=self.char_num + 1,
max_length=self.max_length,
n_layer=self.num_decoder_TUs,
n_head=self.num_heads,
d_key=int(self.hidden_dims / self.num_heads),
d_value=int(self.hidden_dims / self.num_heads),
d_model=self.hidden_dims,
d_inner_hid=self.hidden_dims,
prepostprocess_dropout=0.1,
attention_dropout=0.1,
relu_dropout=0.1,
preprocess_cmd="n",
postprocess_cmd="da",
weight_sharing=True)
self.mul = lambda x: paddle.matmul(x=x,
y=self.wrap_encoder0.prepare_decoder.emb0.weight,
transpose_y=True)
def forward(self, inputs, gsrm_word_pos, gsrm_slf_attn_bias1,
gsrm_slf_attn_bias2):
# ===== GSRM Visual-to-semantic embedding block =====
b, t, c = inputs.shape
pvam_features = paddle.reshape(inputs, [-1, c])
word_out = self.fc0(pvam_features)
word_ids = paddle.argmax(F.softmax(word_out), axis=1)
word_ids = paddle.reshape(x=word_ids, shape=[-1, t, 1])
#===== GSRM Semantic reasoning block =====
"""
This module is achieved through bi-transformers,
ngram_feature1 is the froward one, ngram_fetaure2 is the backward one
"""
pad_idx = self.char_num
word1 = paddle.cast(word_ids, "float32")
word1 = F.pad(word1, [1, 0], value=1.0 * pad_idx, data_format="NLC")
word1 = paddle.cast(word1, "int64")
word1 = word1[:, :-1, :]
word2 = word_ids
enc_inputs_1 = [word1, gsrm_word_pos, gsrm_slf_attn_bias1]
enc_inputs_2 = [word2, gsrm_word_pos, gsrm_slf_attn_bias2]
gsrm_feature1 = self.wrap_encoder0(enc_inputs_1)
gsrm_feature2 = self.wrap_encoder1(enc_inputs_2)
gsrm_feature2 = F.pad(gsrm_feature2, [0, 1],
value=0.,
data_format="NLC")
gsrm_feature2 = gsrm_feature2[:, 1:, ]
gsrm_features = gsrm_feature1 + gsrm_feature2
gsrm_out = self.mul(gsrm_features)
b, t, c = gsrm_out.shape
gsrm_out = paddle.reshape(gsrm_out, [-1, c])
return gsrm_features, word_out, gsrm_out
class VSFD(nn.Layer):
def __init__(self, in_channels=512, pvam_ch=512, char_num=38):
super(VSFD, self).__init__()
self.char_num = char_num
self.fc0 = paddle.nn.Linear(
in_features=in_channels * 2, out_features=pvam_ch)
self.fc1 = paddle.nn.Linear(
in_features=pvam_ch, out_features=self.char_num)
def forward(self, pvam_feature, gsrm_feature):
b, t, c1 = pvam_feature.shape
b, t, c2 = gsrm_feature.shape
combine_feature_ = paddle.concat([pvam_feature, gsrm_feature], axis=2)
img_comb_feature_ = paddle.reshape(
combine_feature_, shape=[-1, c1 + c2])
img_comb_feature_map = self.fc0(img_comb_feature_)
img_comb_feature_map = F.sigmoid(img_comb_feature_map)
img_comb_feature_map = paddle.reshape(
img_comb_feature_map, shape=[-1, t, c1])
combine_feature = img_comb_feature_map * pvam_feature + (
1.0 - img_comb_feature_map) * gsrm_feature
img_comb_feature = paddle.reshape(combine_feature, shape=[-1, c1])
out = self.fc1(img_comb_feature)
return out
class SRNHead(nn.Layer):
def __init__(self, in_channels, out_channels, max_text_length, num_heads,
num_encoder_TUs, num_decoder_TUs, hidden_dims, **kwargs):
super(SRNHead, self).__init__()
self.char_num = out_channels
self.max_length = max_text_length
self.num_heads = num_heads
self.num_encoder_TUs = num_encoder_TUs
self.num_decoder_TUs = num_decoder_TUs
self.hidden_dims = hidden_dims
