

PaddleOCR-VL: Boosting Multilingual Document Parsing via a 0.9B Ultra-Compact Vision-Language Model

Cheng Cui, Ting Sun, Suyin Liang, Tingquan Gao, Zelun Zhang, Jiaxuan Liu, Xueqing Wang, Changda Zhou, Hongen Liu, Manhui Lin, Yue Zhang, Yubo Zhang, Handong Zheng, Jing Zhang, Jun Zhang, Yi Liu, Dianhai Yu, Yanjun Ma

PaddlePaddle Team, Baidu Inc.

paddleocr@baidu.com

⌚ Source Code: <https://github.com/PaddlePaddle/PaddleOCR>

👉 Models & Online Demo: <https://huggingface.co/PaddlePaddle>

Abstract

In this report, we propose PaddleOCR-VL, a SOTA and resource-efficient model tailored for document parsing. Its core component is PaddleOCR-VL-0.9B, a compact yet powerful vision-language model (VLM) that integrates a NaViT-style dynamic resolution visual encoder with the ERNIE-4.5-0.3B language model to enable accurate element recognition. This innovative model efficiently supports 109 languages and excels in recognizing complex elements (e.g., text, tables, formulas, and charts), while maintaining minimal resource consumption. Through comprehensive evaluations on widely used public benchmarks and in-house benchmarks, PaddleOCR-VL achieves SOTA performance in both page-level document parsing and element-level recognition. It significantly outperforms existing solutions, exhibits strong competitiveness against top-tier VLMs, and delivers fast inference speeds. These strengths make it highly suitable for practical deployment in real-world scenarios.

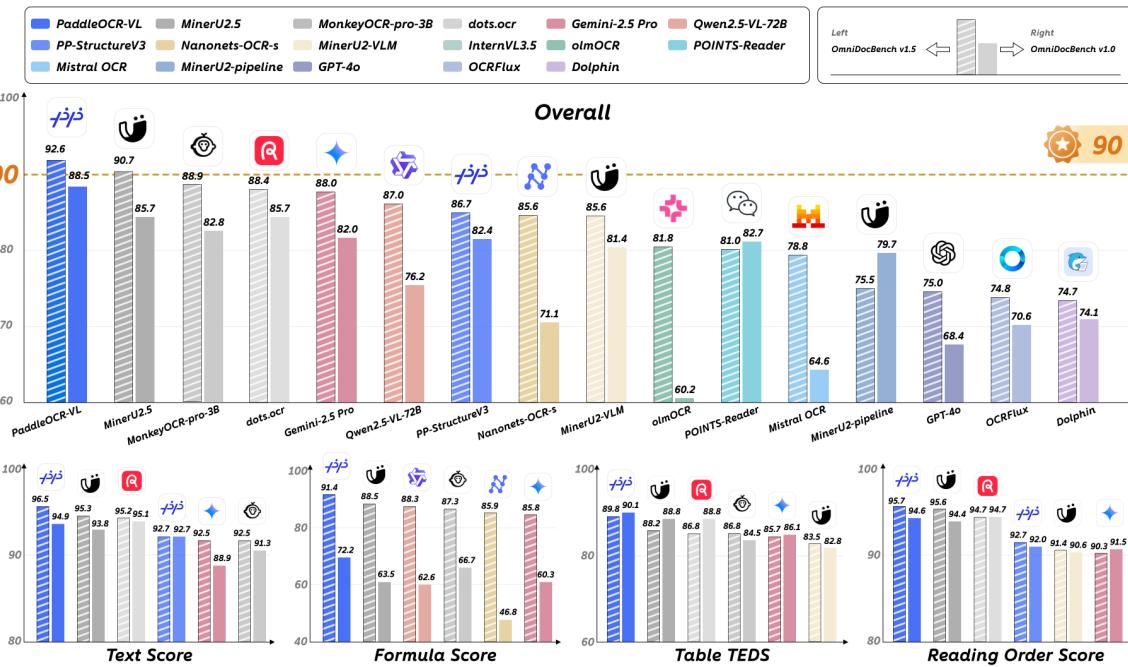


Figure 1 | Performance of PaddleOCR-VL on OmniDocBench v1.0 and v1.5.

Contents

1	Introduction	3
2	PaddleOCR-VL	4
2.1	Architecture	4
2.2	Training Recipe	7
3	Dataset	9
3.1	Data Curation	9
3.2	Automatic Data Annotation	10
3.3	Hard Cases Mining	10
4	Evaluation	10
4.1	Page-level Evaluation	11
4.2	Element-level Evaluation	13
4.3	Inference Performance	17
5	Conclusion	18
A	Training Dataset Details	25
A.1	Text	25
A.2	Table	26
A.3	Formula	27
A.4	Chart	28
B	Supported Languages	30
C	Inference Performance on Different Hardware Configurations	31
D	Real-world Samples	32
D.1	Comprehensive Document Parsing	33
D.2	Layout Detection	37
D.3	Reading Order	40
D.4	Text Recognition	42
D.5	Table Recognition	51
D.6	Formula Recognition	53
D.7	Chart Recognition	55
E	Compare with Others	58
E.1	Layout Detection	59
E.2	Text Recognition	61
E.3	Table Recognition	67
E.4	Formula Recognition	69
E.5	Chart Recognition	70

1. Introduction

Documents serve as core information carriers, with their complexity and volume growing at an exponential rate, making document parsing an indispensable key technology. The primary goal of document parsing [1, 2, 3, 4] is to enable deep structural and semantic understanding of a document’s layout. Specifically, it involves recognizing distinct text blocks and columns, distinguishing formulas, tables, charts, and images, determining the correct reading order, and detecting key elements (e.g., footnotes and image captions); these capabilities collectively lay a solid foundation for efficient information retrieval and data management. Furthermore, advanced document parsing enables large language models (LLMs) [5, 6, 7], especially when combined with Retrieval-Augmented Generation (RAG) [8], to access high-quality knowledge and enhance their practical applications.

The inherent complexity of modern documents presents unique challenges: they often combine dense text, complex tables or chart, mathematical expressions, multiple languages and handwritten texts, with deserve layout structures. Recent research [1, 9, 10, 11, 12] in the field of document parsing primarily following two technological approaches. The first approach [9, 10] employs pipeline methodologies based on specialized, modular expert models. Although these methods offer strong performance, they are increasingly hindered by integration complexity, cumulative error propagation, and inherent limitations when handling highly complex documents. Secondly, end-to-end approaches [12, 13, 14] leveraging multimodal models aim to simplify the workflow and enable joint optimization. However, these methods often struggle with correct text order and can even generate hallucinations when faced with lengthy or complex layouts, while also incurring substantial computational overhead for long sequence outputs, thereby restricting their practical deployment.

To address these advancements and challenges, we present PaddleOCR-VL, a high-performance, resource-efficient document parsing solution based on a vision-language model. This innovation paves the way for the widespread application of multimodal document parsing, particularly in resource-constrained environments. PaddleOCR-VL combines a robust layout analysis model with a compact yet powerful vision-language model, PaddleOCR-VL-0.9B.

Firstly, PaddleOCR-VL performs layout detection and reading order prediction to obtain the positional coordinates and reading order of elements (text blocks, tables, formulas, and charts). Compared to multimodal methods that rely on grounding and sequence output (e.g., MinerU2.5 [2], Dolphin [3]), our method offers faster inference speeds, lower training costs, and easier extensibility for new layout categories. Subsequently, the elements are segmented based on their positions and fed into PaddleOCR-VL-0.9B for recognition. This vision-language model is specifically designed for resource-efficient inference and excels at element recognition within document parsing. By integrating a NaViT-style [15] dynamic high-resolution visual encoder with the lightweight ERNIE-4.5-0.3B [5] language model, we have significantly enhanced the model’s dense text recognition capabilities and decoding efficiency.

To train a powerful multimodal model, we have developed a high-quality training data construction pipeline. We collected over 30 million training samples through public data acquisition and data synthesis. We meticulously designed prompt engineering to guide the automatic labeling by general large models, based on the recognition results of expert models. Simultaneously, We performed data cleaning to remove low-quality or inconsistent annotations, such as those caused by model hallucinations. We designed an evaluation engine, which is an assessment collection that categorizes each element into more detailed categories. Through this automated evaluation, we can analyze the current model’s training performance across different

types. This allows us to conduct targeted hard sample mining based on element types and to construct similar challenging examples through data synthesis. Finally, we incorporated manual annotation for a small number of corner cases to complete the construction of the training data.

Comprehensive benchmarking on the public benchmarks, including OmniDocBench v1.0, v1.5 [16] and olmOCR-Bench [12], and in-house ones demonstrate that PaddleOCR-VL achieves SOTA performance in document parsing task, significantly outperforming existing pipeline-based solutions and exhibiting strong competitiveness against leading vision-language models (VLMs). Moreover, PaddleOCR-VL is optimized for efficiency, delivering substantially lower latency and higher throughput than competing approaches.

PaddleOCR-VL actively addresses current challenges in document processing with a high-performance, resource-efficient multimodal document parsing solution. Its key contributions include:

- **Compact yet Powerful VLM Architecture:** We present a novel vision-language model that is specifically designed for resource-efficient inference, achieving outstanding performance in element recognition. By integrating a NaViT-style dynamic high-resolution visual encoder with the lightweight ERNIE-4.5-0.3B language model, we significantly enhance the model’s recognition capabilities and decoding efficiency. This integration maintains high accuracy while reducing computational demands, making it well-suited for efficient and practical document processing applications.
- **High-quality Data Construction Methodology:** We propose a systematic and comprehensive methodology for constructing high-quality datasets, providing a solid train data foundation for efficient and robust document parsing. This methodology not only enables us to construct high-quality data on demand, but also provides a new perspective on the automated generation of high-quality data.
- **SOTA Performance Document Parsing:** PaddleOCR-VL achieves state-of-the-art performance in document parsing task. It excels in recognizing complex document elements, such as **text, tables, formulas, and charts**, making it suitable for a wide range of challenging content types, including handwritten text and historical documents. Supporting **109 languages**, including major global languages and those with diverse scripts like Russian, Arabic, and Hindi, PaddleOCR-VL is highly applicable to multilingual and globalized document processing scenarios.

2. PaddleOCR-VL

2.1. Architecture

PaddleOCR-VL decomposes the complex task of document parsing into a two stages, as illustrated in Figure 2. The first stage, PP-DocLayoutV2, is responsible for layout analysis, where it localizes semantic regions and predicts their reading order. Subsequently, the second stage, PaddleOCR-VL-0.9B, leverages these layout predictions to perform fine-grained recognition of diverse content, including text, tables, formulas, and charts. Finally, a lightweight post-processing module aggregates the outputs from both stages and formats the final document into structured Markdown and JSON.

2.1.1. Layout Analysis

Considering that end-to-end approaches based on VLM rely on long-sequence autoregressive processes, which result in high latency and memory consumption, and increase the risk of

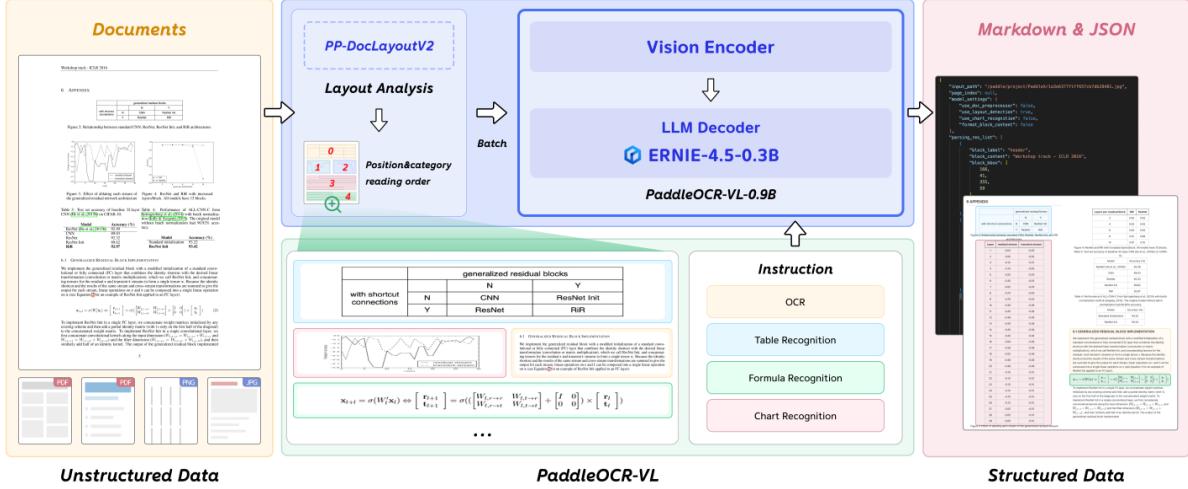


Figure 2 | The overview of PaddleOCR-VL.

unstable layout analysis and hallucinations—problems that are particularly pronounced in multi-column or mixed text–graphic layouts—we employ a dedicated lightweight model for layout analysis, focusing specifically on element detection, classification, and reading order prediction.

Specifically, we decouple the layout analysis process by introducing an independent model, PP-DocLayoutV2, dedicated solely to this task. PP-DocLayoutV2 consists of an object detection model (RT-DETR [17]) for elements localization and classification, as well as a lightweight pointer network [18] with six transformer layers to accurately predict the reading order of layout elements.

This separation enables us to fully leverage the advanced capabilities of the vision model, which typically requires lower input image resolution, and contains significantly fewer parameters. As a result, it achieves stable and accurate layout analysis, without the instability issues that may arise in end-to-end approaches.

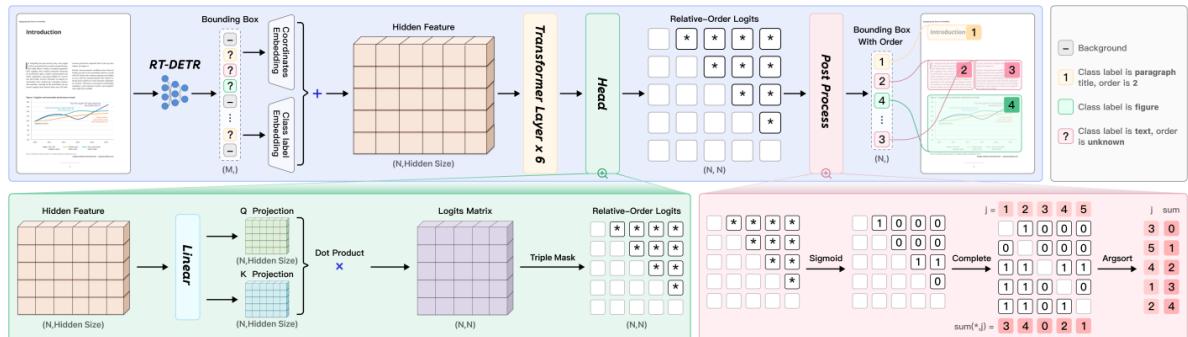


Figure 3 | Architecture of layout analysis model.

Architecturally, PP-DocLayoutV2 is composed of two sequentially connected networks, as shown in Figure 3. The first is an RT-DETR-based [17] detection model that performs layout element detection and classification. The detected bounding boxes and class labels are then passed to a subsequent pointer network, which is responsible for ordering these layout elements.

Specifically, we first apply per-class thresholds to select foreground proposals for the ordering network. The selected proposals are embedded using absolute 2D positional encodings and class label embeddings. Additionally, the encoder attention incorporates a geometric bias mechanism from Relation-DETR [18] to explicitly model pairwise geometric relationships among elements. The pairwise relation head linearly projects element representations into query and key vectors, then computes bilinear similarities to produce pairwise logits, resulting in an $N \times N$ matrix that represents the relative order between each pair of elements. Finally, a deterministic win-accumulation decoding algorithm recovers a topologically consistent reading order for the detected layout elements.

In comparison to other specialized models, such as LayoutReader [19], our model achieves higher performance with fewer parameters by efficiently extending RT-DETR [17] with a pointer network.

2.1.2. Element-level Recognition

We systematically explore architecture configurations optimized for high accuracy and low computational overhead, and propose the PaddleOCR-VL-0.9B as shown in Figure 4.

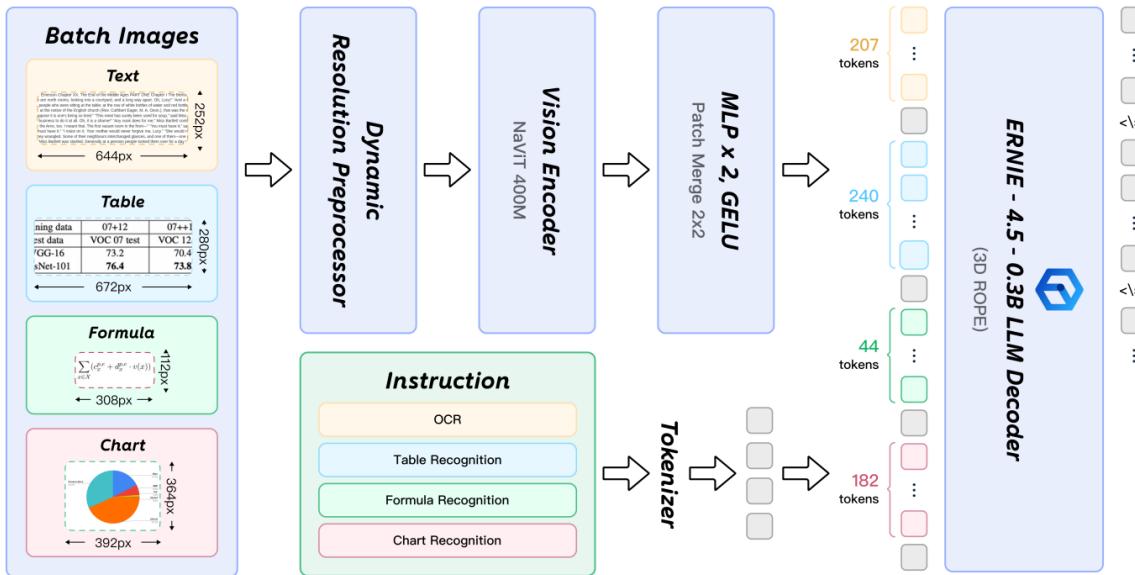


Figure 4 | Architecture of PaddleOCR-VL-0.9B.

We adopted an architectural style inspired by LLaVA [20], integrating a pre-trained vision encoder with a dynamic resolution preprocessor, a randomly initialized 2-layer MLP projector, and a pre-trained large language model. Our architecture achieves a balance the scale of vision and language models to optimize performance in multi-elements recognition tasks.

Compared to earlier document parsing models based on fixed-resolution or tiling-based approaches [4, 14, 21], our approach utilizes native dynamic high-resolution preprocessing. For the vision encoder, we employed a NaViT-style [15] encoder initialized from Keye-VL’s [22] vision model, which support native-resolution inputs. This design enables the vision-language model to handle images of arbitrary resolution without distortion, yielding fewer hallucinations and stronger performance on text-intensive tasks.

The projector is a randomly initialized 2-layer MLP with GELU [23] activation, incorporating a merge size of 2 to efficiently bridge visual features from the encoder to the language model’s embedding space.

In auto-regressive language models, the entire sequence is generated by predicting one token at a time. This approach means that the size of the decoder is directly linked to the overall inference latency, so a smaller model will decode faster. With this in mind, we use the ERNIE-4.5-0.3B [5] model, an open-source language model that balances a relatively small number of parameters with strong inference efficiency. In our implementation, we further enhance positional representation by incorporating a 3D-RoPE[24].

The combination of NaViT [15] with ERNIE-4.5-0.3B [5] has led to significant performance improvements in documents parsing, achieving minimal memory usage and faster inference speed.

2.2. Training Recipe

The following sections introduce the training details of these two modules: PP-DocLayoutV2 for layout analysis and PaddleOCR-VL-0.9B for element recognition.

2.2.1. Layout Analysis

We employ the PP-DocLayoutV2 model to perform layout element localization, classification, and reading order prediction. PP-DocLayoutV2 extends RT-DETR [17] by incorporating an additional pointer network [18], which is responsible for predicting the reading order of detected elements. The training process adopts a two-stage strategy: we first train the core RT-DETR [17] model for layout detection and classification. Afterward, we freeze its parameters and independently train the pointer network for reading order prediction.

For the first stage, we follow the training strategy of RT-DETR [17]. Specifically, we initialize the model with PP-DocLayout_Plus-L [25] pretrained weights and train it for 100 epochs on our self-constructed dataset comprising over 20,000 high-quality samples.

For the second stage, specifically, the model outputs a matrix representing the pairwise ordering relationships between any two elements, and the Generalized Cross Entropy Loss [26] is computed with respect to the ground truth labels, as this loss function demonstrates increased robustness in scenarios where pre-annotated data are mixed into the dataset. We utilize a constant learning rate 2e-4 and the AdamW optimizer to train 200 epochs.

2.2.2. Element-level Recognition

As described in Section 2.1.2, PaddleOCR-VL-0.9B consists of three modules: a vision encoder, a projector, and a language model. We adopt a post-adaptation strategy using pre-trained models. Specifically, the vision model is initialized with Keye-VL’s weights, and the language model is initialized with ERNIE-4.5-0.3B’s weights. The model is trained based on the ERNIEKit [27] repository and the training methodology for our VLM is divided into two stages, as outlined in Table 1.