self.pvam = PVAM(
in_channels=in_channels,
char_num=self.char_num,
max_text_length=self.max_length,
num_heads=self.num_heads,
num_encoder_tus=self.num_encoder_TUs,
hidden_dims=self.hidden_dims)
self.gsrm = GSRM(
in_channels=in_channels,
char_num=self.char_num,
max_text_length=self.max_length,
num_heads=self.num_heads,
num_encoder_tus=self.num_encoder_TUs,
num_decoder_tus=self.num_decoder_TUs,
hidden_dims=self.hidden_dims)
self.vsfd = VSFD(in_channels=in_channels, char_num=self.char_num)
self.gsrm.wrap_encoder1.prepare_decoder.emb0 = self.gsrm.wrap_encoder0.prepare_decoder.emb0
def forward(self, inputs, targets=None):
others = targets[-4:]
encoder_word_pos = others[0]
gsrm_word_pos = others[1]
gsrm_slf_attn_bias1 = others[2]
gsrm_slf_attn_bias2 = others[3]
pvam_feature = self.pvam(inputs, encoder_word_pos, gsrm_word_pos)
gsrm_feature, word_out, gsrm_out = self.gsrm(
pvam_feature, gsrm_word_pos, gsrm_slf_attn_bias1,
gsrm_slf_attn_bias2)
final_out = self.vsfd(pvam_feature, gsrm_feature)
if not self.training:
final_out = F.softmax(final_out, axis=1)
_, decoded_out = paddle.topk(final_out, k=1)
predicts = OrderedDict([
('predict', final_out),
('pvam_feature', pvam_feature),
('decoded_out', decoded_out),
('word_out', word_out),
('gsrm_out', gsrm_out),
])
return predicts
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
from paddle import ParamAttr, nn
from paddle import nn, ParamAttr
from paddle.nn import functional as F
import numpy as np
gradient_clip = 10
class WrapEncoderForFeature(nn.Layer):
def __init__(self,
src_vocab_size,
max_length,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
preprocess_cmd,
postprocess_cmd,
weight_sharing,
bos_idx=0):
super(WrapEncoderForFeature, self).__init__()
self.prepare_encoder = PrepareEncoder(
src_vocab_size,
d_model,
max_length,
prepostprocess_dropout,
bos_idx=bos_idx,
word_emb_param_name="src_word_emb_table")
self.encoder = Encoder(n_layer, n_head, d_key, d_value, d_model,
d_inner_hid, prepostprocess_dropout,
attention_dropout, relu_dropout, preprocess_cmd,
postprocess_cmd)
def forward(self, enc_inputs):
conv_features, src_pos, src_slf_attn_bias = enc_inputs
enc_input = self.prepare_encoder(conv_features, src_pos)
enc_output = self.encoder(enc_input, src_slf_attn_bias)
return enc_output
class WrapEncoder(nn.Layer):
"""
embedder + encoder
"""
def __init__(self,
src_vocab_size,
max_length,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
preprocess_cmd,
postprocess_cmd,
weight_sharing,
bos_idx=0):
super(WrapEncoder, self).__init__()
self.prepare_decoder = PrepareDecoder(
src_vocab_size,
d_model,
max_length,
prepostprocess_dropout,
bos_idx=bos_idx)
self.encoder = Encoder(n_layer, n_head, d_key, d_value, d_model,
d_inner_hid, prepostprocess_dropout,
attention_dropout, relu_dropout, preprocess_cmd,
postprocess_cmd)
def forward(self, enc_inputs):
src_word, src_pos, src_slf_attn_bias = enc_inputs
enc_input = self.prepare_decoder(src_word, src_pos)
enc_output = self.encoder(enc_input, src_slf_attn_bias)
return enc_output
class Encoder(nn.Layer):
"""
encoder
"""