Stage 1: The initial stage focuses on pre-training alignment, where the model learns to associate visual information from images with corresponding textual representations. This crucial step is performed on a massive dataset comprising 29 million high-quality image-text pairs. During this phase, which runs for one epoch, the model is trained to establish a coherent

Stages	Stage 1	Stage 2
Training Samples	29M	2.7M
Max Resolution	$1280 \times 28 \times 28$	$2048 \times 28 \times 28$
Sequence length	16384	16384
Trainable components	All	All
Batch sizes	128	128
Data Augmentation	Yes	Yes
Maximum LR	5×10^{-5}	5×10^{-6}
Minimum LR	5×10^{-6}	5×10^{-7}
Epoch	1	2

Table 1 | Training settings in stage 1 and stage 2.

understanding between diverse visual inputs and their semantic textual content. The training utilizes a batch size of 128, a sequence length of 16384, and supports a maximum image resolution of $1280 \times 28 \times 28$, with data augmentation enabled to improve robustness. For optimization, the learning rate is scheduled between a maximum of 5×10^{-5} and a minimum of 5×10^{-6} . The primary objective is to align the feature spaces of the vision encoder and the language model, enabling them to jointly process multimodal information effectively. This large-scale pre-training allows the model to capture intricate visual patterns, common textual structures, and their interdependencies across a vast range of contexts, laying a strong foundation for subsequent specialized tasks.

Stage 2: Following pre-training, the model undergoes **instruction fine-tuning** to adapt its general multimodal understanding to specific downstream elements recognition tasks. This stage utilizes a meticulously curated dataset of 2.7 million samples, which is intentionally designed to be highly rich and diverse in its distribution. The training is conducted over two epochs, maintaining the 128 batch size and 16384 sequence length, but increasing the maximum resolution to $2048 \times 28 \times 28$ to handle more detailed inputs. A finer learning rate is adopted, with the maximum and minimum values set to 5×10^{-6} and 5×10^{-7} , to carefully adjust the model on specialized data. The richness of this dataset encompasses a wide variety of document types, languages, writing systems, and visual complexities pertinent to real-world scenarios. During this fine-tuning phase, the model is trained with explicit instructions for four types of tasks:

1. **OCR:** This task fine-tunes the model to accurately identify and extract textual content from images, encompassing individual characters, words, text lines, text blocks and simple layout structure of page-level texts.
2. **Table Recognition:** The model learns to parse tabular structures within documents. This involves accurately extracting cell contents, identifying rows and columns, and recognize the logical relationships between different table elements, ultimately generating structured representations based on OTSL [28] format.
3. **Formula Recognition:** This instruction focuses on enabling the model to recognize and interpret mathematical and scientific formulas. It aims to convert their visual representation into a structured \LaTeX format and distinguishes between inline $\backslash(\dots\backslash)$ and display $\backslash[\dots\backslash]$ equations.
4. **Chart Recognition:** This task trains the model to recognition information from various types of charts, such as bar charts, line graphs, and pie charts and convert Markdown format tables.

3. Dataset

To build our high-quality and diverse training dataset, we propose a systematic methodology for constructing such datasets. As illustrated in Figure 5, we gather a diverse set of data from multiple sources to ensure comprehensive coverage. High-quality labels are then generated through automated annotation using large models, which guarantees precision and consistency. Additionally, we refine the training data by integrating challenging examples, which enhances the model's performance and robustness. Each of these crucial steps is detailed in the following sections.

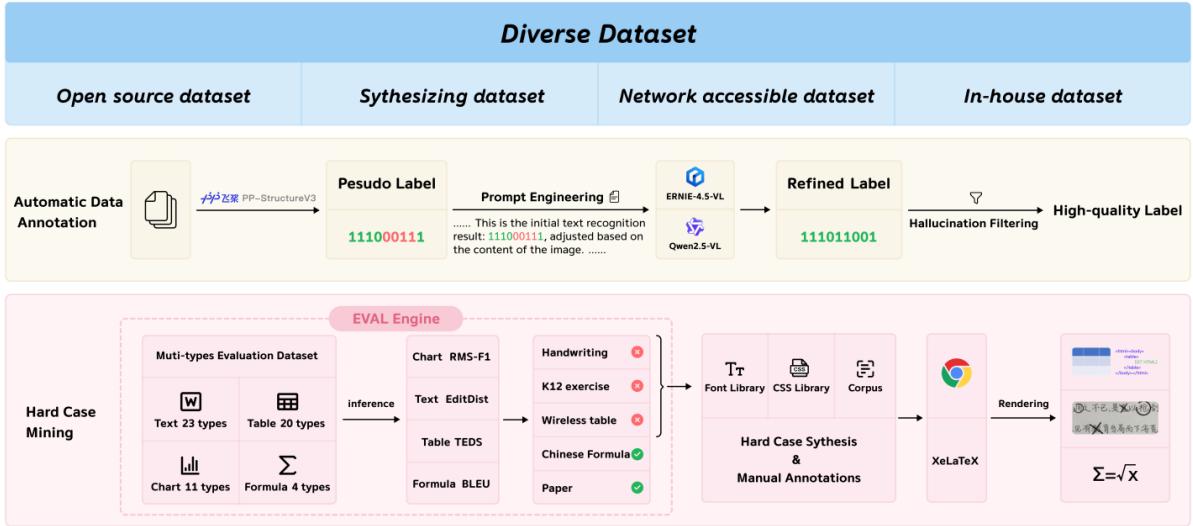


Figure 5 | The construction process of training data for PaddleOCR-VL-0.9B.

3.1. Data Curation

To ensure the breadth and diversity of the dataset, data is collected from four main sources: open-source dataset, synthesizing dataset, network accessible dataset, and in-house dataset.

- 1. Open Source Dataset:** As the foundation of our dataset, we systematically aggregated and curated a wide array of established public datasets. For textual content, we sourced data from the canonical dataset CASIA-HWDB [29]. Our mathematical expression data is derived from UniMER-1M [30] and MathWriting [31]. To ensure comprehensive coverage of data visualizations, we incorporated a rich spectrum of chart and graph datasets, including ChartQA [32], PlotQA [33], Chart2Text [34], DVQA [35], Unichart [36], Beagle [37], Chart-INFO [38], visText [39], and ExcelChart [40]. Each of these sources underwent an initial filtering and cleaning protocol to rectify or discard noisy and low-quality annotations.
- 2. Data Synthesizing Dataset:** Due to the naturally imbalanced distribution of public data, we employed a data synthesizing strategy to produce large volumes of missing data types at low cost, providing our proposed model with the unbiased document parsing performance.
- 3. Network Accessible Dataset:** To improve model generalization and robustness against the complexities of unstructured real-world documents, we amassed an extensive corpus of publicly accessible data harvested from the Internet. This public collection was deliberately curated to encompass a rich spectrum of document types and visual styles. It includes

academic papers, newspapers, formal scientific journal articles, scanned handwritten documents, diverse examination papers, and slides, etc. The integration of these varied sources proved instrumental in significantly broadening the stylistic, structural, and domain diversity of our training data, thereby mitigating the risk of overfitting to clean, canonical datasets.

4. **In-house Dataset:** Through years of research in the field of OCR, we have accumulated extensive datasets with diverse data types across all tasks of document parsing. We incorporate all in-house datasets into training with precisely controlled proportions, which have become unnecessary factors that enable our models to achieve outstanding performance.

3.2. Automatic Data Annotation

After acquiring the raw data, we utilize an automatic data annotations process for large-scale labeling. Initially, we employ the expert model, PP-StructureV3, to conduct preliminary processing on the data, generating pseudo labels that may contain some inaccuracies. Subsequently, through prompt engineering, we create prompts that include the original images and their associated pseudo labels, which are then submitted to more advanced multimodal large language models, ERNIE-4.5-VL [5] and Qwen2.5VL [24]. These sophisticated models refine and enhance the initial results by analyzing the image content, resulting in improved labels. Finally, to ensure the quality of the labels, the system performs a hallucination filtering step, which eliminates any potentially incorrect content generated by the large models, thereby producing reliable and high-quality labels.

3.3. Hard Cases Mining

To overcome performance bottlenecks in specific complex scenarios, we propose a hard case mining process for targeted performance improvement. We firstly develop a eval engine for various types. We created substantial evaluation data with precisely labeled data obtained through manual annotation. Theses evaluation datasets are categorized into several types: text data includes 23 categories such as Chinese, English, printed, handwritten, Japanese, Latin, and emojis; table data includes 20 categories such as limited tables, unlimited tables, handwritten tables, checklists, invoices, and rotated tables; formula data includes 4 categories such as Chinese and English formulas, handwritten and printed, simple, and complex; chart data includes 11 categories such as Chinese and English charts, line charts, and bar charts, sourced from diverse origins to cover different document. By inference on this evaluation set and using corresponding professional metrics (e.g., EditDist for Text, TEDS [41] for Tables, RMS-F1 [42] for Charts, and BLEU [43] for Formulas), we can accurately identify hard cases where the model performs poorly. Finally, for these identified weaknesses, the system utilizes a rich set of resources (such as Font Library, CSS Library, Corpus) and rendering tools (like XeLaTeX and web browsers) to synthetically generate a large volume of new, high-quality hard cases.

4. Evaluation

To thoroughly assess the effectiveness of PaddleOCR-VL, we compared it against leading general vision language models and specialized document parsing models across multiple public benchmarks and in-house benchmarks. We conducted comprehensive performance comparisons in two aspects: page-level document parsing and element-level recognition, which are detailed in Sections 4.1 and 4.2. Page-level involves analyzing entire pages of a document to parsing their overall content, structure and layout, while element-level is dedicated exclusively

to assessing the recognition of specific elements, such as text, tables, formulas, and charts, within the document.

4.1. Page-level Evaluation

This section details the evaluation of end-to-end document parsing capabilities using the following three benchmarks, aiming to measure its overall performance in real-world document scenarios.

OmniDocBench v1.5 To comprehensively evaluate the document parsing capabilities, we conducted extensive experiments on the OmniDocBench v1.5 [2] benchmark. It is an expansion of version v1.0, adding 374 new documents for a total of 1,355 document pages. It features a more balanced distribution of data in both Chinese and English, as well as a richer inclusion of formulas and other elements. The evaluation method has been updated, with formulas assessed using the CDM method. The overall metric is a weighted combination of the metrics for text, formulas, and tables.

Table 2 demonstrate that PaddleOCR-VL achieves SOTA performance, outperforming existing pipeline tools, general VLMs, and other specialized document parsing models across all key metrics. Specifically, our model achieves a top-ranking overall score of 92.56, surpassing the next best model, MinerU2.5-1.2B (90.67). Moreover, our model establishes new SOTA results in the sub-tasks, including the lowest Text-Edit distance [44] of 0.035, the highest Formula-CDM score of 91.43, the leading scores of 89.76 and 93.52 in Table-TEDS and Table-TEDS-S, and the best readerering ordering scores of 0.043, respectively. These results underscore its superior accuracy in text recognition, formula recognition, and complex table structure analysis.

Model Type	Methods	Parameters	Overall↑	Text ^{Edit↓}	Formula ^{CDM↑}	Table ^{TEDS↑}	Table ^{TEDS-S↑}	Reading Order ^{Edit↓}
Pipeline Tools	Marker-1.8.2 [45]	-	71.30	0.206	76.66	57.88	71.17	0.250
	Mineru2-pipeline [14]	-	75.51	0.209	76.55	70.90	79.11	0.225
	PP-StructureV3 [10]	-	86.73	0.073	85.79	81.68	89.48	0.073
General VLMs	GPT-4o [7]	-	75.02	0.217	79.70	67.07	76.09	0.148
	InternVL3-76B [46]	76B	80.33	0.131	83.42	70.64	77.74	0.113
	InternVL3.5-241B [47]	241B	82.67	0.142	87.23	75.00	81.28	0.125
	Qwen2.5-VL-72B [24]	72B	87.02	0.094	88.27	82.15	86.22	0.102
	Gemini-2.5 Pro [48]	-	88.03	0.075	85.82	85.71	90.29	0.097
Specialized VLMs	Dolphin [3]	322M	74.67	0.125	67.85	68.70	77.77	0.124
	OCRFlux-3B [49]	3B	74.82	0.193	68.03	75.75	80.23	0.202
	Mistral OCR [50]	-	78.83	0.164	82.84	70.03	78.04	0.144
	POINTS-Reader [4]	3B	80.98	0.134	79.20	77.13	81.66	0.145
	olmOCR-7B [12]	7B	81.79	0.096	86.04	68.92	74.77	0.121
	MinerU2-VLM [14]	0.9B	85.56	0.078	80.95	83.54	87.66	0.086
	Nanonets-OCR-s [51]	3B	85.59	0.093	85.90	80.14	85.57	0.108
	MonkeyOCR-pro-1.2B [1]	1.9B	86.96	0.084	85.02	84.24	89.02	0.130
	MonkeyOCR-3B [1]	3.7B	87.13	0.075	87.45	81.39	85.92	0.129
	dots.ocr [52]	3B	88.41	0.048	83.22	86.78	90.62	0.053
	MonkeyOCR-pro-3B [1]	3.7B	88.85	0.075	87.25	86.78	90.63	0.128
	MinerU2.5 [2]	1.2B	90.67	0.047	88.46	88.22	92.38	0.044
	PaddleOCR-VL	0.9B	92.56	0.035	91.43	89.76	93.52	0.043

Table 2 | Comprehensive evaluation of document parsing on OmniDocBench v1.5. Results are reported by OmniDocBench [16] unless Ours.

OmniDocBench v1.0 A publicly available benchmark dataset specifically is designed to evaluate real-world document parsing capabilities. It comprises 981 PDF pages, spanning 9 distinct

document types, 4 layout styles, and 3 language categories.

Based on the experimental results presented in Table 3, PaddleOCR-VL demonstrates superior performance with an average overall edit distance of 0.115, demonstrating its superior capability in document parsing. The model excels in formula edit distance (0.241 EN, 0.316 ZH), and achieves the SOTA performance (0.062) and a comparable SOTA performance (0.041) for Chinese and English text edit distance respectively, showcasing its accuracy in handling textual and formulaic data. Although the model exhibits slightly lower performance in the English Table TEDS (88.0), this can be largely attributed to typo-related annotation errors in OmniDocBench v1.0. Nevertheless, it demonstrates a clear advantage in the Chinese Table TEDS (92.14). Regarding the reading order edit distance, the model achieves the best performance in Chinese (0.063) and a comparable SOTA result in English (0.045), emphasizing its capability to maintain structural integrity and logical document flow.

Method Type	Methods	AvgOverall ^{Edit ↓}	Overall ^{Edit ↓}		Text ^{Edit ↓}		Formula ^{Edit ↓}		Table ^{TEDS ↑}		Table ^{Edit ↓}		Reading Order ^{Edit ↓}	
			EN	ZH	EN	ZH	EN	ZH	EN	ZH	EN	ZH	EN	ZH
Pipeline Tools	Docing-2.14.0 [11]	0.749	0.589	0.909	0.416	0.987	0.999	1	61.3	25.0	0.627	0.810	0.313	0.837
	OpenParse-0.7.0 [53]	0.730	0.646	0.814	0.681	0.974	0.996	1	64.8	27.5	0.284	0.639	0.595	0.641
	Unstructured-0.17.2 [54]	0.651	0.586	0.716	0.198	0.481	0.999	1	0	0.1	1	0.998	0.145	0.387
	Pix2Text-1.1.2.3 [55]	0.424	0.320	0.528	0.138	0.356	0.276	0.611	73.6	66.2	0.584	0.645	0.281	0.499
	Marker-1.7.1 [45]	0.397	0.296	0.497	0.085	0.293	0.374	0.688	67.6	54.0	0.609	0.678	0.116	0.329
	Mathpix [56]	0.278	0.191	0.364	0.105	0.381	0.306	0.454	77.0	67.1	0.243	0.320	0.108	0.304
	MinerU-pipeline [9]	0.203	0.162	0.244	0.072	0.111	0.313	0.581	77.4	79.5	0.166	0.150	0.097	0.136
	PP-StructureV3 [10]	0.176	0.145	0.206	0.058	0.088	0.295	0.535	77.2	83.9	0.159	0.109	0.069	0.091
General VLMs	InternVL2-76B [57]	0.442	0.440	0.443	0.353	0.290	0.543	0.701	63.0	60.2	0.547	0.555	0.317	0.228
	GPT-4o [7]	0.316	0.233	0.399	0.144	0.409	0.425	0.606	72.0	62.9	0.234	0.329	0.128	0.251
	InternVL3-78B [46]	0.257	0.218	0.296	0.117	0.210	0.380	0.533	69.0	73.9	0.279	0.282	0.095	0.161
	Qwen2.5-VL-72B [24]	0.238	0.214	0.261	0.092	0.180	0.315	0.434	81.4	83.0	0.341	0.262	0.106	0.168
	Gemini2.5-Pro [48]	0.180	0.148	0.212	0.055	0.168	0.356	0.439	85.8	86.4	0.130	0.119	0.049	0.121
Specialized VLMs	Nougat [58]	0.713	0.452	0.973	0.365	0.998	0.488	0.941	39.9	0.0	0.572	1	0.382	0.954
	SmolDocing-256M [13]	0.655	0.493	0.816	0.262	0.838	0.753	0.997	44.9	16.5	0.729	0.907	0.227	0.522
	olmOCR-7B [12]	0.398	0.326	0.469	0.097	0.293	0.455	0.655	68.1	61.3	0.608	0.652	0.145	0.277
	GOT [21]	0.349	0.287	0.411	0.189	0.315	0.360	0.528	53.2	47.2	0.459	0.520	0.141	0.280
	OCRFlux-3B [49]	0.294	0.238	0.349	0.112	0.256	0.447	0.716	69.0	80.0	0.269	0.162	0.126	0.263
	Nanonet-OCR-s [51]	0.289	0.283	0.295	0.134	0.231	0.518	0.546	76.8	79.4	0.343	0.201	0.135	0.200
	Dolphin [3]	0.259	0.205	0.313	0.092	0.204	0.447	0.606	76.1	66.9	0.193	0.282	0.088	0.160
	MinerU2-VLM [14]	0.186	0.133	0.238	0.045	0.115	0.273	0.506	82.1	83.4	0.150	0.209	0.066	0.122
	MonkeyOCR-pro-1.2B [1]	0.184	0.146	0.221	0.068	0.118	0.272	0.452	81.3	85.5	0.149	0.134	0.093	0.179
	MonkeyOCR-pro-3B [1]	0.172	0.138	0.206	0.067	0.107	0.246	0.421	81.5	87.5	0.139	0.111	0.100	0.185
PaddleOCR-VL	dots.ocr [52]	0.143	0.125	0.160	0.032	0.066	0.329	0.416	88.6	89.0	0.099	0.092	0.040	0.067
	MinerU2.5 [2]	0.143	0.111	0.174	0.050	0.074	0.258	0.473	88.3	89.2	0.089	0.083	0.045	0.068
	PaddleOCR-VL	0.115	0.105	0.126	0.041	0.062	0.241	0.316	88.0	92.1	0.093	0.062	0.045	0.063

Table 3 | Comprehensive evaluation of document parsing on OmniDocBench v1.0. Results are reported by OmniDocBench [16] unless MinerU2.5 and Ours.

olmOCR-Bench olmOCR-Bench [12] includes 1,402 PDF documents and 7,010 test cases, addressing diverse document types and extraction challenges. It offers a detailed evaluation framework for PDF content extraction by assessing tools and models through simple, clear, and machine-verifiable unit tests. This approach avoids biased evaluations and soft metric comparisons, allowing for the detection of subtle but significant extraction errors.

Table 4 highlights the outstanding performance of PaddleOCR-VL in the olmOCR-Bench evaluation, achieving the highest overall score of 80.0 ± 1.0 . It excels in various categories, leading in ArXiv (85.7), Headers and Footers (97.0) and securing second place in Multi-column text (79.9), Long Tiny Text (85.7). These results highlight the proposed model's capability to effectively manage diverse document types, reinforcing its status as a top solution in document parsing and its reliability in complex OCR tasks.

Methods	Unit Test Pass Rate ↑								
	Overall	ArXiv	Old Scans Math	Tables	Old Scans	Headers and Footers	Multi column	Long Tiny Text	Base
GOT [21]	48.3 ± 1.1	52.7	52.0	0.2	22.1	93.6	42.0	29.9	94.0
Gemini Flash 2 (No Anchor) [48]	57.8 ± 1.1	32.1	56.3	61.4	27.8	48.0	58.7	84.4	94.0
MinerU-pipeline [9]	61.5 ± 1.1	75.4	47.4	60.9	17.3	96.6	59.0	39.1	96.6
Gemini Flash 2 (Anchored) [48]	63.8 ± 1.2	54.5	56.1	72.1	34.2	64.7	61.5	71.5	95.6
Nanonet-OCR-s [51]	64.5 ± 1.1	67.0	68.6	77.7	39.5	40.7	69.9	53.4	99.3
Owen2.5-VL7B (No Anchor) [24]	65.5 ± 1.2	63.1	65.7	67.3	38.6	73.6	68.3	49.1	98.3
GPT-4o (No Anchor) [7]	68.9 ± 1.1	51.5	75.5	69.1	40.9	94.2	68.9	54.1	96.7
GPT-4o (Anchored) [7]	69.9 ± 1.1	53.5	74.5	70.0	40.7	93.8	69.3	60.6	96.8
Marker-1.8.2 [45]	70.1 ± 1.1	76.0	57.9	57.6	27.8	84.9	72.9	84.6	99.1
olmOCR v0.1.75 (No Anchor) [12]	74.7 ± 1.1	71.5	71.4	71.4	42.8	94.1	77.7	71.0	97.8
olmOCR v0.1.75 (Anchored) [12]	75.5 ± 1.0	74.9	71.2	71.0	42.2	94.5	78.3	73.3	98.3
MonkeyOCR-pro-3B [1]	75.8 ± 1.0	83.8	68.8	74.6	36.1	91.2	76.6	80.1	95.3
MinerU2.5 [2]	77.5 ± 1.0	81.1	74.0	85.1	33.8	96.3	65.5	89.8	94.4
dots.ocr [52]	79.1 ± 1.0	82.1	64.2	88.3	40.9	94.1	82.4	81.2	99.5
PaddleOCR-VL	80.0 ± 1.0	85.7	71.0	84.1	37.8	97.0	79.9	85.7	98.5

Table 4 | Comprehensive evaluation of document parsing on olmOCR-Bench. Results are reported by olmOCR-Bench [12] unless MinerU2.5 and Ours.

4.2. Element-level Evaluation

This section centers on evaluating the element-level capabilities of PaddleOCR VL 0.9B. We thoroughly assessed four tasks: text, tables, formulas, and charts using both public competition data and in-house data.

4.2.1. Text Recognition

For text recognition, we utilize three benchmarks to validate the effectiveness of models based on the edit distance metric.

OmniDocBench-OCR-block: From the 1355 images of OmniDocBench v1.5, we extracted all text-related sub-images based on layout detection labels, removing any with null annotations. This process resulted in a total of 17,148 block-level images. This evaluation set is named OmniDocBench-OCR-block, with the ground truth still sourced from OmniDocBench. This evaluation set can more accurately assess the model’s text recognition performance on without being affected by layout detection. We use the average normalized edit distance for evaluation.

In Table 5, we present a comprehensive comparison of performance across various document types using different models. Our model, PaddleOCR-VL, consistently demonstrates superior performance, achieving the lowest error rates in almost all categories. Specifically, PaddleOCR-VL achieves the best results in the PPT2PDF (0.049), Academic Literature (0.021), Book (0.045), Colorful Textbook (0.081), Exam Paper (0.115), Magazine (0.020), Newspaper (0.034), Note (0.081), and Research Report (0.033) categories. These results highlight PaddleOCR-VL’s robust and versatile capability in handling diverse document types, establishing it as the leading method in the OmniDocBench-OCR-block performance evaluation.

Methods	Edit Distance ↓									
	PPT2PDF	Academic Literature	Book	Colorful Textbook	Exam Paper	Magazine	Newspaper	Note	Research Report	
Qwen2.5-VL-72B [24]	0.054	0.023	0.061	0.084	0.195	0.032	0.056	0.118	0.040	
MonkeyOCR-pro-3B [1]	0.058	0.021	0.064	0.096	0.116	0.023	0.058	0.124	0.052	
MinerU2.5 [2]	0.195	0.089	0.111	0.234	0.194	0.147	0.056	0.142	0.094	
Dolphin [3]	0.237	0.095	0.135	0.347	0.248	0.233	0.121	0.309	0.213	
PaddleOCR-VL	0.049	0.021	0.045	0.081	0.115	0.020	0.034	0.081	0.033	

Table 5 | Overall Comparison of OmniDocBench-OCR-block Performance.

In-house-OCR: This is our self-built line-level text evaluation dataset which contains 107452 samples with high-quality labels. The dataset includes various text types such as handwritten Chinese, handwritten English, printed Chinese, printed English, traditional Chinese, ancient texts, general scenarios, Pinyin, obscure characters, vertical text, single characters, emojis, and artistic fonts. It also comprises evaluation sets for 109 languages, such as Latin and Japanese.

Table 6 provides a detailed evaluation of performance across multiple languages and text types. In the Multilingual Metrics (Table 6a), the model demonstrates outstanding accuracy with the lowest edit distances in all evaluated scripts: Arabic(0.122), Korean(0.052), Tamil(0.043), Greek(0.135), Thai(0.081), Telugu (0.114), Devanagari (0.097), Cyrillic (0.109), Latin (0.013), and Japanese (0.096), indicating superior capability in handling diverse languages. Similarly, in the Text Type Metrics (Table 6b), it excels in various text types, achieving the lowest error rates in categories like Handwritten CN (0.089), Handwritten EN (0.042), Printed CN (0.035), Printed EN (0.016), Traditional Chinese (0.048), Ancient Texts(0.198), General Scene (0.067), Pinyin (0.113), Rare Characters (0.001), Vertical Text (0.005), Single Characters (0.027), Emoji (0.057), and Art Font (0.165). These impressive results underscore the model’s robust performance and versatility, establishing it as the leading OCR solution in this benchmark comparison.

Methods	Edit Distance ↓										
	Arabic	Korean	Tamil	Greek	Thai	Telugu	Devanagari	Cyrillic	Latin	Japanese	
Qwen2.5-VL-72B [24]	0.405	0.056	0.389	0.165	0.194	0.758	0.164	0.220	0.021	0.181	
Dolphin [3]	0.682	0.699	0.912	0.691	0.709	0.832	0.818	0.549	0.037	0.309	
MonkeyOCR-pro-3B [1]	0.601	0.182	0.921	0.449	0.876	0.909	0.896	0.387	0.036	0.262	
MinerU2.5 [2]	0.978	0.917	0.957	0.661	0.880	0.937	0.915	0.832	0.063	0.588	
PaddleOCR-VL	0.122	0.052	0.043	0.135	0.081	0.011	0.097	0.109	0.013	0.086	

(a) Multilingual Metrics.

Methods	Edit Distance ↓												
	Hand-written CN	Hand-written EN	Printed CN	Printed EN	Trad. Chinese	Ancient Texts	General Scene	Pinyin	Rare Char.	Vertical Text	Single Char.	Emoji	Art Font
Dolphin [3]	0.236	0.145	0.074	0.025	0.095	0.218	0.113	0.183	0.092	0.190	0.202	0.225	0.230
MonkeyOCR-pro-3B [1]	0.253	0.071	0.048	0.023	0.295	0.529	0.144	0.165	0.063	0.086	0.110	0.184	0.263
Qwen2.5-VL-72B [24]	0.188	0.047	0.037	0.018	0.100	0.387	0.122	0.186	0.034	0.090	0.041	0.134	0.220
MinerU2.5 [2]	0.370	0.088	0.041	0.023	0.232	0.950	0.179	0.256	0.048	0.962	0.097	0.174	0.337
PaddleOCR-VL	0.089	0.042	0.035	0.016	0.048	0.198	0.067	0.113	0.001	0.005	0.027	0.057	0.165

(b) Text Type Metrics.

Table 6 | Comparison of In-house-OCR Edit Distance Performance.

Ocean-OCR-Handwritten: This is a line and paragraph levels handwritten evaluation dataset designed for comprehensive handwriting recognition assessment. It contains 400 samples, evenly divided into four subsets of 100 images each. The dataset covers both real and synthetic

handwriting in Chinese and English. Real samples are collected from established handwriting datasets such as CASIA-HWDB [29], GNHK [59], and BRUSH [60], while synthetic samples are generated to simulate diverse writing styles, character densities, and layouts. The benchmark aims to provide balanced and fine-grained evaluation for handwritten text recognition across different scripts and writing conditions.

Table 7 presents a comparison of OCR performance for handwritten English and Chinese text on the Ocean-OCR-Bench. Our model demonstrates superior performance across all metrics in both languages. For English, it achieves the best edit distance of 0.118 and excels in F1-score, Precision, Recall, BLEU, and METEOR, establishing itself as the leading model. In Chinese, PaddleOCR-VL sets a benchmark with an edit distance of 0.034 and leads in all other metrics, showcasing its outstanding precision and reliability.

Methods	Edit Distance ↓		F1-score ↑		Precision↑		Recall↑		BLEU↑		METEOR↑	
	EN	ZH	EN	ZH	EN	ZH	EN	ZH	EN	ZH	EN	ZH
InternVL2.5-4B [57]	0.197	0.240	0.661	0.741	0.674	0.754	0.655	0.734	0.406	0.473	0.652	0.687
MiniCPM-V2.6-8B [61]	0.147	0.175	0.727	0.810	0.747	0.811	0.714	0.812	0.443	0.583	0.727	0.774
Qwen2-VL-7B [62]	0.127	0.113	0.760	0.881	0.773	0.884	0.754	0.884	0.490	0.666	0.756	0.859
GOT [21]	0.616	0.402	0.283	0.568	0.309	0.618	0.273	0.544	0.151	0.295	0.255	0.492
PaddleOCR [10]	0.418	0.325	0.237	0.664	0.232	0.646	0.263	0.700	0.069	0.431	0.236	0.648
TextIn	0.358	0.180	0.362	0.840	0.368	0.869	0.362	0.822	0.098	0.567	0.337	0.751
Ocean-OCR [63]	0.145	0.106	0.774	0.885	0.780	0.912	0.782	0.862	0.532	0.736	0.772	0.885
MinerU2.5 [2]	0.238	0.356	0.558	0.619	0.547	0.623	0.574	0.622	0.344	0.489	0.553	0.601
PaddleOCR-VL	0.118	0.034	0.750	0.957	0.748	0.959	0.753	0.957	0.551	0.856	0.787	0.936

Table 7 | Comparison of performance on English(EN) and Chinese(ZH) OCR for handwritten recognition on Ocean-OCR-Bench. Results are reported by Ocean-OCR [63] unless MinerU2.5 and Ours.

4.2.2. Table Recognition.

For table recognition, we utilize two benchmarks to validate the effectiveness of PaddleOCR-VL-0.9B based on TEDS [41] and Edit Distance.

OmniDocBench-Table-block: To evaluate the table recognition performance of PaddleOCR-VL, we crop 512 tables from OmniDocBench v1.5 datasets.

As shown in Table 8, our PaddleOCR-VL leads in the OmniDocBench-Table-block benchmark, surpassing all competitors. It achieves a top overall TEDS of 0.9195, reflecting high accuracy in capturing table structure and content. Its structural TEDS of 0.9543 highlights its ability to parse complex structures, while the lowest Overall Edit Distance of 0.0561 indicates minimal recognition errors. These results confirm PaddleOCR-VL’s superior performance and establish it as the benchmark for accurate table recognition.

Methods	Overall TEDS↑	Structural TEDS↑	Overall Edit Dist↓
MinerU2-VLM [14]	0.9002	0.9369	0.0734
Seed1.6	0.9079	0.9489	0.0652
dots.ocr [52]	0.8194	0.8442	0.1508
MinerU2.5 [2]	0.9005	0.9539	0.0693
PaddleOCR-VL	0.9195	0.9543	0.0561

Table 8 | Comparison of OmniDocBench-Table-block Performance

In-house-Table: Our self-built evaluation set contains diverse array of table images with comprehensive annotations and type classifications. It includes 20 different table types such as Chinese, English, mixed Chinese-English, and tables with various characteristics like full, partial, or no borders. The collection also covers tables with formulas, dense data, book/manual formats, lists, academic papers, merged cells, as well as low-quality, watermarked, registration forms, statistical forms, research reports, financial reports, images, invoices, and handwritten tables, among others.

Table 9 provides a comparison of different methods on the In-house-Table task, highlighting their performance across various metrics. We achieve the highest scores in Overall TEDS (0.8699), Structural TEDS (0.9066), Overall Edit Distance (0.9066) and Structural Edit Distance (0.9339). These results underscore PaddleOCR-VL’s effectiveness and reliability in table recognition tasks.

Methods	Overall TEDS↑	Structural TEDS↑	Overall Edit Dist↑	Structural Edit Dist↑
MinerU2-VLM [14]	0.8286	0.8730	0.8757	0.9088
MonkeyOCR [1]	0.7396	0.7824	0.8174	0.8537
Nanonet-OCR-s [51]	0.7824	0.8190	0.8377	0.8692
OCRFlux-3B [49]	0.7741	0.8071	0.8238	0.8617
Qwen2.5-VL-3B [24]	0.7398	0.7765	0.8132	0.8701
Qwen2.5-VL-7B [24]	0.7549	0.7926	0.8251	0.8819
Qwen2.5-VL-72B [24]	0.7762	0.8361	0.843	0.8987
dots.ocr [52]	0.7547	0.7914	0.8047	0.8361
MinerU2.5 [2]	<u>0.8469</u>	<u>0.8955</u>	<u>0.8896</u>	<u>0.9239</u>
PaddleOCR-VL	0.8699	0.9066	0.9066	0.9339

Table 9 | Comparison of In-house-Table Performance

4.2.3. Formula Recognition.

For formula recognition, we validate the effectiveness of our model based on the Character Detection Matching (CDM) [64] metric on OmniDocBench-Formula-block and In-house-Formula datasets.

OmniDocBench-Formula-block Using the formula bounding boxes from OmniDocBench v1.5, 1050 formula sub-images were cropped. This step was taken to minimize the influence of layout detection on formula recognition. As shown in Table 10, the model achieved state-of-the-art CDM score of 0.9453.

Methods	Overall CDM ↑	EN CDM ↑	ZH CDM ↑
dots.ocr [52]	0.4641	0.4868	0.4414
MinerU2-VLM [14]	0.8286	0.9616	0.6956
MonkeyOCR-pro-1.2B [1]	0.8531	0.9642	0.7419
MonkeyOCR-3B [1]	0.8621	<u>0.9718</u>	0.7524
Qwen2.5-VL-72B [24]	0.8747	0.9574	0.7920
MinerU2.5 [2]	<u>0.9187</u>	<u>0.9751</u>	<u>0.8623</u>
PaddleOCR-VL	0.9453	0.9677	0.9228

Table 10 | Comparison of OmniDocBench v1.5 Formula-block Performance. Due to dots.ocr [52] easily recognizing cropped formulas as images, the score is relatively low.

In-house-Formula: The self-constructed formula evaluation set contains 34,816 samples, covering common formula recognition scenarios such as academic papers, mathematics books, and primary and secondary school exam papers. Among them, there are 498 Chinese formulas and 34,318 English formulas. As shown in Table 11, our model obtains the best performance of

0.9882 CDM score on the In-house-Formula dataset. These results collectively demonstrate the powerful recognition capability of PaddleOCR-VL in real-world complex formula scenarios.

Methods	Overall CDM \uparrow	EN CDM \uparrow	ZH CDM \uparrow
dots.ocr [52]	0.6737	0.8066	0.5408
MinerU2-VLM [14]	0.9237	0.9764	0.8709
MonkeyOCR-pro-1.2B [1]	0.9537	0.9656	0.9417
MonkeyOCR-3B [1]	0.9566	0.9761	0.9371
Qwen2.5-VL-72B [24]	0.9412	0.9519	0.9304
MinerU2.5 [2]	0.9770	0.9832	0.9708
PaddleOCR-VL	0.9882	0.9914	0.9849

Table 11 | Comparison of In-house-Formula Performance. Due to dots.ocr [52] easily recognizing cropped formulas as images, the score is relatively low.

4.2.4. Chart Recognition.

For chart recognition, considering the limitations in dataset size, the imbalanced distribution of chart categories, and the poor annotation quality of publicly available test sets, we only utilize a in-house benchmark to validate the effectiveness of PaddleOCR-VL-0.9B based on the RMS-F1 [42] score metric. As shown in Table 12, the proposed PaddleOCR-VL not only outperforms expert OCR VLMs but also surpasses some 72B-level multimodal language models.

In-house-Chart: This in-house chart recognition evaluation set comprises 1,801 samples, all of which have undergone a rigorous manual review to ensure annotation correctness. The evaluation set is broadly categorized into 11 chart categories, including bar-line hybrid, pie, 100% stacked bar, area, bar, bubble, histogram, line, scatterplot, stacked area, and stacked bar. Of these samples, 851 are in English and 950 are in Chinese. Prior to evaluation, both the predicted data table and the ground truth data table are normalized to a uniform markdown format to eliminate expression ambiguities.

Methods	RMS-F1 \uparrow		
	Overall	EN	ZH
TinyChart [65]	0.2159	0.4726	0.0876
GOT [21]	0.3160	0.1100	0.4190
OneChart [66]	0.3716	0.1384	0.4882
Qwen2.5-VL-3B [24]	0.5942	0.5619	0.6103
Qwen2.5-VL-7B [24]	0.6821	0.5876	0.7293
Qwen2.5-VL-72B [24]	0.7300	0.6972	0.7464
PP-StructureV3 [10]	0.8060	0.7963	0.8109
PaddleOCR-VL	0.8440	0.8222	0.8549

Table 12 | Comparison of In-house-Chart Performance

4.3. Inference Performance

To improve the inference performance of PaddleOCR-VL, we introduce multi-threading asynchronous execution into the inference workflow. The process is divided into three main stages—data loading (e.g., rendering PDF pages as images), layout model processing, and VLM inference—each running in a separate thread. Data is transferred between adjacent stages via queues, enabling concurrent execution for higher efficiency. In particular, for VLM inference, batch processing is only triggered when either the number of items in the queue reaches a predefined threshold or the waiting time for queued data exceeds a specified limit. This design allows blocks across different pages to be aggregated and processed together, thereby

maximizing parallelism, especially when handling large volumes of files. We further deploy PaddleOCR-VL-0.9B on high-throughput inference and serving engines [67, 68, 69], tuning parameters like max-num-batched-tokens and gpu-memory-utilization to balance inference throughput with GPU memory consumption.

We measured the end-to-end inference speed and GPU usage on the OmniDocBench v1.0 dataset, processing PDF files in batches of 512 on a single NVIDIA A100 GPU. By "end-to-end", we mean that the inference time was measured from providing the PDF file path as input to the complete generation of the Markdown text. For MonkeyOCR, dots.ocr, and MinerU, inference was run with the vLLM backend and the default configuration (including the KV cache settings). The generated Markdown text was tokenized with the "cl100k_base" tokenizer to compute the number of output tokens. For dots.ocr specifically, 200 threads were used for concurrent page processing, and the Base64-encoded image content in the produced Markdown text was replaced with a dummy path (UUID-based, prefixed with "images/" and suffixed with ".png") to ensure a reasonable token count.

Table 13 provides a comprehensive comparison of inference efficiency across different methods. The proposed PaddleOCR-VL demonstrates clear and consistent advantages in both processing speed and memory efficiency. When deployed with the vLLM backend, it achieves 15.8% higher page throughput and 14.2% higher token throughput than the leading baseline, MinerU2.5, establishing itself as the most efficient solution overall. In addition, PaddleOCR-VL achieves notable memory savings, using roughly 40% less GPU memory than dots.ocr while sustaining significantly faster processing. These results collectively confirm that PaddleOCR-VL attains state-of-the-art inference efficiency through a balanced optimization of speed and memory usage, making it highly suitable for real-world, high-throughput document understanding scenarios.

Methods	Total Time (s)↓	Pages/s↑	Tokens/s↑	Avg. VRAM Usage (GB)↓
MonkeyOCR-pro-1.2B [†] [1]	1456.4	0.6730	1120.3	75.5
dots.ocr [‡] [52]	2784.6	0.3522	532.9	78.5
MinerU2.5 [†] [2]	927.3	1.0574	1647.9	41.9
PaddleOCR-VL [†]	800.9	1.2241	1881.2	43.7
PaddleOCR-VL [‡]	917.6	1.0684	1641.5	49.8

Table 13 | End-to-End Inference Performance Comparison. [†] denotes the vLLM backend, and [‡] denotes the SGLang backend.

5. Conclusion

This report introduces PaddleOCR-VL, an advanced and efficient model for document parsing that excels at both element-level and page-level recognition. Its core components, PaddleOCR-VL-0.9B, built with a NaViT-style visual encoder and ERNIE-4.5-0.3B language model, it accurately recognizes complex elements such as text, tables, formulas, and charts in over 100 languages. PaddleOCR-VL achieves fast inference and low resource consumption, making it practical for real-world deployment. It outperforms existing pipeline solutions on many benchmarks and effectively handles challenging content including handwriting and historical documents, as well as converting chart visuals into structured data. Its broad multilingual support and strong performance have the potential to advance the application and development of multimodal document processing technologies, bringing innovation to automated analysis and information retrieval. This will significantly enhance the performance and stability of RAG systems, making information extraction from complex documents more efficient, thereby providing more reliable data support for future AI applications.