def __init__(self,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
preprocess_cmd="n",
postprocess_cmd="da"):
super(Encoder, self).__init__()
self.encoder_layers = list()
for i in range(n_layer):
self.encoder_layers.append(
self.add_sublayer(
"layer_%d" % i,
EncoderLayer(n_head, d_key, d_value, d_model, d_inner_hid,
prepostprocess_dropout, attention_dropout,
relu_dropout, preprocess_cmd,
postprocess_cmd)))
self.processer = PrePostProcessLayer(preprocess_cmd, d_model,
prepostprocess_dropout)
def forward(self, enc_input, attn_bias):
for encoder_layer in self.encoder_layers:
enc_output = encoder_layer(enc_input, attn_bias)
enc_input = enc_output
enc_output = self.processer(enc_output)
return enc_output
class EncoderLayer(nn.Layer):
"""
EncoderLayer
"""
def __init__(self,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
preprocess_cmd="n",
postprocess_cmd="da"):
super(EncoderLayer, self).__init__()
self.preprocesser1 = PrePostProcessLayer(preprocess_cmd, d_model,
prepostprocess_dropout)
self.self_attn = MultiHeadAttention(d_key, d_value, d_model, n_head,
attention_dropout)
self.postprocesser1 = PrePostProcessLayer(postprocess_cmd, d_model,
prepostprocess_dropout)
self.preprocesser2 = PrePostProcessLayer(preprocess_cmd, d_model,
prepostprocess_dropout)
self.ffn = FFN(d_inner_hid, d_model, relu_dropout)
self.postprocesser2 = PrePostProcessLayer(postprocess_cmd, d_model,
prepostprocess_dropout)
def forward(self, enc_input, attn_bias):
attn_output = self.self_attn(
self.preprocesser1(enc_input), None, None, attn_bias)
attn_output = self.postprocesser1(attn_output, enc_input)
ffn_output = self.ffn(self.preprocesser2(attn_output))
ffn_output = self.postprocesser2(ffn_output, attn_output)
return ffn_output
class MultiHeadAttention(nn.Layer):
"""
Multi-Head Attention
"""
def __init__(self, d_key, d_value, d_model, n_head=1, dropout_rate=0.):
super(MultiHeadAttention, self).__init__()
self.n_head = n_head
self.d_key = d_key
self.d_value = d_value
self.d_model = d_model
self.dropout_rate = dropout_rate
self.q_fc = paddle.nn.Linear(
in_features=d_model, out_features=d_key * n_head, bias_attr=False)
self.k_fc = paddle.nn.Linear(
in_features=d_model, out_features=d_key * n_head, bias_attr=False)
self.v_fc = paddle.nn.Linear(
in_features=d_model, out_features=d_value * n_head, bias_attr=False)
self.proj_fc = paddle.nn.Linear(
in_features=d_value * n_head, out_features=d_model, bias_attr=False)
def _prepare_qkv(self, queries, keys, values, cache=None):
if keys is None: # self-attention
keys, values = queries, queries
static_kv = False
else: # cross-attention
static_kv = True
q = self.q_fc(queries)
q = paddle.reshape(x=q, shape=[0, 0, self.n_head, self.d_key])
q = paddle.transpose(x=q, perm=[0, 2, 1, 3])
if cache is not None and static_kv and "static_k" in cache:
# for encoder-decoder attention in inference and has cached
k = cache["static_k"]
v = cache["static_v"]
else:
k = self.k_fc(keys)
v = self.v_fc(values)
k = paddle.reshape(x=k, shape=[0, 0, self.n_head, self.d_key])
k = paddle.transpose(x=k, perm=[0, 2, 1, 3])