References

- [1] Zhang Li, Yuliang Liu, Qiang Liu, Zhiyin Ma, Ziyang Zhang, Shuo Zhang, Zidun Guo, Jiarui Zhang, Xinyu Wang, and Xiang Bai. Monkeyocr: Document parsing with a structure-recognition-relation triplet paradigm. [arXiv preprint arXiv:2506.05218](#), 2025.
- [2] Junbo Niu, Zheng Liu, Zhuangcheng Gu, Bin Wang, Linke Ouyang, Zhiyuan Zhao, Tao Chu, Tianyao He, Fan Wu, Qintong Zhang, et al. Mineru2. 5: A decoupled vision-language model for efficient high-resolution document parsing. [arXiv preprint arXiv:2509.22186](#), 2025.
- [3] Hao Feng, Shu Wei, Xiang Fei, Wei Shi, Yingdong Han, Lei Liao, Jinghui Lu, Binhong Wu, Qi Liu, Chunhui Lin, et al. Dolphin: Document image parsing via heterogeneous anchor prompting. [arXiv preprint arXiv:2505.14059](#), 2025.
- [4] Yuan Liu, Zhongyin Zhao, Le Tian, Haicheng Wang, Xubing Ye, Yangxiu You, Zilin Yu, Chuhan Wu, Xiao Zhou, Yang Yu, et al. Points-reader: Distillation-free adaptation of vision-language models for document conversion. [arXiv preprint arXiv:2509.01215](#), 2025.
- [5] Baidu-ERNIE-Team. Ernie 4.5 technical report, 2025.
- [6] An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. [arXiv preprint arXiv:2505.09388](#), 2025.
- [7] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. [arXiv preprint arXiv:2303.08774](#), 2023.
- [8] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Köttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented generation for knowledge-intensive nlp tasks. [Advances in neural information processing systems](#), 33:9459–9474, 2020.
- [9] Bin Wang, Chao Xu, Xiaomeng Zhao, Linke Ouyang, Fan Wu, Zhiyuan Zhao, Rui Xu, Kaiwen Liu, Yuan Qu, Fukai Shang, et al. Mineru: An open-source solution for precise document content extraction. [arXiv preprint arXiv:2409.18839](#), 2024.
- [10] Cheng Cui, Ting Sun, Manhui Lin, Tingquan Gao, Yubo Zhang, Jiaxuan Liu, Xueqing Wang, Zelun Zhang, Changda Zhou, Hongen Liu, et al. Paddleocr 3.0 technical report. [arXiv preprint arXiv:2507.05595](#), 2025.
- [11] Docling Team. Docling. <https://github.com/docling-project/docling>, 2024. Accessed: 2025-06-23.
- [12] Jake Poznanski, Jon Borchardt, Jason Dunkelberger, Regan Huff, Daniel Lin, Aman Ran-gapur, Christopher Wilhelm, Kyle Lo, and Luca Soldaini. olmocr: Unlocking trillions of tokens in pdfs with vision language models. [arXiv preprint arXiv:2502.18443](#), 2025.
- [13] Ahmed Nassar, Andres Marafioti, Matteo Omenetti, Maksym Lysak, Nikolaos Livathinos, Christoph Auer, Lucas Morin, Rafael Teixeira de Lima, Yusik Kim, A Said Gurbuz, et al. Smoldocling: An ultra-compact vision-language model for end-to-end multi-modal document conversion. [arXiv preprint arXiv:2503.11576](#), 2025.

[14] opendatalab. Mineru2.0-2505-0.9b. <https://huggingface.co/opendatalab/MinerU2.0-2505-0.9B>, 2025.

[15] Mostafa Dehghani, Basil Mustafa, Josip Djolonga, Jonathan Heek, Matthias Minderer, Mathilde Caron, Andreas Steiner, Joan Puigcerver, Robert Geirhos, Ibrahim M Alabdulmohsin, et al. Patch n'pack: Navit, a vision transformer for any aspect ratio and resolution. *Advances in Neural Information Processing Systems*, 36:2252–2274, 2023.

[16] Linke Ouyang, Yuan Qu, Hongbin Zhou, Jiawei Zhu, Rui Zhang, Qunshu Lin, Bin Wang, Zhiyuan Zhao, Man Jiang, Xiaomeng Zhao, et al. Omnidocbench: Benchmarking diverse pdf document parsing with comprehensive annotations. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pages 24838–24848, 2025.

[17] Yian Zhao, Wenyu Lv, Shangliang Xu, Jinman Wei, Guanzhong Wang, Qingqing Dang, Yi Liu, and Jie Chen. Detrs beat yolos on real-time object detection. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 16965–16974, 2024.

[18] Xiuquan Hou, Meiqin Liu, Senlin Zhang, Ping Wei, Badong Chen, and Xuguang Lan. Relation detr: Exploring explicit position relation prior for object detection. In *European Conference on Computer Vision*, pages 89–105. Springer, 2024.

[19] Zilong Wang, Yiheng Xu, Lei Cui, Jingbo Shang, and Furu Wei. Layoutreader: Pre-training of text and layout for reading order detection. *arXiv preprint arXiv:2108.11591*, 2021.

[20] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in neural information processing systems*, 36:34892–34916, 2023.

[21] Haoran Wei, Chenglong Liu, Jinyue Chen, Jia Wang, Lingyu Kong, Yanming Xu, Zheng Ge, Liang Zhao, Jianjian Sun, Yuang Peng, et al. General ocr theory: Towards ocr-2.0 via a unified end-to-end model. *arXiv preprint arXiv:2409.01704*, 2024.

[22] Kwai Keye Team, Biao Yang, Bin Wen, Changyi Liu, Chenglong Chu, Chengru Song, Chongling Rao, Chuan Yi, Da Li, Dunju Zang, et al. Kwai keye-vl technical report. *arXiv preprint arXiv:2507.01949*, 2025.

[23] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). *arXiv preprint arXiv:1606.08415*, 2016.

[24] Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*, 2025.

[25] Ting Sun, Cheng Cui, Yuning Du, and Yi Liu. Pp-docllayout: A unified document layout detection model to accelerate large-scale data construction. *arXiv preprint arXiv:2503.17213*, 2025.

[26] Zhilu Zhang and Mert Sabuncu. Generalized cross entropy loss for training deep neural networks with noisy labels. *Advances in neural information processing systems*, 31, 2018.

[27] PaddlePaddle Authors. Erniekit. <https://github.com/PaddlePaddle/ERNIE>, 2025.

[28] Maksym Lysak, Ahmed Nassar, Nikolaos Livathinos, Christoph Auer, and Peter Staar. Optimized table tokenization for table structure recognition. In *International Conference on Document Analysis and Recognition*, pages 37–50. Springer, 2023.

[29] Cheng-Lin Liu, Fei Yin, Da-Han Wang, and Qiu-Feng Wang. Casia online and offline chinese handwriting databases. In 2011 international conference on document analysis and recognition, pages 37–41. IEEE, 2011.

[30] Bin Wang, Zhuangcheng Gu, Guang Liang, Chao Xu, Bo Zhang, Botian Shi, and Conghui He. Unimernet: A universal network for real-world mathematical expression recognition. arXiv preprint arXiv:2404.15254, 2024.

[31] Philippe Gervais, Anastasiia Fadeeva, and Andrii Maksai. Mathwriting: A dataset for handwritten mathematical expression recognition. In Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V. 2, pages 5459–5469, 2025.

[32] Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. Chartqa: A benchmark for question answering about charts with visual and logical reasoning. arXiv preprint arXiv:2203.10244, 2022.

[33] Nitesh Methani, Pritha Ganguly, Mitesh M Khapra, and Pratyush Kumar. Plotqa: Reasoning over scientific plots. In Proceedings of the ieee/cvf winter conference on applications of computer vision, pages 1527–1536, 2020.

[34] Shankar Kantharaj, Rixie Tiffany Ko Leong, Xiang Lin, Ahmed Masry, Megh Thakkar, Enamul Hoque, and Shafiq Joty. Chart-to-text: A large-scale benchmark for chart summarization. arXiv preprint arXiv:2203.06486, 2022.

[35] Kushal Kafle, Brian Price, Scott Cohen, and Christopher Kanan. Dvqa: Understanding data visualizations via question answering. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 5648–5656, 2018.

[36] Ahmed Masry, Parsa Kavehzadeh, Xuan Long Do, Enamul Hoque, and Shafiq Joty. Unichart: A universal vision-language pretrained model for chart comprehension and reasoning. arXiv preprint arXiv:2305.14761, 2023.

[37] Leilani Battle, Peitong Duan, Zachery Miranda, Dana Mukusheva, Remco Chang, and Michael Stonebraker. Beagle: Automated extraction and interpretation of visualizations from the web. In Proceedings of the 2018 CHI conference on human factors in computing systems, pages 1–8, 2018.

[38] Kenny Davila, Bhargava Urala Kota, Srirangaraj Setlur, Venu Govindaraju, Christopher Tensmeyer, Sumit Shekhar, and Ritwick Chaudhry. Icdar 2019 competition on harvesting raw tables from infographics (chart-infographics). In 2019 International Conference on Document Analysis and Recognition (ICDAR), pages 1594–1599. IEEE, 2019.

[39] Benny J Tang, Angie Boggust, and Arvind Satyanarayan. Vistext: A benchmark for semantically rich chart captioning. arXiv preprint arXiv:2307.05356, 2023.

[40] Junyu Luo, Zekun Li, Jinpeng Wang, and Chin-Yew Lin. Chartocr: Data extraction from charts images via a deep hybrid framework. In Proceedings of the IEEE/CVF winter conference on applications of computer vision, pages 1917–1925, 2021.

[41] Xu Zhong, Elaheh ShafieiBavani, and Antonio Jimeno Yepes. Image-based table recognition: data, model, and evaluation, 2020.

[42] Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhui Chen, Nigel Collier, and Yasemin Altun. Deplot: One-shot visual language reasoning by plot-to-table translation. [arXiv preprint arXiv:2212.10505](https://arxiv.org/abs/2212.10505), 2022.

[43] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation of machine translation. In [Proceedings of the 40th annual meeting of the Association for Computational Linguistics](https://www.aclweb.org/anthology/W02-1049.pdf), pages 311–318, 2002.

[44] VI Lcvenshtcin. Binary coors capable or ‘correcting deletions, insertions, and reversals. In [Soviet physics-doklady](https://www.sciencedirect.com/science/article/pii/S0038533466000107), volume 10, 1966.

[45] Vik Paruchuri. Marker. <https://github.com/datalab-to/marker>, 2025. Accessed: 2025-09-25.

[46] Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen Duan, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for open-source multimodal models. [arXiv preprint arXiv:2504.10479](https://arxiv.org/abs/2504.10479), 2025.

[47] Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu, Long Cui, Xingguang Wei, Zhaoyang Liu, Linglin Jing, Shenglong Ye, Jie Shao, et al. Internvl3. 5: Advancing open-source multimodal models in versatility, reasoning, and efficiency. [arXiv preprint arXiv:2508.18265](https://arxiv.org/abs/2508.18265), 2025.

[48] Google DeepMind. Gemini 2.5. <https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/>, 2025.

[49] chatdoc.com. Ocrflux. <https://github.com/chatdoc-com/OCRFlux>, 2025. Accessed:2025-09-25.

[50] Mistral AI Team. Mistral-ocr. https://mistral.ai/news/mistral-ocr?utm_source=ai-bot.cn, 2025.

[51] Souvik Mandal, Ashish Talewar, Paras Ahuja, and Prathamesh Juvatkar. Nanonets-ocr-s: A model for transforming documents into structured markdown with intelligent content recognition and semantic tagging, 2025.

[52] rednote-hilab. dots.ocr: Multilingual document layout parsing in a single vision-language model, 2025.

[53] Filimoa. open-parse. <https://github.com/Filimoa/open-parse>, 2024. Accessed: 2025-06-23.

[54] Unstructured-IO. unstructured. <https://github.com/Unstructured-IO/unstructured>, 2022. Accessed: 2025-06-23.

[55] breezedeus. Pix2text. <https://github.com/breezedeus/Pix2Text>, 2022. Accessed: 2025-06-23.

[56] Mathpix. Mathpix snip: Convert images and pdfs to latex, docx, and more. <https://mathpix.com/>, 2025.

[57] Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 24185–24198, 2024.

[58] Lukas Blecher, Guillem Cucurull, Thomas Scialom, and Robert Stojnic. Nougat: Neural optical understanding for academic documents. *arXiv preprint arXiv:2308.13418*, 2023.

[59] Alex WC Lee, Jonathan Chung, and Marco Lee. Gnhk: a dataset for english handwriting in the wild. In *International Conference on Document Analysis and Recognition*, pages 399–412. Springer, 2021.

[60] Atsunobu Kotani, Stefanie Tellex, and James Tompkin. Generating handwriting via de-coupled style descriptors. In *European Conference on Computer Vision*, pages 764–780. Springer, 2020.

[61] Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li, Weilin Zhao, Zhihui He, et al. Minicpm-v: A gpt-4v level mllm on your phone. *arXiv preprint arXiv:2408.01800*, 2024.

[62] Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024.

[63] Song Chen, Xinyu Guo, Yadong Li, Tao Zhang, Mingan Lin, Dongdong Kuang, Youwei Zhang, Lingfeng Ming, Fengyu Zhang, Yuran Wang, et al. Ocean-ocr: Towards general ocr application via a vision-language model. *arXiv preprint arXiv:2501.15558*, 2025.

[64] Bin Wang, Fan Wu, Linke Ouyang, Zhuangcheng Gu, Rui Zhang, Renqiu Xia, Botian Shi, Bo Zhang, and Conghui He. Image over text: Transforming formula recognition evaluation with character detection matching. In *2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 19681–19690, 2025.

[65] Liang Zhang, Anwen Hu, Haiyang Xu, Ming Yan, Yichen Xu, Qin Jin, Ji Zhang, and Fei Huang. Tinychart: Efficient chart understanding with visual token merging and program-of-thoughts learning. *arXiv preprint arXiv:2404.16635*, 2024.

[66] Jinyue Chen, Lingyu Kong, Haoran Wei, Chenglong Liu, Zheng Ge, Liang Zhao, Jianjian Sun, Chunrui Han, and Xiangyu Zhang. Onechart: Purify the chart structural extraction via one auxiliary token. In *Proceedings of the 32nd ACM International Conference on Multimedia*, pages 147–155, 2024.

[67] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with pagedattention. In *Proceedings of the 29th symposium on operating systems principles*, pages 611–626, 2023.

[68] Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sglang: Efficient execution of structured language model programs. *Advances in neural information processing systems*, 37:62557–62583, 2024.

[69] PaddlePaddle Authors. Fastdeploy. <https://github.com/PaddlePaddle/FastDeploy>, 2025.

[70] Qian Chen, Xianyin Zhang, Lifan Guo, Feng Chen, and Chi Zhang. Dianjin-ocr-r1: Enhancing ocr capabilities via a reasoning-and-tool interleaved vision-language model. [arXiv preprint arXiv:2508.13238](https://arxiv.org/abs/2508.13238), 2025.

[71] Lukas Blecher. pix2tex - latex ocr. <https://github.com/lukas-blecher/LaTeX-OCR>, 2022. Accessed: 2025-06-23.

[72] Harold Mouchere, Christian Viard-Gaudin, Richard Zanibbi, and Utpal Garain. Icfhr 2014 competition on recognition of on-line handwritten mathematical expressions (crohme 2014). In 2014 14th international conference on frontiers in handwriting recognition, pages 791–796. IEEE, 2014.

[73] Harold Mouchère, Christian Viard-Gaudin, Richard Zanibbi, and Utpal Garain. Icfhr2016 crohme: Competition on recognition of online handwritten mathematical expressions. In 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), pages 607–612. IEEE, 2016.

[74] Mahshad Mahdavi, Richard Zanibbi, Harold Mouchere, Christian Viard-Gaudin, and Utpal Garain. Icdar 2019 crohme+ tfd: Competition on recognition of handwritten mathematical expressions and typeset formula detection. In 2019 International Conference on Document Analysis and Recognition (ICDAR), pages 1533–1538. IEEE, 2019.

[75] Ye Yuan, Xiao Liu, Wondimu Dikubab, Hui Liu, Zhilong Ji, Zhongqin Wu, and Xiang Bai. Syntax-aware network for handwritten mathematical expression recognition. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 4553–4562, 2022.

[76] Tao Ge, Xin Chan, Xiaoyang Wang, Dian Yu, Haitao Mi, and Dong Yu. Scaling synthetic data creation with 1,000,000,000 personas. [arXiv preprint arXiv:2406.20094](https://arxiv.org/abs/2406.20094), 2024.

Appendix

A. Training Dataset Details

This two-stage approach offers unique advantages in terms of data collection, as obtaining isolated element images along with their annotations is more feasible than collecting complete document pages containing different elements. In the following sections, we will elaborate on the construction of multimodal model training data for text, tables, formulas, and charts.

A.1. Text

We have curated a large-scale dataset comprising 20 Million High-Quality Image-Text Pairs. As shown in Figure A1, the dataset generation follows a rigorous multi-stage pipeline which primarily involves:

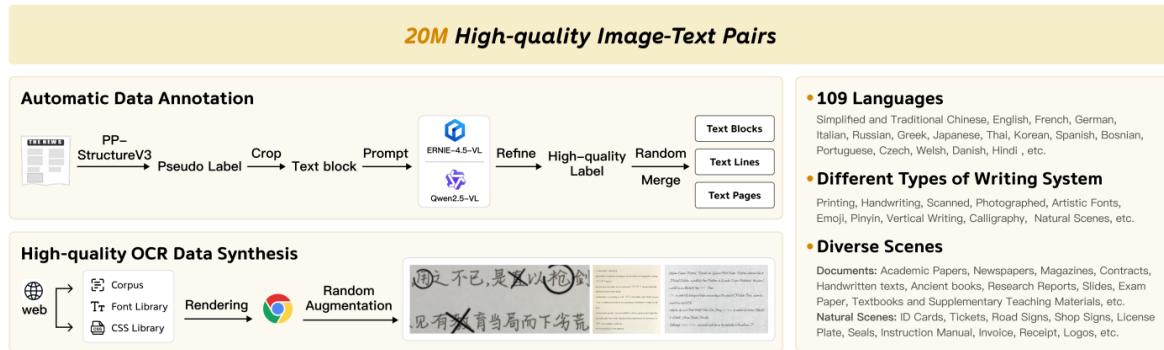


Figure A1 | The construction method and characteristics of the text training data for PaddleOCR-VL-0.9B.

- 1. Automatic Data Annotation:** We design an automatic annotation pipeline that integrates lightweight document-structure models with large multimodal language models. Specifically, PP-StructureV3 is employed as an expert model to perform layout analysis and text recognition, generating pseudo labels that are converted into prompts for multimodal models such as ERNIE-4.5-VL and Qwen2.5-VL to refine. Finally, the refined labels are aggregated and randomly merged at multiple granularities to produce 20 million high-quality image-text training samples.
- 2. High-quality OCR Data Synthesis:** During data distillation, low label quality in challenging scenarios like messy handwriting and dense blurry text was addressed by expanding the dataset through synthetic generation. Utilizing diverse CSS styles, over 200 fonts, and various corpora, we rendered a large amount of images, thereby enhancing the model's capabilities in these difficult scenarios.

Ultimately, the data is meticulously annotated at three distinct hierarchical levels: text lines, text blocks, and text pages. With extensive language coverage of 109 languages, including major global ones like Chinese, English, French, and Hindi. It includes diverse scenes including Academic Papers, Newspapers, Handwritten texts, Ancient books, Id cards, tickets, seals, etc. Additionally, the dataset addresses compatibility with a variety of writing systems and text styles, covering Printing, Handwriting, Scanned text, Artistic Fonts, etc.

A.2. Table

As shown in Figure A2, we constructed a large-scale dataset of over 5 million high-quality image-table pairs. Our dataset construction employs three key strategies: automatic data annotation, potential annotation mining, and high-quality data synthesis. For coding efficiency, we adopt OTSL [28] as the model’s target format instead of conventional HTML. The main dataset construction process is as follows:

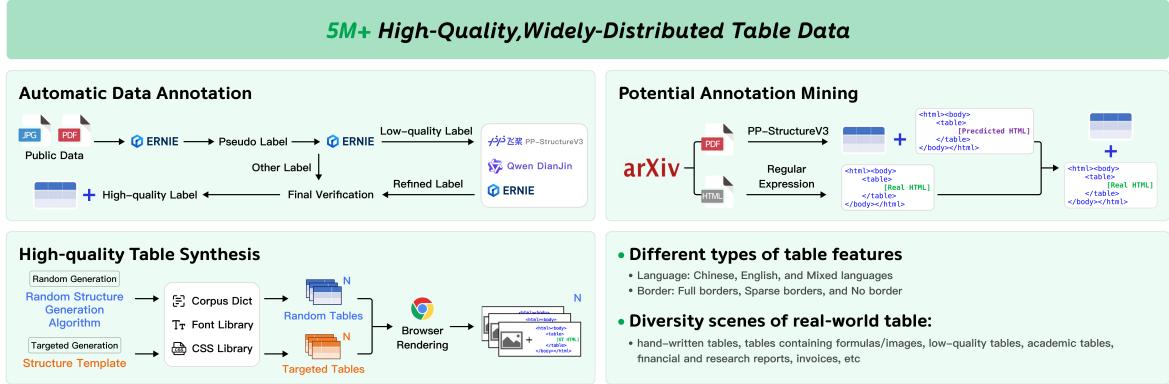


Figure A2 | The construction method and characteristics of the table training data for PaddleOCR-VL-0.9B.