v = paddle.reshape(x=v, shape=[0, 0, self.n_head, self.d_value])
v = paddle.transpose(x=v, perm=[0, 2, 1, 3])
if cache is not None:
if static_kv and not "static_k" in cache:
# for encoder-decoder attention in inference and has not cached
cache["static_k"], cache["static_v"] = k, v
elif not static_kv:
# for decoder self-attention in inference
cache_k, cache_v = cache["k"], cache["v"]
k = paddle.concat([cache_k, k], axis=2)
v = paddle.concat([cache_v, v], axis=2)
cache["k"], cache["v"] = k, v
return q, k, v
def forward(self, queries, keys, values, attn_bias, cache=None):
# compute q ,k ,v
keys = queries if keys is None else keys
values = keys if values is None else values
q, k, v = self._prepare_qkv(queries, keys, values, cache)
# scale dot product attention
product = paddle.matmul(x=q, y=k, transpose_y=True)
product = product * self.d_model**-0.5
if attn_bias is not None:
product += attn_bias
weights = F.softmax(product)
if self.dropout_rate:
weights = F.dropout(
weights, p=self.dropout_rate, mode="downscale_in_infer")
out = paddle.matmul(weights, v)
# combine heads
out = paddle.transpose(out, perm=[0, 2, 1, 3])
out = paddle.reshape(x=out, shape=[0, 0, out.shape[2] * out.shape[3]])
# project to output
out = self.proj_fc(out)
return out
class PrePostProcessLayer(nn.Layer):
"""
PrePostProcessLayer
"""
def __init__(self, process_cmd, d_model, dropout_rate):
super(PrePostProcessLayer, self).__init__()
self.process_cmd = process_cmd
self.functors = []
for cmd in self.process_cmd:
if cmd == "a": # add residual connection
self.functors.append(lambda x, y: x + y if y is not None else x)
elif cmd == "n": # add layer normalization
self.functors.append(
self.add_sublayer(
"layer_norm_%d" % len(self.sublayers()),
paddle.nn.LayerNorm(
normalized_shape=d_model,
weight_attr=paddle.ParamAttr(
initializer=paddle.nn.initializer.Constant(1.)),
bias_attr=paddle.ParamAttr(
initializer=paddle.nn.initializer.Constant(0.)))))
elif cmd == "d": # add dropout
self.functors.append(lambda x: F.dropout(
x, p=dropout_rate, mode="downscale_in_infer")
if dropout_rate else x)
def forward(self, x, residual=None):
for i, cmd in enumerate(self.process_cmd):
if cmd == "a":
x = self.functors[i](x, residual)
else:
x = self.functors[i](x)
return x
class PrepareEncoder(nn.Layer):
def __init__(self,
src_vocab_size,
src_emb_dim,
src_max_len,
dropout_rate=0,
bos_idx=0,
word_emb_param_name=None,
pos_enc_param_name=None):
super(PrepareEncoder, self).__init__()
self.src_emb_dim = src_emb_dim
self.src_max_len = src_max_len
self.emb = paddle.nn.Embedding(
num_embeddings=self.src_max_len, embedding_dim=self.src_emb_dim)
self.dropout_rate = dropout_rate
def forward(self, src_word, src_pos):
src_word_emb = src_word
src_word_emb = paddle.cast(src_word_emb, 'float32')
src_word_emb = paddle.scale(x=src_word_emb, scale=self.src_emb_dim**0.5)
src_pos = paddle.squeeze(src_pos, axis=-1)
src_pos_enc = self.emb(src_pos)
src_pos_enc.stop_gradient = True
enc_input = src_word_emb + src_pos_enc
if self.dropout_rate:
out = F.dropout(
x=enc_input, p=self.dropout_rate, mode="downscale_in_infer")
else:
out = enc_input
return out
class PrepareDecoder(nn.Layer):
def __init__(self,
src_vocab_size,
src_emb_dim,
src_max_len,
dropout_rate=0,
bos_idx=0,
word_emb_param_name=None,
pos_enc_param_name=None):
super(PrepareDecoder, self).__init__()
self.src_emb_dim = src_emb_dim
"""
self.emb0 = Embedding(num_embeddings=src_vocab_size,
embedding_dim=src_emb_dim)
"""
self.emb0 = paddle.nn.Embedding(
num_embeddings=src_vocab_size,
embedding_dim=self.src_emb_dim,
padding_idx=bos_idx,
weight_attr=paddle.ParamAttr(
name=word_emb_param_name,
initializer=nn.initializer.Normal(0., src_emb_dim**-0.5)))
self.emb1 = paddle.nn.Embedding(
num_embeddings=src_max_len,
embedding_dim=self.src_emb_dim,
weight_attr=paddle.ParamAttr(name=pos_enc_param_name))
self.dropout_rate = dropout_rate
def forward(self, src_word, src_pos):
src_word = paddle.cast(src_word, 'int64')
src_word = paddle.squeeze(src_word, axis=-1)
src_word_emb = self.emb0(src_word)
src_word_emb = paddle.scale(x=src_word_emb, scale=self.src_emb_dim**0.5)
src_pos = paddle.squeeze(src_pos, axis=-1)
src_pos_enc = self.emb1(src_pos)
src_pos_enc.stop_gradient = True
enc_input = src_word_emb + src_pos_enc
if self.dropout_rate:
out = F.dropout(
x=enc_input, p=self.dropout_rate, mode="downscale_in_infer")
else:
out = enc_input
return out
class FFN(nn.Layer):
"""
Feed-Forward Network
"""
def __init__(self, d_inner_hid, d_model, dropout_rate):
super(FFN, self).__init__()
self.dropout_rate = dropout_rate
self.fc1 = paddle.nn.Linear(
in_features=d_model, out_features=d_inner_hid)
self.fc2 = paddle.nn.Linear(
in_features=d_inner_hid, out_features=d_model)
def forward(self, x):
hidden = self.fc1(x)
hidden = F.relu(hidden)
if self.dropout_rate:
hidden = F.dropout(
hidden, p=self.dropout_rate, mode="downscale_in_infer")
out = self.fc2(hidden)
return out
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import numpy as np
class TableAttentionHead(nn.Layer):
def __init__(self,
in_channels,
hidden_size,
loc_type,
in_max_len=488,
max_text_length=100,
max_elem_length=800,
max_cell_num=500,
**kwargs):
super(TableAttentionHead, self).__init__()
self.input_size = in_channels[-1]
self.hidden_size = hidden_size
self.elem_num = 30
self.max_text_length = max_text_length
self.max_elem_length = max_elem_length
self.max_cell_num = max_cell_num
self.structure_attention_cell = AttentionGRUCell(
self.input_size, hidden_size, self.elem_num, use_gru=False)
self.structure_generator = nn.Linear(hidden_size, self.elem_num)
self.loc_type = loc_type
self.in_max_len = in_max_len
if self.loc_type == 1:
self.loc_generator = nn.Linear(hidden_size, 4)
else:
if self.in_max_len == 640:
self.loc_fea_trans = nn.Linear(400, self.max_elem_length + 1)
elif self.in_max_len == 800:
self.loc_fea_trans = nn.Linear(625, self.max_elem_length + 1)
else:
self.loc_fea_trans = nn.Linear(256, self.max_elem_length + 1)
self.loc_generator = nn.Linear(self.input_size + hidden_size, 4)
def _char_to_onehot(self, input_char, onehot_dim):
input_ont_hot = F.one_hot(input_char, onehot_dim)
return input_ont_hot
def forward(self, inputs, targets=None):