- 1. Automatic Data Annotation:** To enhance the performance of PaddleOCR-VL in table recognition, we built a large-scale, diverse dataset covering various languages, border styles, and table types. Tables are first located using PP-StructureV3 [10]. For unlabeled images, we employed a multi-stage annotation pipeline: ERNIE-4.5-VL [5] first generates pseudo-labels, which are then validated by a ERNIE-4.5-VL-28B-A3B [5] as discriminative model. Rejected annotations are refined using DianJin-OCR-R1 [70] (for tools, we use ERNIE-4.5-VL and PP-StructureV3 [10]). Finally, all annotations undergo rigorous rule-based verification, including n-gram analysis and HTML validation, to ensure only high-quality samples are used for training.
- 2. Potential Annotation Mining:** For public data with potential annotations (e.g., from arXiv), we extract tables and their corresponding official-supported HTML source code. We then employ a mechanism combining regular expression matching with contextual and sequential alignment to construct accurate table-HTML pairs. The extracted HTML subsequently undergoes rule-based filtering, yielding high-quality data samples ready for model training.
- 3. High-quality Table Synthesis:** To overcome data imbalance and high annotation costs, we introduce an innovative high-quality table synthesis tool which constitutes the cornerstone of our table data collection pipeline. This tool enables both randomized synthesis for comprehensive data supplement and targeted synthesis to enhance recognition of specific table categories. Specifically, we first leverage LLMs to gather a diverse and extensive corpus. Then, our tool generates table training pairs through randomized configurations of structures, fonts, CSS styles, and textual content, while also supporting customized synthesis by specifying particular parameters to accurately simulate specialized table types. With a synthesis speed of 10,000 samples per hour, our tool has produced over 5,500,000 training instances, substantially enhancing our model’s generalization capability and comprehensive performance in table

recognition.

Through the aforementioned data construction strategies, we build a comprehensive table dataset encompassing diverse table categories and recognition scenarios, thereby providing robust support for training our model in the table recognition task.

A.3. Formula

As shown in Figure A3, this dataset was developed using a range of strategies, including source code rendering, automatic data annotation, targeted synthesis of long-tail data, and public data collection. It encompasses a variety of formula scenarios, such as educational supplementary materials, test papers for primary and secondary schools, mathematical papers, PowerPoint courseware, university theses, financial research reports, and handwritten mathematical notes. The dataset features four types of formulas: Simple Printed Expressions, Complex Printed Expressions, Screen-Captured Expressions, and Handwritten Expressions, available in both Chinese and English. The main process for constructing the dataset is as follows:

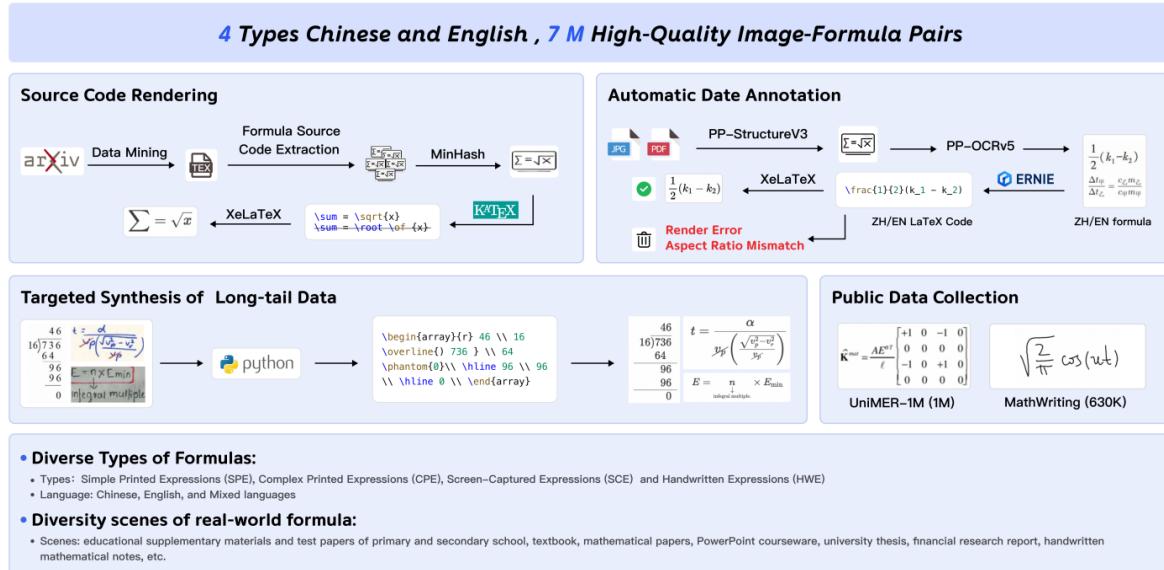


Figure A3 | The construction method and characteristics of the formula training data for PaddleOCR-VL-0.9B.

- 1. Source Code Rendering:** To enhance the model's adaptability to a wide variety of unusual formula structures, a large amount of paper source code was scraped from arXiv, and LaTeX code for the formulas was extracted using regular expressions. Then, MinHash was used to remove duplicate and highly similar formula source codes, and KaTeX was employed to normalize the formula source codes, thereby reducing their ambiguity. Finally, the formulas were re-rendered into images using a formula rendering engine.
- 2. Automatic Data Annotation:** For real-world formula data from exam papers, educational materials, and handwritten notes, the process begins with the use of the layout analysis method PP-StructureV3 [10] to identify the bounding boxes for formulas. Based on these bounding boxes, formula regions are cropped from the images. Subsequently, large multimodal language models, such as ERNIE-4.5-VL-28B-A3B [5], are employed to

generate the LaTeX source code for these formulas. Given the rarity of Chinese formulas in real-world scenarios—where approximately 1 out of 100 formulas contains Chinese characters—PP-OCRv5 [10] is utilized to recognize characters within the cropped regions, enabling targeted optimization when Chinese characters are detected. Due to the complex and diverse nature of real-world formulas, recognition errors may occur with existing large models. To address this, a LaTeX rendering engine is used to filter the formulas generated by these models. Specifically, image-formula pairs that cannot be successfully rendered by xelatex are discarded. For those that render successfully, a more in-depth screening is conducted by comparing metrics such as the aspect ratio between the recognized image and the rendered image.

3. **Targeted Synthesis of Long-tail Data:** For certain long-tail formula structures, such as elementary school vertical calculations, formulas with strikethroughs, and handwritten formulas with explanatory arrows, existing multimodal large models struggle to accurately recognize them due to data distribution issues. To address this, LaTeX code is synthetically generated based on rules and inverse rendering is performed using a LaTeX rendering engine, thereby constructing image-formula matching pairs for these long-tail scenarios.
4. **Public Data Collection:** In order to enable the model to learn high-quality formula representations, a substantial amount of data has been collected from existing public datasets, including UniMER-1M [30] and MathWriting [31]. Specifically, UniMER-1M is oriented towards real document scenarios and has gathered 1 million formula data from arXiv, Pix2tex [71], CROHME [72, 73, 74], and HME100K [75]. On the other hand, MathWriting is currently the largest handwritten mathematical formula dataset, comprising 230,000 real handwritten formula samples and 400,000 synthetic handwritten formula samples.

A.4. Chart

We constructed a large-scale, bilingual (Chinese and English) dataset of over 0.8 million high-quality image-chart pairs. Our dataset construction employs four key strategies: public data collection and cleaning, automatic data annotation, data synthesis, and targeted long-tail data augmentation. The dataset covers a wide array of chart types from diverse sources, including academic papers, financial reports, and web pages. The main dataset construction process is as follows:

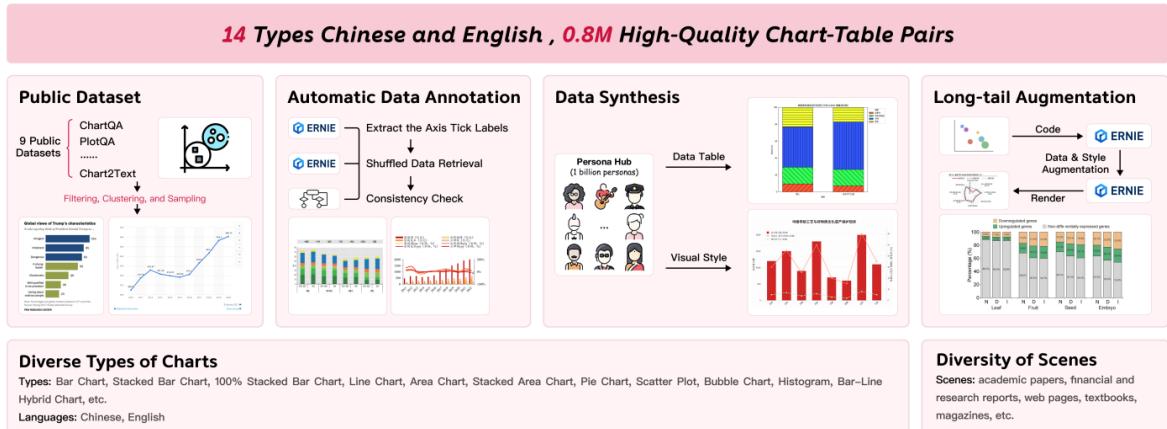


Figure A4 | The construction method and characteristics of the chart training data for PaddleOCR-VL-0.9B.

1. **Public Data Collection and Cleaning:** We collected a large number of samples from public datasets, including ChartQA [32], PlotQA [33], Chart2Text [34], DVQA [35], Unichart [36], Beagle [37], ChartINFO [38], visText [39], and ExcelChart [40]. However, the raw datasets suffered from poor annotation quality and extremely imbalanced data distributions. Thus, a meticulous data cleaning and filtering pipeline was implemented to remove noisy samples and ensure balanced clustering, resulting in a high-quality dataset of 220k samples.
2. **Automatic Data Annotation:** To annotate our large collection of unlabeled public and in-house data, we developed a two-stage annotation pipeline based on the Vision Large Language Model ERNIE-4.5-VL [5]. In the first stage, the model extracts tick labels from the x- and y-axes; in the second, random permutations of these labels are used to query corresponding data points, framing annotation as a data retrieval task. A final consistency check ensures that only verified annotations are included in the training set, guaranteeing high reliability.
3. **Data Synthesis:** To capture diverse visual styles and enhance model generalization, we designed a three-stage data synthesis pipeline. It begins with a large collection of base data tables, followed by an LLM Persona [76] strategy using ERNIE-X1 [5], which diversifies table content and generates persona-specific rendering code. This enables control over chart aesthetics such as color, font, and layout. Leveraging a billion distinct personas, the pipeline produces highly varied data structures and visual styles, substantially improving PaddleOCR-VL’s generalization across real-world charts. For rendering, we employ matplotlib and seaborn.
4. **Targeted Long-tail Data Augmentation:** To improve generalization on real-world long-tail samples, we designed a data augmentation pipeline based on seed charts. It first selects long-tail samples by their distinctive visual features, then uses ERNIE-4.5-VL [5] to replicate their rendering code. ERNIE-X1 [5], guided by a specific persona [76], further diversifies the code by altering data tables and visual styles. Executing the modified code produces new augmented charts with corresponding data tables.

Through the four data construction strategies mentioned above, the final chart dataset covers a wide range of application scenarios and a rich variety of chart styles, providing strong support for the training of chart models.

B. Supported Languages

PaddleOCR-VL supports a total of 109 languages. Table 6 in the main text shows the text line recognition accuracy for different languages. Table A1 lists the correspondence between each language category and the specific supported languages.

Language Category	Specific Languages
Chinese	Chinese
English	English
Korean	Korean
Japanese	Japanese
Thai	Thai
Greek	Greek
Tamil	Tamil
Telugu	Telugu
Arabic	Arabic, Persian, Uyghur, Urdu, Pashto, Kurdish, Sindhi, Balochi
Latin	French, German, Afrikaans, Italian, Spanish, Bosnian, Portuguese, Czech, Welsh, Danish, Estonian, Irish, Croatian, Uzbek, Hungarian, Serbian (Latin), Indonesian, Occitan, Icelandic, Lithuanian, Maori, Malay, Dutch, Norwegian, Polish, Slovak, Slovenian, Albanian, Swedish, Swahili, Tagalog, Turkish, Latin, Azerbaijani, Kurdish, Latvian, Maltese, Pali, Romanian, Vietnamese, Finnish, Basque, Galician, Luxembourgish, Romansh, Catalan, Quechua
Cyrillic	Russian, Belarusian, Ukrainian, Serbian (Cyrillic), Bulgarian, Mongolian, Abkhazian, Adyghe, Kabardian, Avar, Dargin, Ingush, Chechen, Lak, Lezgin, Tabasaran, Kazakh, Kyrgyz, Tajik, Macedonian, Tatar, Chuvash, Bashkir, Malian, Moldovan, Udmurt, Komi, Ossetian, Buryat, Kalmyk, Tuvan, Sakha, Karakalpak
Devanagari	Hindi, Marathi, Nepali, Bihari, Maithili, Angika, Bhojpuri, Magahi, Santali, Newari, Konkani, Sanskrit, Haryanvi

Table A1 | Supported Languages

C. Inference Performance on Different Hardware Configurations

We measured the inference performance of PaddleOCR-VL on different hardware configurations, as summarized in Table A2. As observed, PaddleOCR-VL demonstrates stable and efficient inference performance across a wide range of hardware and backend configurations, showing that the system can flexibly adapt to diverse computing environments. Moreover, we are currently integrating the FastDeploy backend, which is expected to further enhance inference efficiency in future releases.

Hardware	Backend	Total Time (s)↓	Pages/s↑	Tokens/s↑	Avg. VRAM Usage (GB)↓
A100	vLLM	800.9	1.2241	1881.2	43.7
	SGLang	917.6	1.0684	1641.5	49.8
A10	vLLM	1238.0	0.7921	1217.2	14.1
	SGLang	1429.9	0.6858	1055.8	20.0
RTX 3060	vLLM	2749.1	0.3568	548.2	11.9
	SGLang	2792.4	0.3513	540.8	11.8
RTX 5070	vLLM	1292.9	0.7584	1165.5	8.9
RTX 4090D	vLLM	845.3	1.1597	1781.8	16.7
	SGLang	951.8	1.0303	1586.1	21.8

Table A2 | End-to-End Inference Performance

D. Real-world Samples

This appendix showcases the parsing and recognition capabilities of our proposed algorithm across a variety of challenging scenarios.

Section [D.1](#) demonstrates the overall document parsing capability of PaddleOCR-VL. Figures [A5-A8](#) are examples of parsing different types of documents in Markdown format.

Figures [A9-A11](#) in section [D.2](#) illustrate the superior ability of PaddleOCR-VL to process pages featuring intricate or challenging layouts.

Figures [A12](#) and [A13](#) in section [D.3](#) demonstrate that PaddleOCR-VL maintains excellent reading order when faced with complex layouts, such as those found in various reports, textbooks, newspapers, magazines, and even vertical documents.

Section [D.4](#) highlights the robust text recognition performance of PaddleOCR-VL in challenging cases, including multilingual text, handwriting text, and vertical text, which are presented in Figures [A14-A22](#).

The model’s table recognition abilities are demonstrated in section [D.5](#). Figures [A23](#) and [A24](#) showcase its robust handling of a wide array of table formats, including tables from academic papers, tables from financial reports, tables with watermark, tables with image, tables with formulas and photograph of tables.

Figures in section [D.6](#) detail the formula recognition performance. Figure [A25](#) demonstrates the ability to handle various types of english formulas including complex printed expressions, handwritten expressions screen-captured expressions and vertical formula, while Figure [A26](#) focuses on the ability to handle formulas that contain Chinese characters.

In section [D.7](#), PaddleOCR-VL demonstrates impressive chart recognition capabilities, a feature currently lacking in many expert OCR VLMs like MinerU2.5 [\[14\]](#), dots.ocr [\[52\]](#) or MonkeyOCR [\[1\]](#). Figures [A27-A29](#) showcase our ability to parse various chart types, including pie charts, bar charts, line charts, bar-line hybrid charts and heatmap.

D.1. Comprehensive Document Parsing

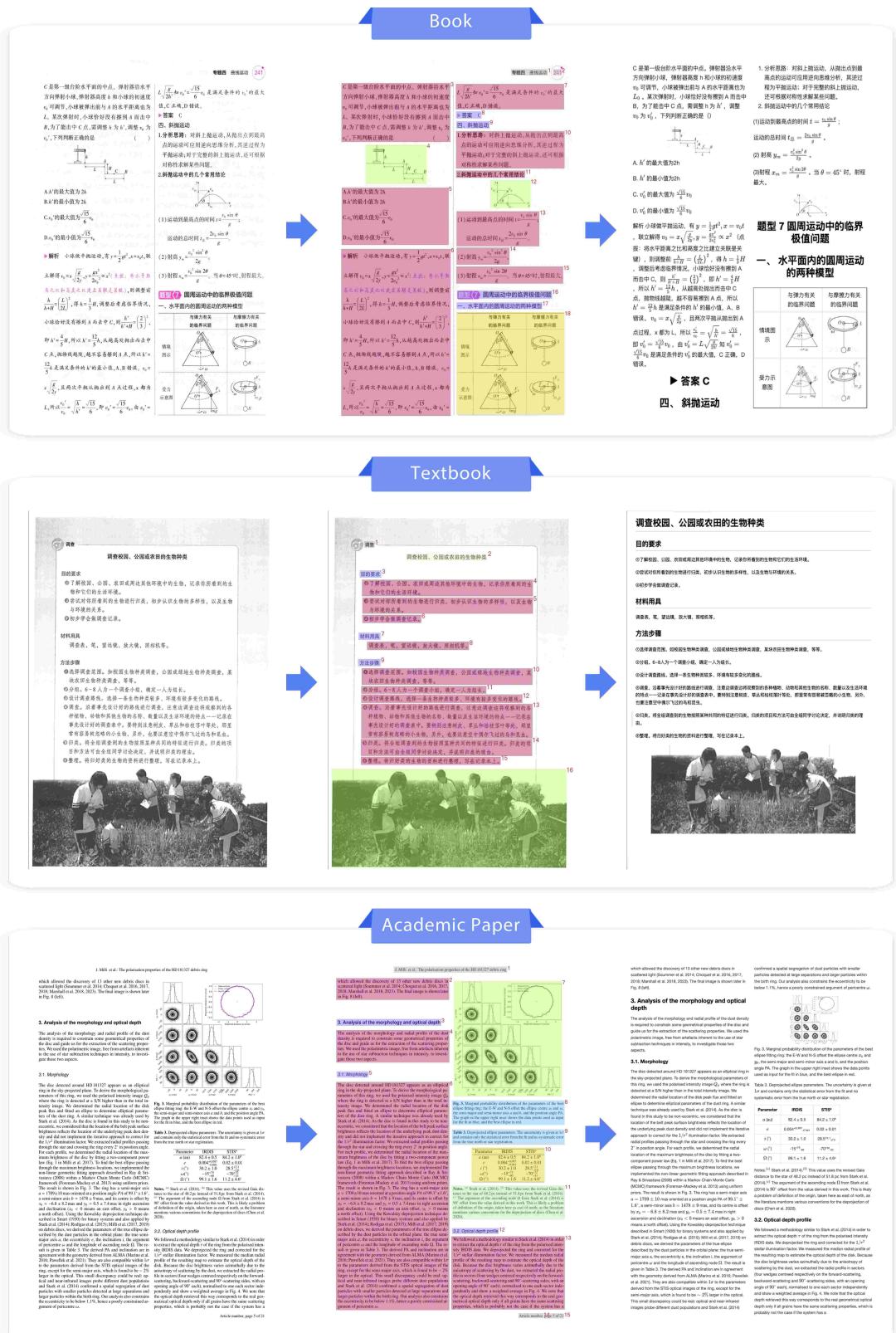


Figure A5 | The Layout and Markdown Output for Book, Textbook and Academic Paper.

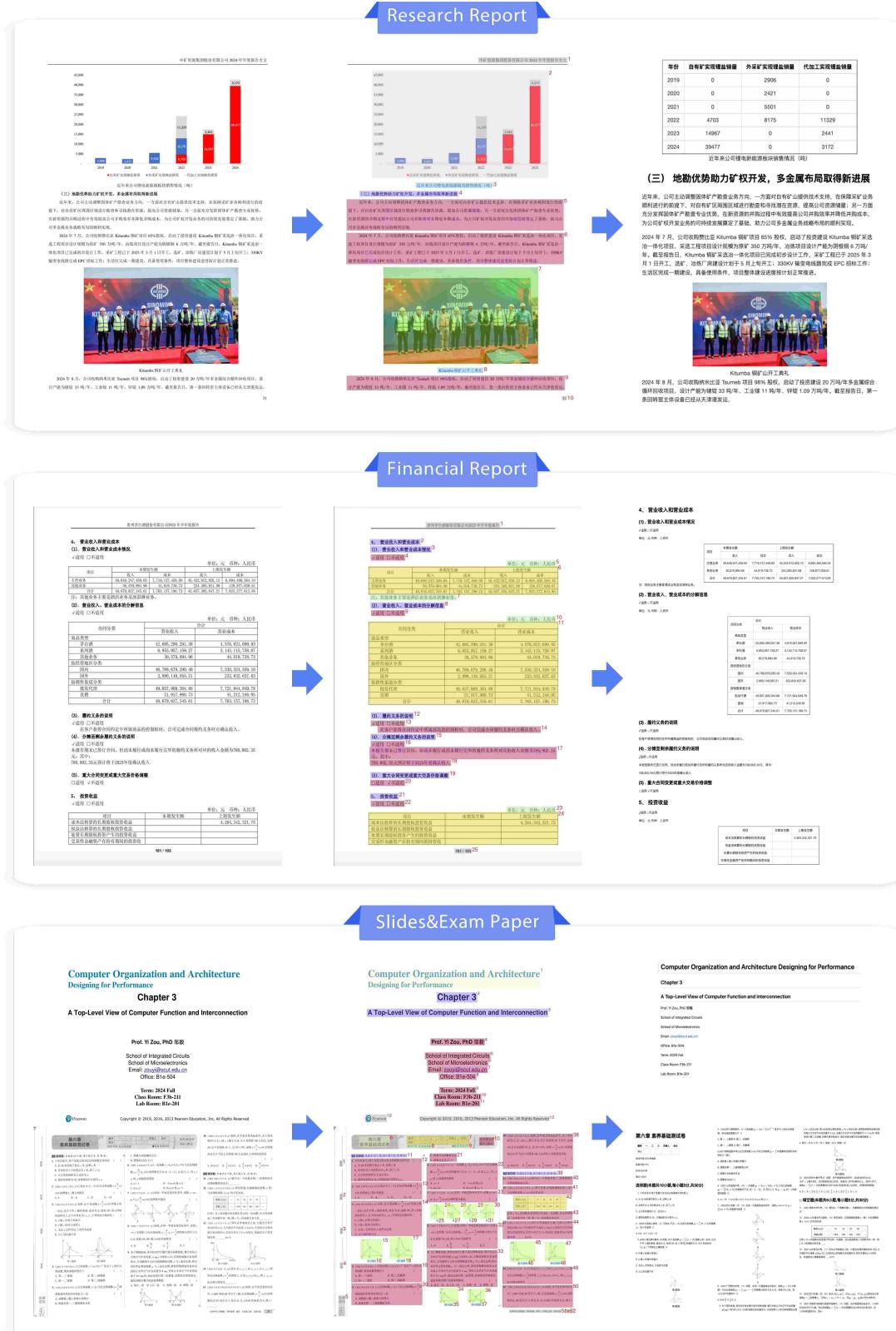


Figure A6 | The Layout and Markdown Output for Research Report (with chart recognition enabled), Financial Report, Slides and Exam Paper.

Notes

将虚线框内电路等效为一个电阻 R'

等效电阻: $R' = \frac{R_1 + R_2 + R_3}{R_1 \cdot R_2 \cdot R_3} = \frac{(R_1 + R_2 + R_3)^2}{(R_1 + R_2 + R_3) \cdot R_1 \cdot R_2 \cdot R_3} = \left(\frac{R_1 + R_2 + R_3}{R_1 \cdot R_2 \cdot R_3}\right)^2 \cdot R$ 等效负载.

大前提: 等效电阻与负载端正比, 等效电阻与负载端正比
等效电阻与负载端正比, 等效电阻与负载端正比

例题: 2016国16
S断开时电流为3I
S闭合时电流为4I

将虚线框内电路等效为一个电阻 R'

等效电阻: $R' = \frac{R_1 + R_2 + R_3}{R_1 \cdot R_2 \cdot R_3} = \frac{(R_1 + R_2 + R_3)^2}{(R_1 + R_2 + R_3) \cdot R_1 \cdot R_2 \cdot R_3} = \left(\frac{R_1 + R_2 + R_3}{R_1 \cdot R_2 \cdot R_3}\right)^2 \cdot R$ 等效负载.

大前提: 等效电阻与负载端正比, 等效电阻与负载端正比
等效电阻与负载端正比, 等效电阻与负载端正比

例题: 2016国16
S断开时电流为3I
S闭合时电流为4I

Vertical Book

两次战役

两次战役

残酷的记录

残酷的记录

Ancient Book

两次战役

残酷的记录

Figure A7 | The Layout and Markdown Output for Notes, Vertical Book and Ancient Book.

Certificate

中大华远认证中心
质量管理体系认证证书
02011QH922ROS-1

地址(邮编): 福建省厦门市湖里区高崎村中轴路7号(361011)
质量管理体系标准: GB/T 19001-2008/ISO 9001:2008
质量管理体系: 工业珠宝及过滤产品的生产服务
有效期: 2013年7月27日
有效期: 2013年7月27日至2016年7月26日
审核员: 李国和
审核员: CNAB
审核员: IAF

中大华远认证中心
质量管理体系认证证书
02011QH922ROS-1

地址(邮编): 福建省厦门市湖里区高崎村中轴路7号(361011)
质量管理体系标准: GB/T 19001-2008/ISO 9001:2008
质量管理体系: 工业珠宝及过滤产品的生产服务
有效期: 2013年7月27日
有效期: 2013年7月27日至2016年7月26日
主任签发: 杜树和
审核员: CNAB
审核员: IAF

Newspaper

New Syrian PM named as outside powers move to shore up their interests

Israel strikes hundreds of targets and seizes key territory in Syria attacks

New Syrian PM named as outside powers move to shore up their interests

Israel strikes hundreds of targets and seizes key territory in Syria attacks

New Syrian PM named as outside powers move to shore up their interests

Israel strikes hundreds of targets and seizes key territory in Syria attacks

Magazine

The nuclear deal's other winner

Buckle up

The nuclear deal's other winner

Buckle up

The nuclear deal's other winner

Buckle up

Figure A8 | The Layout and Markdown Output for Certificate, Newspaper and Magazine.

D.2. Layout Detection

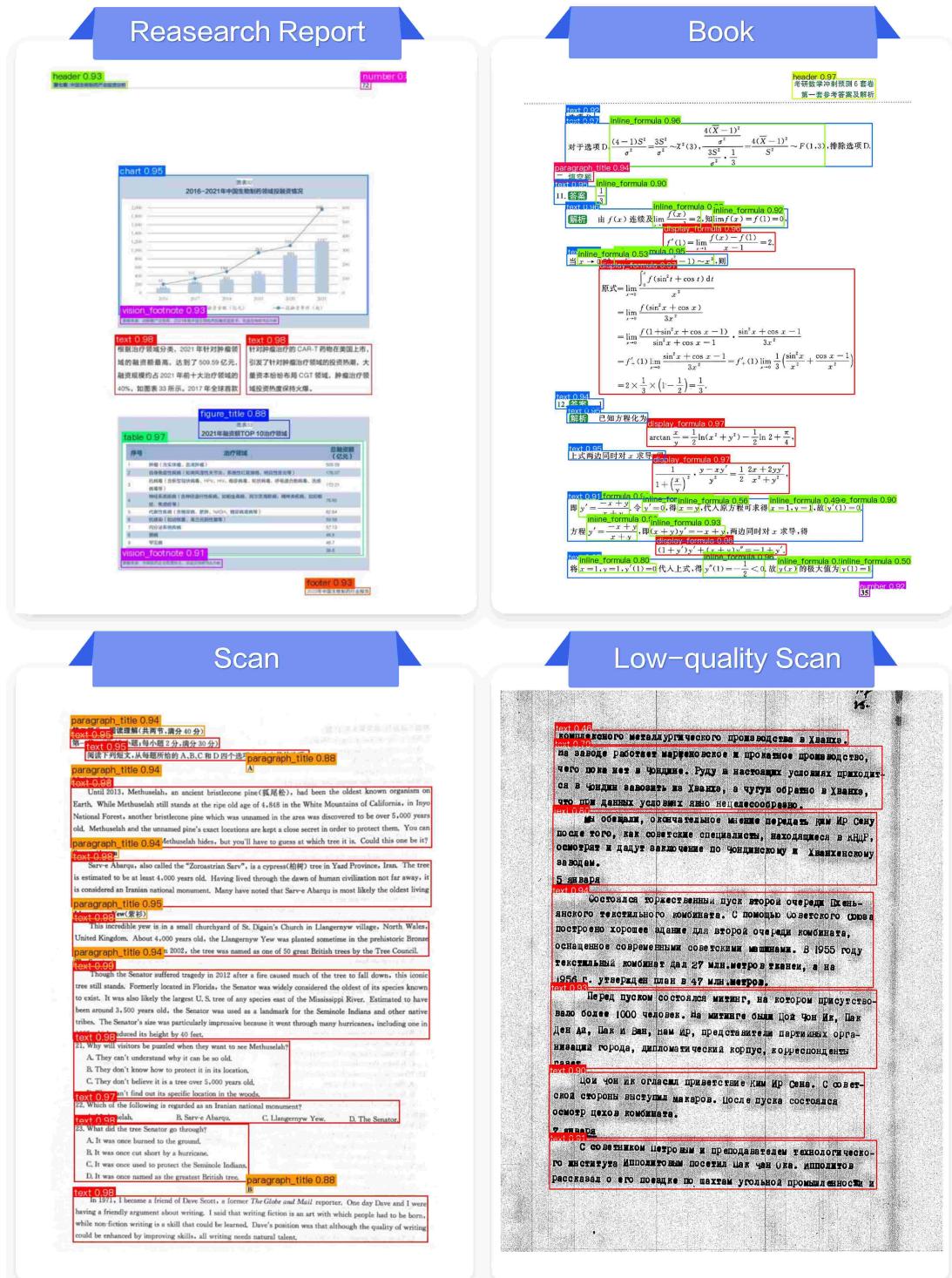
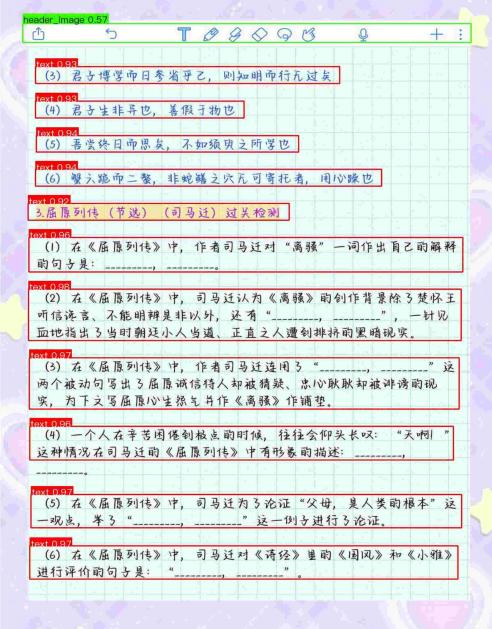



Figure A9 | The Layout Detection results for various types of documents.

Electronic Notes

Table with Image

类别	物品	Image	数量	价格	购入日期	备注
衣物 12 项	短袖 优衣库 polo		1	59	24-6	偏暗，版型质量都好，穿久了后背发灰
	短袖 小猫		1	19	25-5	！他中我最满意的，可惜下架了
	短袖 粉色		1	15	25-6	品时达童装，就是颜色尺寸少
	短袖 白色		1	10	25-6	外贸wei单，可以
	无袖 优衣库467047		1	59	24-7	简约舒适，类似三宅一生
	长牛仔裤 优衣库		1	174	24-3	有点重，但是很好看
	长微喇裤 黑色		1	30	25-3	舒适，就是偏短了点
	长微喇裤 小珍橘		1	60	25-4	很好，蹲有货再入一条
	短裤 七号仓库		1	60	24-5	很好
	内裤 金田		3	30	25-6	广东本土老品牌
	内衣 宜岱梦/奶糖派		3	210	24-12	很好
	袜子 纯棉		1	5	25-1	随便买的，想回购也找不到店铺

Medical Test Report

Textbook

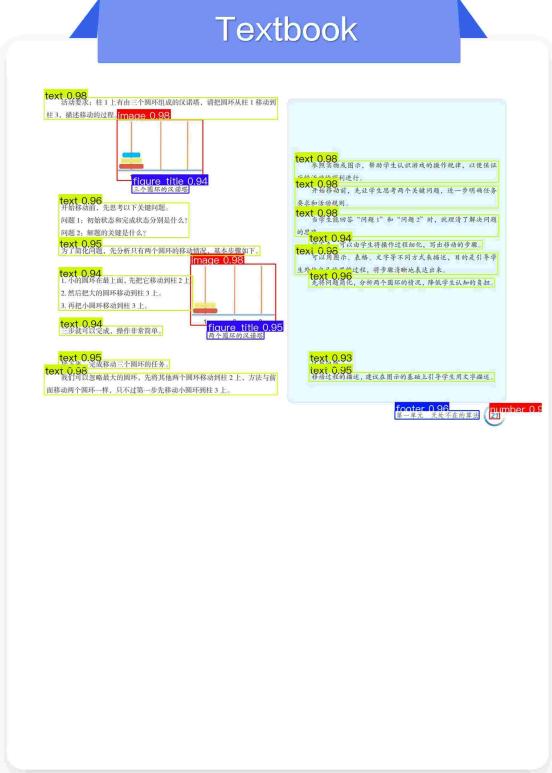


Figure A10 | The Layout Detection results for various types of documents.

Figure A11 | The Layout Detection results for various types of documents.

D.3. Reading Order

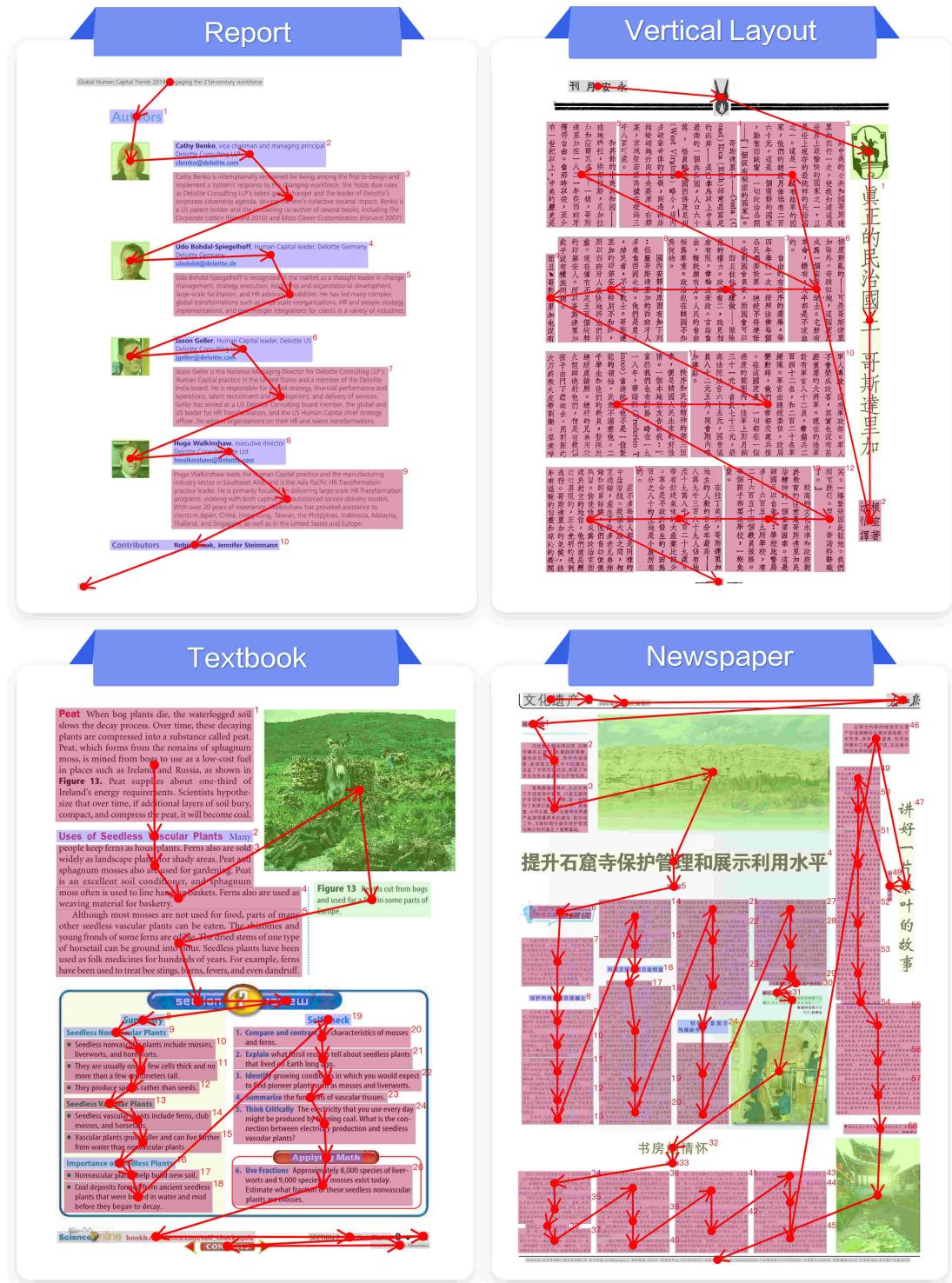


Figure A12 | The Reading Order results for various types of documents.

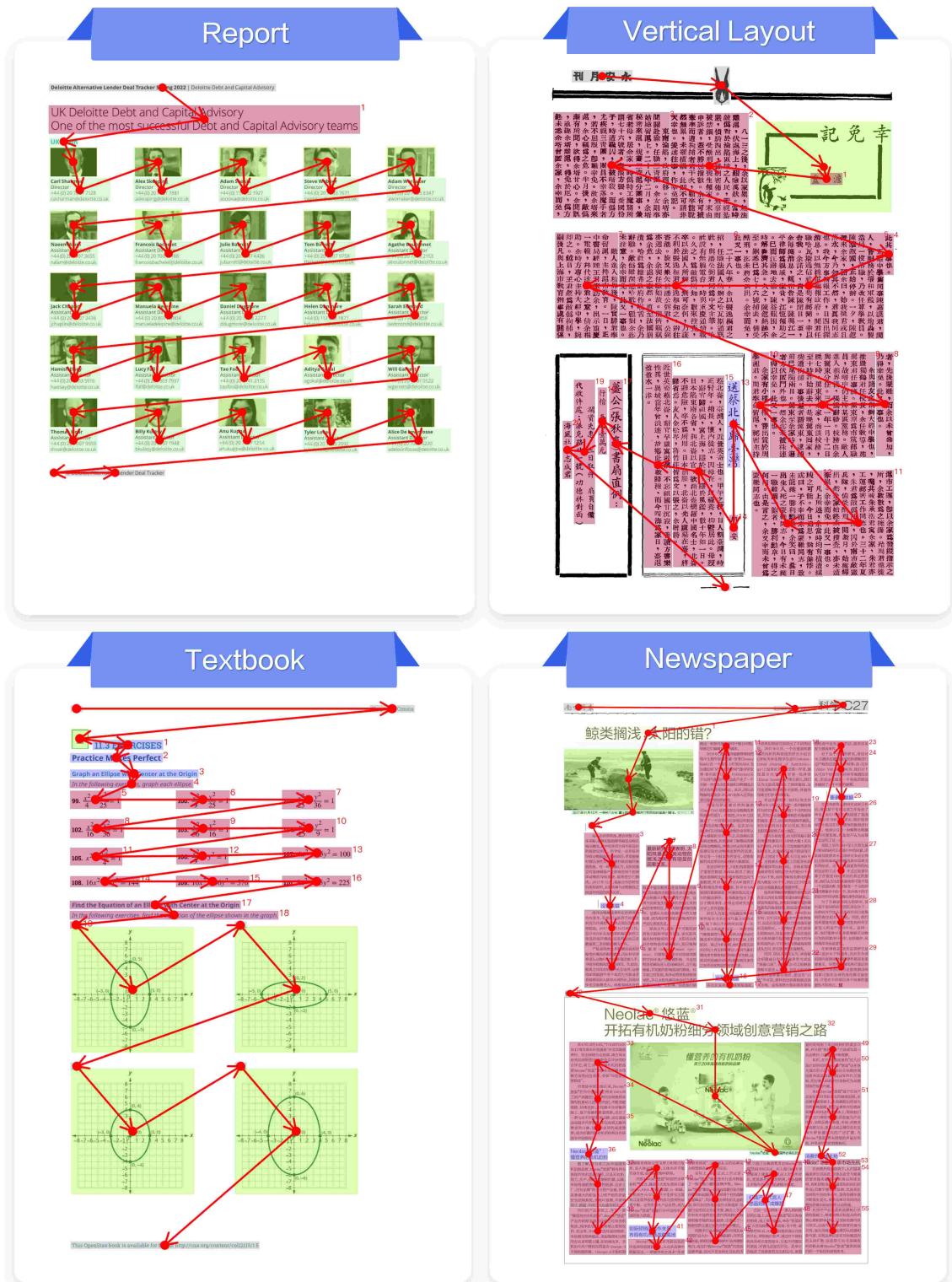


Figure A13 | The Reading Order results for various types of documents.

D.4. Text Recognition

D.4.1. Multilingual Text Recognition

French

Joëlle Marsot: «IL FAUT DONNER DU SENS AU TRAVAIL DE CHACUN»

Comment bien appréhender la gestion du stress en entreprise?
S'il est vrai que le stress est un état de la personne, il faut tout d'abord comprendre que celui-ci est vécu différemment par chaque personne. Il faut donc y apporter des solutions très individuelles. Par ailleurs, s'il est clair que le stress et ses effets destructeurs sont à banir, il faut aussi être conscient du besoin de challenges exprimé par certains salariés, dont les plus jeunes. Notre défi quotidien est de trouver ce dosage optimal, structurant, stimulant et positif qui pousse le collaborateur à donner le meilleur de lui-même, tout en offrant des moments de repos quand cela est nécessaire.

«LA GESTION DU STRESS EST AUSSI DE LA RESPONSABILITÉ DE CHAQUE INDIVIDU.»