# if and else branch are both needed when you want to assign a variable
# if you modify the var in just one branch, then the modification will not work.
fea = inputs[-1]
if len(fea.shape) == 3:
pass
else:
last_shape = int(np.prod(fea.shape[2:])) # gry added
fea = paddle.reshape(fea, [fea.shape[0], fea.shape[1], last_shape])
fea = fea.transpose([0, 2, 1]) # (NTC)(batch, width, channels)
batch_size = fea.shape[0]
hidden = paddle.zeros((batch_size, self.hidden_size))
output_hiddens = []
if self.training and targets is not None:
structure = targets[0]
for i in range(self.max_elem_length + 1):
elem_onehots = self._char_to_onehot(
structure[:, i], onehot_dim=self.elem_num)
(outputs, hidden), alpha = self.structure_attention_cell(
hidden, fea, elem_onehots)
output_hiddens.append(paddle.unsqueeze(outputs, axis=1))
output = paddle.concat(output_hiddens, axis=1)
structure_probs = self.structure_generator(output)
if self.loc_type == 1:
loc_preds = self.loc_generator(output)
loc_preds = F.sigmoid(loc_preds)
else:
loc_fea = fea.transpose([0, 2, 1])
loc_fea = self.loc_fea_trans(loc_fea)
loc_fea = loc_fea.transpose([0, 2, 1])
loc_concat = paddle.concat([output, loc_fea], axis=2)
loc_preds = self.loc_generator(loc_concat)
loc_preds = F.sigmoid(loc_preds)
else:
temp_elem = paddle.zeros(shape=[batch_size], dtype="int32")
structure_probs = None
loc_preds = None
elem_onehots = None
outputs = None
alpha = None
max_elem_length = paddle.to_tensor(self.max_elem_length)
i = 0
while i < max_elem_length + 1:
elem_onehots = self._char_to_onehot(
temp_elem, onehot_dim=self.elem_num)
(outputs, hidden), alpha = self.structure_attention_cell(
hidden, fea, elem_onehots)
output_hiddens.append(paddle.unsqueeze(outputs, axis=1))
structure_probs_step = self.structure_generator(outputs)
temp_elem = structure_probs_step.argmax(axis=1, dtype="int32")
i += 1
output = paddle.concat(output_hiddens, axis=1)
structure_probs = self.structure_generator(output)
structure_probs = F.softmax(structure_probs)
if self.loc_type == 1:
loc_preds = self.loc_generator(output)
loc_preds = F.sigmoid(loc_preds)
else:
loc_fea = fea.transpose([0, 2, 1])
loc_fea = self.loc_fea_trans(loc_fea)
loc_fea = loc_fea.transpose([0, 2, 1])
loc_concat = paddle.concat([output, loc_fea], axis=2)
loc_preds = self.loc_generator(loc_concat)
loc_preds = F.sigmoid(loc_preds)
return {'structure_probs': structure_probs, 'loc_preds': loc_preds}
class AttentionGRUCell(nn.Layer):
def __init__(self, input_size, hidden_size, num_embeddings, use_gru=False):
super(AttentionGRUCell, self).__init__()
self.i2h = nn.Linear(input_size, hidden_size, bias_attr=False)
self.h2h = nn.Linear(hidden_size, hidden_size)
self.score = nn.Linear(hidden_size, 1, bias_attr=False)
self.rnn = nn.GRUCell(
input_size=input_size + num_embeddings, hidden_size=hidden_size)
self.hidden_size = hidden_size
def forward(self, prev_hidden, batch_H, char_onehots):
batch_H_proj = self.i2h(batch_H)
prev_hidden_proj = paddle.unsqueeze(self.h2h(prev_hidden), axis=1)
res = paddle.add(batch_H_proj, prev_hidden_proj)
res = paddle.tanh(res)
e = self.score(res)
alpha = F.softmax(e, axis=1)
alpha = paddle.transpose(alpha, [0, 2, 1])
context = paddle.squeeze(paddle.mm(alpha, batch_H), axis=1)
concat_context = paddle.concat([context, char_onehots], 1)
cur_hidden = self.rnn(concat_context, prev_hidden)
return cur_hidden, alpha
class AttentionLSTM(nn.Layer):
def __init__(self, in_channels, out_channels, hidden_size, **kwargs):