Que peut faire l'entreprise pour créer ce climat idéal?
Elle peut jouer sur différents leviers, à commencer par la flexibilité, que ce soit des horaires ou des lieux de travail. Depuis 2004, nous avons créé MNKS qui permet le télétravail et a mis en place les outils opérationnels et organisationnels pour que cela fonctionne. Un autre élément tient à la question du temps de repos. Si la loi luxembourgeoise impose 25 jours de congé pour un Manager, un junior aura 11% de jours de congé en plus et cela peut aller jusqu'à 25 % pour un Manager. Il est également possible de transformer un bonus en jours de congé supplémentaires... Pour éviter cela, il est important de promouvoir la santé au travail.

La santé au travail est un autre élément à prendre en considération. De plus en plus d'entreprises mettent en place des programmes pour arrêter de fumer, perdre du poids ou simplement se faire accompagner dans une meilleure hygiène régulière. Pour ce qui est des services, les services à la personne ont également pris de l'ampleur au cours de ces dernières années.

Une conciergerie d'entreprise permet de gagner un temps précieux, libère l'esprit et vient soulager le collaborateur de ses contraintes privées ou professionnelles.

Toutes ces mesures suffisent-elles à garantir la fin du stress?
Non, cela ne suffit pas. Il faut aussi une véritable culture d'entreprise et un management qui stimule dans une relation humaine. Chez MNKS, bien que nous soyons un cabinet d'avocats avec des titres et des grades, tout le monde s'appelle par son prénom et se tutoie. Les associés ont leur bureau au milieu de leurs équipes et leur porte est toujours ouverte. L'élément le plus important de nombreux burn-out réside dans un problème relationnel. Pour éviter cela, il est important de promouvoir un management participatif, dans un environnement collaboratif et transversal. Nous voulons que nos managers soient dans l'accompagnement, dans le mentoring et la préparation. Le plus important, nous avons abandonné tout rating de performance. La plus importante est de donner du sens au travail de chacun, sur base d'une vision stratégique claire qui permet à chacun de décliner ses propres objectifs et comprendre comment il peut y contribuer.

56 / #MAGAZINE

Joëlle Marsot: «IL FAUT DONNER DU SENS AU TRAVAIL DE CHACUN»

Comment bien appréhender la gestion du stress en entreprise en entreprise?

S'il existe aujourd'hui de nombreuses solutions pour restreindre le stress, il faut tout d'abord comprendre que celui-ci est vécu différemment par chaque personne. Il faut donc y apporter des solutions très individuelles. Par ailleurs, s'il est clair que le stress et ses effets destructeurs sont à banir, il faut aussi être conscient du besoin de challenges exprimé par certains salariés, dont les plus jeunes. Notre défi quotidien est de trouver ce dosage optimal, structurant, stimulant et positif qui pousse le collaborateur à donner le meilleur de lui-même, tout en offrant des moments de repos quand cela est nécessaire.

«LA GESTION DU STRESS EST AUSSI DE LA RESPONSABILITÉ DE CHAQUE INDIVIDU.»

Que peut faire l'entreprise pour créer ce climat idéal?

Elle peut jouer sur différents leviers, à commencer par la flexibilité, que ce soit des horaires ou des lieux de travail. Depuis 2004, MNKS permet le télétravail et a mis en place les outils opérationnels et organisationnels pour que cela fonctionne. Un autre élément tient à la question du temps de repos. Si la loi luxembourgeoise impose 25 jours de congé pour un Manager, un junior aura 11% de jours de congé en plus et cela peut aller jusqu'à 25 % pour un Manager. Il est également possible de transformer un bonus en jours de congé supplémentaires... Pour éviter cela, il est important de promouvoir la santé au travail.

La santé au travail est un autre élément à prendre en considération. De plus en plus d'entreprises mettent en place des programmes pour arrêter de fumer, perdre du poids ou simplement se faire accompagner dans une meilleure hygiène régulière. Pour ce qui est des services, les services à la personne ont également pris de l'ampleur au cours de ces dernières années.

Une conciergerie d'entreprise permet de gagner un temps précieux, libère l'esprit et vient soulager le collaborateur de ses contraintes privées ou professionnelles.

Toutes ces mesures suffisent-elles à garantir la fin du stress?

Non, cela ne suffit pas. Il faut aussi une véritable culture d'entreprise et un management qui s'implique dans la relation humaine. Chez MNKS, bien que nous soyons un cabinet d'avocats avec des titres et des grades, tout le monde s'appelle par son prénom et se tutoie. Les associés ont leur bureau au milieu de leurs équipes et leur porte est toujours ouverte. L'élément le plus important de nombreux burn-out réside dans un problème relationnel. Pour éviter cela, il est important de promouvoir un management participatif, dans un environnement collaboratif et transversal. Nous voulons que nos managers soient dans l'accompagnement, dans le mentoring et la préparation. Le plus important, nous avons abandonné tout rating de performance. Le plus important est de donner du sens au travail de chacun, sur base d'une vision stratégique claire qui permet à chacun de décliner ses propres objectifs et comprendre comment il peut y contribuer.

Hindi

अशोक वाजपेयी की कविताओं में व्यक्तिगत या निजी संबंधों की संवेदनाओं के साथ सम्बन्धित राग और देव की आसक्ति की संवेदनाएँ भी बार बार रेखांकित की गयी हैं। उनके काव्य संकलनों और संचयनों के निकट अध्ययन से उनमें अभिव्यक्त अनेक मौलिक प्रतिपत्तियाँ, तत्त्वों, और प्रतिपत्तियों का संकेत मिलता है। उनमें से एक प्रतिबद्ध कवि के प्रतिपक्ष धर्मों, कला यात्री, लोक धर्मों एवं प्रजातात्त्विक प्रतिमानों के अनेक आयाम उत्तर आते हैं। अः उनकी अनुभूति एवं संवेदना का धरातल विस्तृत एवं बहु आयाम है। अपने घर-परिवार, पास -पडोस और कर्साई जीवन के यथार्थ अनुभवों से ही उनकी कविता प्रस्तुत हुई है। समकालीन काव्य-तत्त्वों में प्रमुख मनुष्य जीवन की दुख-दुर्बिनाओं, अंतर्दृष्टि, संघर्ष, विद्यार्थी, अनुभवों आदि को कवि अशोक ने अपने जीवन से जोड़ कर व्यक्त किया है। उनकी कविता इस तरह दैर्यकिक, परिवारिक, सामाजिक, राजनीतिक, सैद्धांतिक, धार्मिक, आर्थिक, प्राकृतिक, वैचारिक, दार्शकिक आदि धरातलों से होती हुई निकलती है। अशोक वाजपेयी की कविता का पार इतना विस्तृत एवं खुला है जिससे उनकी कविता आज की समकालीन कविता और अपनी पीढ़ी की कविता के बीच एक नयी भवभूमि प्रदान करती है। अशोक वाजपेयी की कविताओं में अभिव्यक्त संवेदनाओं से आम आदी के जीवन की अन्त छवियों तक हम पहुँच पाते हैं। निम्न मध्यार्थियों का सबसे जीवन-परिवेश से निकली उनकी कविता संवेदना की ताजागी एवं शिरप विधान की मौलिकता में बेंजोड है। उनकी कविता के बुनियादी स्रोतों के प्रकृति, रसि, भाषा, मन्त्र, अनुपर्याप्ति आदि हैं जो मानव जीवन से संबंधित हैं। उनकी कविता में विशाल लोकानुभव, जन-जीवन के साथ उनका संबंध, लोक-व्यवहार का ज्ञान, समृद्धी मानवीयता की पहचान, सांस्कृतिक दृष्टि, मानवीय-कुठाओं का प्रतिफलन आदि की अभिव्यक्ति हुई है।

आम आदी के जीवन की गति को रुकावट प्रदान करनेवाले विरोधी तत्त्वों से लड़ती अशोक की कविताओं जीवन के लिए एक नया रास्ता खोल कर देती हैं। कवि का सवाल यहाँ स्मरणीय है - 'बिना किसी को मारे जीना कितना मुश्किल है'। अशोक की कविताओं में जीवन जीने की कामना का निरपराध उत्सव भाव, देह की

अशोक वाजपेयी की कविताओं में व्यक्तिगत या निजी संबंधों की संवेदनाओं के साथ सम्बन्धित राग और देव की आसक्ति की संवेदनाएँ भी बार बार रेखांकित की गयी हैं। उनके काव्य संकलनों और संचयनों के निकट अध्ययन से उनमें अभिव्यक्त अनेक मौलिक प्रतिपत्तियाँ, तत्त्वों, और प्रतिपत्तियों का संकेत मिलता है। उनमें से एक प्रतिबद्ध कवि के प्रतिपक्ष धर्मों, कला यात्री, लोक धर्मों एवं प्रजातात्त्विक प्रतिमानों के अनेक आयाम उत्तर आते हैं। अः उनकी अनुभूति एवं संवेदना का धरातल विस्तृत एवं बहु आयाम है। अपने घर-परिवार, पास -पडोस और कर्साई जीवन के यथार्थ अनुभवों से ही उनकी कविता प्रस्तुत हुई है। समकालीन काव्य-तत्त्वों में प्रमुख मनुष्य जीवन की दुख-दुर्बिनाओं, अंतर्दृष्टि, संघर्ष, विद्यार्थी, अनुभवों आदि को कवि अशोक ने अपने जीवन से जोड़ कर व्यक्त किया है। उनकी कविता इस तरह दैर्यकिक, परिवारिक, सामाजिक, राजनीतिक, सैद्धांतिक, धार्मिक, आर्थिक, प्राकृतिक, वैचारिक, दार्शकिक आदि धरातलों से होती हुई निकलती है। अशोक वाजपेयी की कविता का पार इतना विस्तृत एवं खुला है जिससे उनकी कविता आज की समकालीन कविता और अपनी पीढ़ी की कविता के बीच एक नयी भवभूमि प्रदान करती है। अशोक वाजपेयी की कविताओं में अभिव्यक्ति संवेदनाओं से आम आदी के जीवन की अन्त छवियों तक हम पहुँच पाते हैं। निम्न मध्यार्थियों का सबसे जीवन-परिवेश से निकली उनकी कविता संवेदना की ताजागी एवं शिरप विधान की मौलिकता में बेंजोड है। उनकी कविता के बुनियादी स्रोतों के प्रकृति, रसि, भाषा, मन्त्र, अनुपर्याप्ति आदि हैं जो मानव जीवन से संबंधित हैं। उनकी कविता में विशाल लोकानुभव, जन-जीवन के साथ उनका संबंध, लोक-व्यवहार का ज्ञान, समृद्धी मानवीयता की पहचान, सांस्कृतिक दृष्टि, मानवीय-कुठाओं का प्रतिफलन आदि की अभिव्यक्ति हुई है।

आम आदी के जीवन की गति को रुकावट प्रदान करनेवाले विरोधी तत्त्वों से लड़ती अशोक की कविताएँ जीवन के लिए एक नया रास्ता खोल कर देती हैं। कवि का सवाल यहाँ स्मरणीय है - 'बिना किसी को मारे जीना कितना मुश्किल है'। अशोक की कविताओं में जीवन जीने की कामना का निरपराध उत्सव भाव, देह की

Figure A14 | The markdown output for French and Hindi documents.

Croatian

Godine 1854. na Rabu boravi još jedan bivši austrijski časnik, ilirac-preporoditelj Ivan Kukuljević Sakcinski, koji je studijski obišao i otoke Krk i Pašman, te Rijeku, Bakar, Senj, Zadar, Šibenik, Split, Klis i Omis s Poljicima. U djelu „*Izvještje o putovanju po Dalmaciji u jeseni godine 1854.* objavljenom naredne godine iskљjuje svoj bijes na odnos Austro-Ugarske prema kulturnoj baštini hrvatskog naroda, te se osvrće na zapuštenе i devastirane rapske crkve i uništen mozaik u crkvi sv. Ivana Krstitelja: „*Kada domoljubni Hrvat u ovu crkvu stupi, pak po prekrasnom mozaiku, sada smrdom i ruševinom pokrivenom gazeći, krasne one stupove i glavice, umjetno izrezane oltare i ikone, veličanstvene arkade i svodove, lagahne visoke prozore i kamenite grobove s latinski i glagolski napisni motri, mora da ga obuzme gorka tuga nad propašću naroda i svega toga, što mu je njegda pripadalo*“.²⁰ Upravo njegova bogata zbirka spisa, isprava i rukopisa otkupljena sredstvima velikog patriota i mecene, dakovčkog biskupa Josipa Juraja Strossmayera predstavlja fundament arhiva Akademije.²¹

Slika 4: Fragment mozaika iz crkve sv. Ivana na Rabu, crtež Mijata Sabljara
(iz BRADANOVIĆ, 2017)

Godine 1854. na Rabu boravi još jedan bivši austrijski časnik, ilirac-preporoditelj Ivan Kukuljević Sakcinski, koji je studijski obišao i otoke Krk i Pašman, te Rijeku, Bakar, Senj, Zadar, Šibenik, Split, Klis i Omis s Poljicima. U djelu „*Izvještje o putovanju po Dalmaciji u jeseni godine 1854.* objavljenom naredne godine iskљjuje svoj bijes na odnos Austro-Ugarske prema kulturnoj baštini hrvatskog naroda, te se osvrće na zapuštenе i devastirane rapske crkve i uništen mozaik u crkvi sv. Ivana Krstitelja: „*Kada domoljubni Hrvat u ovu crkvu stupi, pak po prekrasnom mozaiku, sada smrdom i ruševinom pokrivenom gazeći, krasne one stupove i glavice, umjetno izrezane oltare i ikone, veličanstvene arkade i svodove, lagahne visoke prozore i kamenite grobove s latinski i glagolski napisni motri, mora da ga obuzme gorka tuga nad propašću naroda i svega toga, što mu je njegda pripadalo*“²⁰. Upravo njegova bogata zbirka spisa, isprava i rukopisa otkupljena sredstvima velikog patriota i mecene, dakovčkog biskupa Josipa Juraja Strossmayera predstavlja fundament arhiva Akademije.²¹

Slika 4: Fragment mozaika iz crkve sv. Ivana na Rabu, crtež Mijata Sabljara (iz BRADANOVIĆ, 2017)

Spanish

Concursos de obra realizada El estado de la arquitectura

Arq. María Samaniego

Maria Samaniego Ponce (Quito, Ecuador) es arquitecta ecuatoriana, egresada de la Facultad de Arquitectura de la Universidad Central del Ecuador. Tiene vasta experiencia en diseño urbano y arquitectónico, con exposiciones y premios nacionales e internacionales en la Bienal de Arquitectura de Quito, la Bienal Iberoamericana, Premio Mies van der Rohe de Arquitectura Latinoamericana, finalista en V Bienal Iberoamericana de Arquitectura y Patrimonio, ganadora del Premio a la mejor arquitecta de Honor American Architecture Prize 2017, longlist Dezen Awards 2018, y finalista en el Premio Mies van der Rohe Awards categoría Mejor de América del Sur y Central. Ha sido jurado de varias premios de la Bienal Panamericana de Arquitectura y Patrimonio, ganadora del Premio a la mejor arquitecta de la Bienal Panamericana de Arquitectura y Patrimonio 2021, miembro del consejo técnico de apoyo para el inventario y protección de bienes inmuebles de arquitectura moderna del Ecuador del Ministerio de Cultura y Patrimonio, comisionada para la elaboración del Plan de Conservación de la Ciudad de Quito, miembro del comité de la FPAA, 2021-2024, presidenta del colegio de arquitectos de su país y de su núcleo Pichincha.

22 | ARQUITECTURA | 274
Sociedad de Arquitectos del Uruguay

En un escenario arquitectónico global en el que cada vez nos vemos más abocados a un sinfín de investigaciones, artículos, teorías y textos académicos, trabajos de aula o de escritorio y “no del hacer”, se aplaude la iniciativa de realizar los concursos, exposiciones o discusiones sobre la obra construida, el quehacer de nuestro oficio de arquitectos.

Sin de ninguna manera restar importancia a todas las actividades académicas y de investigación sobre la arquitectura y la ciudad, los espacios de confrontación de la obra arquitectónica resultan imprescindibles. La convocatoria a las bienales de arte, de ser espacios de exposición a gran escala y sin un fin mercantilista, que el estado del arte en ese momento, las exposiciones o concursos de obra arquitectónica realizada nos dejan ver el estado de la arquitectura.

La convocatoria realizada por la Sociedad de Arquitectos del Uruguay SAU para el 2021 fue sin duda un acierto, demostrado por la gran respuesta de proyectos participantes en las distintas categorías. Tuve el honor de formar parte del jurado de los proyectos participantes en las distintas categorías. Tuvieron que ser demandados a gran respuesta de proyectos participantes en las distintas categorías. Tuvieron que ser demandados a gran

Berlín y Fernando Giordano, con el acompañamiento de Cristina Bauero. Nos encormentaron jugar la Categoría 4: edificios administrativos, institucionales y corporativos, y la Categoría 5: arquitectura para el trabajo, la producción y los servicios.

Es usual encontrarse con una gran diversidad de propuestas, diferentes escalas, lugares de implantación, usos, sin embargo, la búsqueda por parte de los jurados de una calidad arquitectónica que sea una apropiada respuesta a su contexto -físico, social, cultural, etc.- fue constante. Ser jurado internacional supone cierta dificultad, al no conocer de primera mano los edificios sino limitarse a los paneles e información presentada; pero también puede ser una ventaja al tener una mirada tal vez más objetiva y una perspectiva desde fuera.

Las interesantes y profundas reuniones de deliberación, alimentadas por las coincidencias y también diferentes condiciones y visiones, fueron un espacio propio para concluir que, a pesar de la diferencia de latitudes, una arquitectura de calidad hecha con rigor y de manera responsable siempre tendrá un carácter universal.

Concursos de obra realizada

El estado de la arquitectura

Arq. María Samaniego

Maria Samaniego Ponce (Quito, Ecuador) es arquitecta ecuatoriana, egresada de la Facultad de Arquitectura y Urbanismo de la Universidad Central del Ecuador. Tiene vasta experiencia en diseño urbano y arquitectónico, conferencista invitada a nivel nacional e internacional en la Bienal de Arquitectura de Quito, la Bienal Iberoamericana de Arquitectura, Premio Mies van der Rohe de Arquitectura Latinoamericana, finalista en V Bienal Iberoamericana de Arquitectura y Patrimonio 2018, longlist Dezen Awards categoría Mejor de América del Sur y Central, 2021. Ha sido jurado de varios premios de arquitectura. También fue la presi-denta de la Bienal Panamericana de Arquitectura de Quito 2018 y BAQ, 2020, de Docromo Ecuador desde 2017, miembro del consejo técnico de apoyo para el inventario y protección de bienes inmuebles de arquitectura moderna del Ecuador del Ministerio de Cultura y Patrimonio, coordinadora de bienales y congresos de la FPAA, 2021-2024, presidenta del colegio de arquitectos de su país y de su núcleo Pichincha.

En un escenario arquitectónico global en el que cada vez nos vemos más abocados a un sinfín de investigaciones, artículos, teorías y textos académicos, trabajos de aula o de escritorio y “no del hacer”, se aplaude la iniciativa de realizar los concursos, exposiciones o discusiones sobre la obra construida, el quehacer de nuestro oficio de arquitectos.

Sin de ninguna manera restar importancia a todas las actividades académicas, al análisis y construcción del pensamiento sobre la arquitectura y la ciudad, los espacios de confrontación de la obra arquitectónica resultan imprescindibles. Haciendo un símil con la razón fundamental en base a la que surgieron las bienales de arte, de ser espacios de exposición a gran escala y sin un fin mercantilista, que evidencian el estado del arte en ese momento, las exposiciones o concursos de obra arquitectónica realizada nos dejó ver el estado de la arquitectura.

La convocatoria realizada por la Sociedad de Arquitectos del Uruguay SAU para el 2021 fue sin duda un acierto, demostrado por la gran respuesta de proyectos participantes en las distintas categorías. Tuve el honor de formar parte del equipo de jurados integrado por Héctor Berlín y Fernando Giordano, con el acompañamiento de Cristina Bauero. Nos encormentaron jugar la Categoría 4: edificios administrativos, institucionales y corporativos, y la Categoría 5: arquitectura para el trabajo, la producción y los servicios.

Es usual encontrarse con una gran diversidad de propuestas, diferentes escalas, lugares de implantación, usos; sin embargo, la búsqueda por parte de los jurados de una calidad arquitectónica y de una apropiada respuesta a su contexto -físico, social, cultural, etc.- fue constante. Ser jurado internacional supone cierta dificultad, al no conocer de primera mano los edificios sino limitarse a los paneles e información presentada; pero también puede ser una ventaja al tener una mirada tal vez más objetiva y una perspectiva desde fuera.

Las interesantes y profundas reuniones de deliberación, alimentadas por las coincidencias y también diferentes condiciones y visiones, fueron un espacio propio para concluir que, a pesar de la diferencia de latitudes, una arquitectura de calidad hecha con rigor y de manera responsable siempre tendrá un carácter universal.

Figure A15 | The markdown output for Croatian and Spanish documents.

English

yet there remains a gap between academic research prototypes and production-ready systems capable of supporting the stringent requirements of dataset construction, RAG workflows, and large-scale document intelligence.

PaddleOCR 1.x & 2.x: Advancements and Innovations in Open-Source OCR Technology

PaddleOCR has emerged as a prominent open-source project addressing these multifaceted challenges. Since its initial release in 2020, PaddleOCR has adhered to the principles of comprehensive coverage, end-to-end workflow, and lightweight efficiency, setting new standards for both usability and technical excellence in the OCR domain. Anchored by the PP-OCR series, PaddleOCR has evolved through multiple iterations—each pushing the boundaries of text detection, recognition, and document analysis. Early versions such as PP-OCRv1(Du et al., 2020) focused on achieving an optimal balance between accuracy and speed, making OCR accessible for resource-constrained environments. Subsequent releases (PP-OCRv2(Du et al., 2021), v3(Li et al., 2022b), and v4) incrementally improved recognition performance, extended language coverage, and introduced sophisticated models for handwriting and rare character recognition. A notable advancement has been the integration of document structural understanding via the PP-Structure series, enabling PaddleOCR to move beyond text lines and paragraphs to address complex layout analysis, table structure recognition (e.g., SLANet(Li et al., 2022a)), and other advanced parsing tasks. These capabilities have made PaddleOCR a critical engine for automated document processing, intelligent archiving, information extraction, and, increasingly, for supporting the data pipelines of LLMs and RAG systems.

The adoption and impact of PaddleOCR in both academic and industrial communities are evidenced by its widespread use and vibrant developer ecosystem. With more than 50,000 stars on GitHub as of June 2025, and its deployment as the core OCR engine in projects such as MinerU(Wang et al., 2024), RAGFlow(KevinHuSh, 2023), and UmiOCR(hiroi sora, 2022), PaddleOCR has become an indispensable tool for digitization initiatives, knowledge management platforms, and AI-driven document analysis workflows. Notably, PaddleOCR has played a central role in the construction of high-quality document datasets for large model training, enabling researchers to assemble diverse, accurately annotated corpora spanning multiple languages, domains, and document types. Its modular architecture and rich API ecosystem facilitate seamless integration with RAG pipelines, where efficient and accurate OCR is essential for document ingestion, retrieval indexing, and context provision to generative models.

As PaddleOCR's user base has expanded, so has the range of feedback and requirements from the community. Users have highlighted persistent needs in areas such as robust handwriting recognition, improved support for multi-language and rare script recognition, more powerful document parsing for complex layouts, and advanced key information extraction. These demands are further amplified by the growing scale and dynamism of LLM and RAG applications, where the ability to extract, structure, and semantically interpret information from diverse documents is a prerequisite for building reliable, responsive, and intelligent systems. Aware of these trends and our responsibility as a leading open-source platform, we remain committed to continuously improving PaddleOCR to meet the evolving challenges of the field.

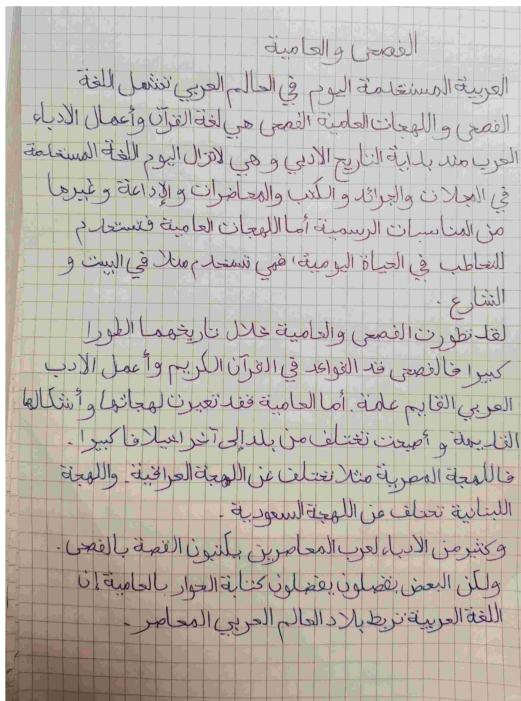
PaddleOCR 3.0: A New Milestone in Enhancing Text Recognition and Document Parsing

In this context, we introduce PaddleOCR 3.0, a major release designed to systematically enhance text recognition accuracy and document parsing capabilities, with a particular focus on the complex scenarios encountered in modern AI applications. PaddleOCR 3.0 encompasses several core innovations. First, it presents the high-precision text recognition pipeline PP-OCRv5, which leverages advanced model architectures and training strategies to deliver state-of-the-

yet there remains a gap between academic research prototypes and production-ready systems capable of supporting the stringent requirements of dataset construction, RAG workflows, and large-scale document intelligence.

PaddleOCR 1.x & 2.x: Advancements and Innovations in Open-Source OCR Technology

PaddleOCR has emerged as a prominent open-source project addressing these multifaceted challenges. Since its initial release in 2020, PaddleOCR has adhered to the principles of comprehensive coverage, end-to-end workflow, and lightweight efficiency, setting new standards for both usability and technical excellence in the OCR domain. Anchored by the PP-OCR series, PaddleOCR has evolved through multiple iterations—each pushing the boundaries of text detection, recognition, and document analysis. Early versions such as PP-OCRv1(Du et al., 2020) focused on achieving an optimal balance between accuracy and speed, making OCR accessible for resource-constrained environments. Subsequent releases (PP-OCRv2(Du et al., 2021), v3(Li et al., 2022b), and v4) incrementally improved recognition performance, extended language coverage, and introduced sophisticated models for handwriting and rare character recognition. A notable advancement has been the integration of document structural understanding via the PP-Structure series, enabling PaddleOCR to move beyond text lines and paragraphs to address complex layout analysis, table structure recognition (e.g., SLANet(Li et al., 2022a)), and other advanced parsing tasks. These capabilities have made PaddleOCR a critical engine for automated document processing, intelligent archiving, information extraction, and, increasingly, for supporting the data pipelines of LLMs and RAG systems.


The adoption and impact of PaddleOCR in both academic and industrial communities are evidenced by its widespread use and vibrant developer ecosystem. With more than 50,000 stars on GitHub as of June 2025, and its deployment as the core OCR engine in projects such as MinerU(Wang et al., 2024), RAGFlow(KevinHuSh, 2023), and UmiOCR(hiroi sora, 2022), PaddleOCR has become an indispensable tool for digitization initiatives, knowledge management platforms, and AI-driven document analysis workflows. Notably, PaddleOCR has played a central role in the construction of high-quality document datasets for large model training, enabling researchers to assemble diverse, accurately annotated corpora spanning multiple languages, domains, and document types. Its modular architecture and rich API ecosystem facilitate seamless integration with RAG pipelines, where efficient and accurate OCR is essential for document ingestion, retrieval indexing, and context provision to generative models.

As PaddleOCR's user base has expanded, so has the range of feedback and requirements from the community. Users have highlighted persistent needs in areas such as robust handwriting recognition, improved support for multi-language and rare script recognition, more powerful document parsing for complex layouts, and advanced key information extraction. These demands are further amplified by the growing scale and dynamism of LLM and RAG applications, where the ability to extract, structure, and semantically interpret information from diverse documents is a prerequisite for building reliable, responsive, and intelligent systems. Aware of these trends and our responsibility as a leading open-source platform, we remain committed to continuously improving PaddleOCR to meet the evolving challenges of the field.

PaddleOCR 3.0: A New Milestone in Enhancing Text Recognition and Document Parsing

In this context, we introduce PaddleOCR 3.0, a major release designed to systematically enhance text recognition accuracy and document parsing capabilities, with a particular focus on the complex scenarios encountered in modern AI applications. PaddleOCR 3.0 encompasses several core innovations. First, it presents the high-precision text recognition pipeline PP-OCRv5, which leverages advanced model architectures and training strategies to deliver state-of-the-art results.

Arabic

الحضر والعاصمة

العربية المستخدمة اليوم في العالم العربي تتفهّل اللغة

الشخصي والهجات العلمية الشخصي هي لغة القرآن وأعمال الآباء

العرب منذ بداية التأريخ الابدي وهي لا زال اليوم الخلطة المستعملة

في المجالات والجرائم والكتب والمحاضرات والإذاعة وغيرها

من المُسَبِّبات الرسمية أما اللهجات العالمية فمُستَخَلَّة

للتحاطب في الحياة اليومية، فهي مستخدم منعج في البيت و

لقلطتهم الشخصي والعامية خلال نار يخْهموا الطورا

كبيراً فالشخصي فند الموارد في القرآن الكريم وأعمال الأدب

العربي القائم علمه، أما العامية فقد تغيرت لهجتها وأشكالها

القليلة و أصبحت تختلف من بلد إلى آخر إلا فلما كبروا.

فللهجة الصرية مثلاً تختلف عن الجهة المصارخية والهجة

اللبنانية تحالف من الاهجة السعودية.

وكثير من الآباء لعرب المعاصرين يكتبون القصة بالفهي

ولكن البعض يفضلون يكتبون كتابة العوار بالعامية إن

اللغة العربية تزيل بلاد العالم العربي المعاصر

Figure A16 | The markdown output for English and Arabic documents.

Inhaltsverzeichnis

Einleitung.....	1
Die vier Gesetze für eine gelungene Ausdrucksweise	4
Erstes Gesetz	5
Auf nonverbale Kommunikation achten	5
1.1 Die Macht der Stimme	6
1.2 Pausen und Sprechtempo geben den Takt vor	10
1.3 Körpersprache und Überzeugungswirkung.....	13
1.3.1 Gestik und Mimik – Spiegelbilder unseres Innenlebens	17
1.3.2 Körperhaltung gibt Halt.....	23
1.3.3 Körperbewegung bringt Dynamik.....	29
1.3.4 Nonverbale Signale entschlüsseln	33
Zweites Gesetz	38
Auf eine positive Ausdrucksweise achten	38
2.1 Konstruktive Kritik äußern.....	39
2.2 Die Macht der positiven Worte	50
2.3 Wortschatz erweitern.....	62
Drittes Gesetz	74
Sich zielgerichtet und prägnant ausdrücken	74
3.1 Die Sprache der Überzeugung.....	76
3.2 Zuhörer in den Bann ziehen.....	89
3.3 Einfluss nutzen	96
3.4 Schlagfertigkeit beweisen	104

Inhaltsverzeichnis

Einleitung...1

Die vier Gesetze für eine gelungene Ausdrucksweise ...4

Erstes Gesetz...5

Auf nonverbale Kommunikation achten

1. Die Macht der Stimme

1.2 Pausen und Sprechtempo geben den Takt vor...10

1.3 Körpersprache und Überzeugungswirkung...13

1.3.1 Gestik und Mimik – Spiegelbilder unseres Innenlebens...17

1.3.2 Körperhaltung gibt Halt...23

1.3.3 Körperbewegung bringt Dynamik...29

1.3.4 Nonverbale Signale entschlüsseln...33

Zweites Gesetz...38

Auf eine positive Ausdrucksweise achten ...38

2.1 Konstruktive Kritik äußern...39

2.2 Die Macht der positiven Worte...50

2.3 Wortschatz erweitern...62

Drittes Gesetz...74

Sich zielgerichtet und prägnant ausdrücken...74

3.1 Die Sprache der Überzeugung...76

3.2 Zuhörer in den Bann ziehen...89

3.3 Einfluss nutzen...96

3.4 Schlagfertigkeit beweisen...104

2025 年全国高中数学联赛江西省预赛

试题参考答案

(6月22日上午9:30--12:00)

一、填空题（每小题7分，共56分）

1. 若圆 $C_1: x^2 + y^2 - 2x - 2y = 6$ 与圆 $C_2: x^2 + y^2 - 4x - 4y = k$ 有唯一交点，则 $k = \underline{\hspace{2cm}}$ 。

答案: -6或10.

解: 由题圆 $C_1: (x-1)^2 + (y-1)^2 = (2\sqrt{2})^2$, 圆 $C_2: (x-2)^2 + (y-2)^2 = k+8$, 题设等价于圆 C_2 的半径分别为 $\sqrt{2}$ 或 $3\sqrt{2}$, 所以 $k+8 = 2$ 或 18 , 所以 $k = -6$ 或 10 .2. 设复数 z 满足 $(1+2i)z = |3-4i|$, 则 $(1+\bar{z})^3$ 的值为 $\underline{\hspace{2cm}}$ 。

答案: -16+16i.

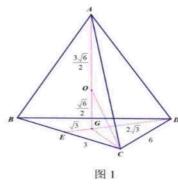

解: 由题 $z = \frac{5}{1+2i} = 1-2i$, 所以 $(1+\bar{z})^3 = (2+2i)^3 = 8i \cdot (2+2i) = -16+16i$.3. 半径为 $\sqrt{6}$ 的大球内部装四个半径相等的小球, 则小球的最大半径为 $\underline{\hspace{2cm}}$ 。答案: $6-2\sqrt{6}$.解: 由题知小球半径最大时四个小球的球心构成一个正三棱锥 $A-BCD$ 且小球内切于大球,大球球心为正三棱锥 $A-BCD$ 的中心, 如图 1, 为便于计算边长比, 先设正三棱锥的棱长为 6, 容易计算得 $OA = \frac{3\sqrt{6}}{2}$, 故大球与小球半径比为 $\frac{3\sqrt{6}+3}{3} = \frac{\sqrt{6}+2}{2}$,故小球的最大半径为 $\frac{2\sqrt{6}}{\sqrt{6}+2} = 6-2\sqrt{6}$.

图 1

4. 函数 $f(x) = \cos(\omega x + \frac{\pi}{4})$ ($\omega > 0$), $x = \frac{\pi}{4}$ 是函数的一个零点, $x = -\frac{\pi}{4}$ 是函数图像的一条对称轴, $(\frac{\pi}{12}, \frac{\pi}{9})$ 是 $f(x)$ 的一个单调区间, 则 ω 的最大值为 $\underline{\hspace{2cm}}$.

第1页,共27页

2025 年全国高中数学联赛江西省预赛

试题参考答案

(6月22日上午9:30-12:00)

一、填空题(每小题7分, 共56分)

1. 若圆 $C_1: x^2 + y^2 - 2x - 2y = 6$ 与圆 $C_2: x^2 + y^2 - 4x - 4y = k$ 有唯一交点, 则 $k = \underline{\hspace{2cm}}$.

答案: -6或10.

解: 由题圆 $C_1: (x-1)^2 + (y-1)^2 = (2\sqrt{2})^2$, 圆 $C_2: (x-2)^2 + (y-2)^2 = k+8$, 题设等价于圆 C_2 的半径分别为 $\sqrt{2}$ 或 $3\sqrt{2}$, 所以 $k+8 = 2$ 或 18 , 所以 $k=-6$ 或 10 .2. 设复数 z 满足 $(1+2i)z = |3-4i|$, 则 $(1+\bar{z})^3$ 的值为 $\underline{\hspace{2cm}}$.

答案: -16+16i.

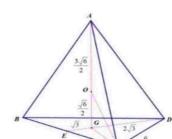

解: 由题 $z = \frac{5}{1+2i} = 1-2i$, 所以 $(1+\bar{z})^3 = (2+2i)^3 = 8i \cdot (2+2i) = -16+16i$.3. 半径为 $\sqrt{6}$ 的大球内部装四个半径相等的小球, 则小球的最大半径为 $\underline{\hspace{2cm}}$.答案: $6-2\sqrt{6}$.解: 由题知小球半径最大时四个小球的球心构成一个正三棱锥 $A-BCD$ 且小球内切于大球, 大球球心为正三棱锥 $A-BCD$ 的中心. 如图 1, 为便于计算边长比, 先设正三棱锥的棱长为 6, 容易计算得 $OA = \frac{3\sqrt{6}}{2}$, 故大球与小球半径比为 $\frac{3\sqrt{6}+3}{3} = \frac{\sqrt{6}+2}{2}$, 故小球的最大半径为 $\frac{2\sqrt{6}}{\sqrt{6}+2} = 6-2\sqrt{6}$.4. 函数 $f(x) = \cos(\omega x + \frac{\pi}{4})$ ($\omega > 0$), $x = \frac{\pi}{4}$ 是函数的一个零点, $x = -\frac{\pi}{4}$ 是函数图像的一条对称轴, $(\frac{\pi}{12}, \frac{\pi}{9})$ 是 $f(x)$ 的一个单调区间, 则 ω 的最大值为 $\underline{\hspace{2cm}}$.

Figure A17 | The markdown output for German and Chinese documents.

обществ. Первое в истории научное географическое общество (Société de Géographie), главная цель которого способствовать развитию научной географии, основано в 1821 г. в Париже. В это время в связи с расширением колониальной экспансии государств континента в Европе возрастает неподдельный интерес к другим территориям. С 1822 г. издается «Информационный бюллетень географического общества» (фр. «Bulletin de la Société de Géographie»). Впоследствии модель Французского географического общества становится эталоном для создания подобных организаций.

Так, в 1828 г. открывается географическое общество (Gesellschaft für Erdkunde) в Берлине, которое с 1853 г. начинает издавать научный журнал «Земля» («Die Erde»). В 1830 г. в Лондоне основан Королевское географическое общество (Royal Geographical Society) в целях исследования и популяризации географии как науки.

В 1845 г. создается Русское географическое общество, которое охарактеризовано известным географом, путешественником и государственным деятелем П.П. Семёновым-Тян-Шанским как «свободная и открытая для всех, кто проникнут любовью к родной земле и глубокой, несокрушимой верой в будущность Русского государства и русского народа, корпорация» (цит. по: [5, URL]). С 1865 г. на настоящее время обществом издается научный журнал «Известия Русского географического общества».

В 1888 г. в Вашингтоне в целях «расширения и распространения географических знаний» («for the increase and diffusion of geographical knowledge») [12, р. 14], перевод наш. — Н. Г.) среди массовой аудитории создается Национальное географическое общество (National Geographic Society). Этот фундаментальный принцип, определяющий дальнейшую политику Национального географического общества, был заложен его первым президентом Г.Г. Хаббардом (Gardiner Greene Hubbard, 1822–1897). В октябре 1888 г. для распространения географических знаний Национальное географическое общество выпускает научный журнал *National Geographic* [19, с. 369].

Становится естественным и необходимым процессом обмен мнениями о последних достижениях географической науки, в связи с чем растет межкультурная научная коммуникация [11, с. 37], письменная форма которой представлена изданиями первых географических обществ. Это сугубо научные географические издания, ориентированные на узкоспециализированную аудиторию — профессионалов. Первонациально в них публикуются только хроникальные сообщения, сведения о новых книгах и выдержки из них. Отражение результатов научных исследований носит предварительный характер и выражено в традиционной форме писем. Интересом к научным открытиям со стороны простых граждан, вызванным ростом гражданского самосознания [11, с. 37], обусловлено издание не только научных, но и научно-популярных географических журналов, рассчитанных на широкую аудиторию.

обществ. Первое в истории научное географическое общество (Société de Géographie), главная цель которого способствовать развитию научной географии, основано в 1821 г. в Париже. В это время в связи с расширением колониальной экспансии государств континента в Европе возрастает неподдельный интерес к другим территориям. С 1822 г. издается «Информационный бюллетень географического общества» (фр. «Bulletin de la Société de Géographie»). Впоследствии модель Французского географического общества становится эталоном для создания подобных организаций.

Так, в 1828 г. открывается географическое общество (Gesellschaft für Erdkunde) в Берлине, которое с 1853 г. начинает издавать научный журнал «Земля» («Die Erde»). В 1830 г. в Лондоне основан Королевское географическое общество (Royal Geographical Society) в целях исследования и популяризации географии как науки.

В 1845 г. создается Русское географическое общество, которое охарактеризовано известным географом, путешественником и государственным деятелем П.П. Семёновым-Тян-Шанским как «свободная и открытая для всех, кто проникнут любовью к родной земле и глубокой, несокрушимой верой в будущность Русского государства и русского народа, корпорация» (цит. по: [5, URL]). С 1865 г. на настоящее время обществом издается научный журнал «Известия Русского географического общества».

В 1888 г. в Вашингтоне в целях «расширения и распространения географических знаний» («for the increase and diffusion of geographical knowledge») [12, р. 14], перевод наш. — Н. Г.) среди массовой аудитории создается Национальное географическое общество (National Geographic Society). Этот фундаментальный принцип, определяющий дальнейшую политику Национального географического общества, был заложен его первым президентом Г.Г. Хаббардом (Gardiner Greene Hubbard, 1822–1897). В октябре 1888 г. для распространения географических знаний Национальное географическое общество выпускает научный журнал *National Geographic* [19, с. 369].

Становится естественным и необходимым процессом обмена мнениями о последних достижениях географической науки, в связи с чем растет межкультурная научная коммуникация [11, с. 37], письменная форма которой представляет изданиями первых географических обществ. Это сугубо научные географические издания, ориентированные на узкоспециализированную аудиторию — профессионалов. Первонациально в них публикуются только хроникальные сообщения, сведения о новых книгах и выдержки из них. Отражение результатов научных исследований носит предварительный характер и выражено в традиционной форме писем. Интересом к научным открытиям со стороны простых граждан, вызванным ростом гражданского самосознания [11, с. 37], обусловлено издание не только научных, но и научно-популярных географических журналов, рассчитанных на широкую аудиторию.

より詳しく知りたい方へ

~県立図書館にある今回の展示資料~

*雑誌：発行年月題「誌名」巻号 出版年 出版者（創刊号は創刊当時の出版者）
リスト掲載の雑誌は貸出ができませんが、複写が可能です。
*図書：「書名」著者名、発行年、出版年 所蔵館【県立図書館の請求記号】
※以下に掲載した資料は、県立熊谷図書