super(AttentionLSTM, self).__init__()
self.input_size = in_channels
self.hidden_size = hidden_size
self.num_classes = out_channels
self.attention_cell = AttentionLSTMCell(
in_channels, hidden_size, out_channels, use_gru=False)
self.generator = nn.Linear(hidden_size, out_channels)
def _char_to_onehot(self, input_char, onehot_dim):
input_ont_hot = F.one_hot(input_char, onehot_dim)
return input_ont_hot
def forward(self, inputs, targets=None, batch_max_length=25):
batch_size = inputs.shape[0]
num_steps = batch_max_length
hidden = (paddle.zeros((batch_size, self.hidden_size)), paddle.zeros(
(batch_size, self.hidden_size)))
output_hiddens = []
if targets is not None:
for i in range(num_steps):
# one-hot vectors for a i-th char
char_onehots = self._char_to_onehot(
targets[:, i], onehot_dim=self.num_classes)
hidden, alpha = self.attention_cell(hidden, inputs,
char_onehots)
hidden = (hidden[1][0], hidden[1][1])
output_hiddens.append(paddle.unsqueeze(hidden[0], axis=1))
output = paddle.concat(output_hiddens, axis=1)
probs = self.generator(output)
else:
targets = paddle.zeros(shape=[batch_size], dtype="int32")
probs = None
for i in range(num_steps):
char_onehots = self._char_to_onehot(
targets, onehot_dim=self.num_classes)
hidden, alpha = self.attention_cell(hidden, inputs,
char_onehots)
probs_step = self.generator(hidden[0])
hidden = (hidden[1][0], hidden[1][1])
if probs is None:
probs = paddle.unsqueeze(probs_step, axis=1)
else:
probs = paddle.concat(
[probs, paddle.unsqueeze(
probs_step, axis=1)], axis=1)
next_input = probs_step.argmax(axis=1)
targets = next_input
return probs
class AttentionLSTMCell(nn.Layer):
def __init__(self, input_size, hidden_size, num_embeddings, use_gru=False):
super(AttentionLSTMCell, self).__init__()
self.i2h = nn.Linear(input_size, hidden_size, bias_attr=False)
self.h2h = nn.Linear(hidden_size, hidden_size)
self.score = nn.Linear(hidden_size, 1, bias_attr=False)
if not use_gru:
self.rnn = nn.LSTMCell(
input_size=input_size + num_embeddings, hidden_size=hidden_size)
else:
self.rnn = nn.GRUCell(
input_size=input_size + num_embeddings, hidden_size=hidden_size)
self.hidden_size = hidden_size
def forward(self, prev_hidden, batch_H, char_onehots):
batch_H_proj = self.i2h(batch_H)
prev_hidden_proj = paddle.unsqueeze(self.h2h(prev_hidden[0]), axis=1)
res = paddle.add(batch_H_proj, prev_hidden_proj)
res = paddle.tanh(res)
e = self.score(res)
alpha = F.softmax(e, axis=1)
alpha = paddle.transpose(alpha, [0, 2, 1])
context = paddle.squeeze(paddle.mm(alpha, batch_H), axis=1)
concat_context = paddle.concat([context, char_onehots], 1)
cur_hidden = self.rnn(concat_context, prev_hidden)
return cur_hidden, alpha
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
__all__ = ['build_neck']
def build_neck(config):
from .db_fpn import DBFPN, RSEFPN, LKPAN
from .east_fpn import EASTFPN
from .sast_fpn import SASTFPN
from .rnn import SequenceEncoder
from .pg_fpn import PGFPN
from .table_fpn import TableFPN
from .fpn import FPN
from .fce_fpn import FCEFPN
from .pren_fpn import PRENFPN
support_dict = [
'FPN', 'FCEFPN', 'LKPAN', 'DBFPN', 'RSEFPN', 'EASTFPN', 'SASTFPN',
'SequenceEncoder', 'PGFPN', 'TableFPN', 'PRENFPN'
]
module_name = config.pop('name')
assert module_name in support_dict, Exception('neck only support {}'.format(
support_dict))
module_class = eval(module_name)(**config)
return module_class
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment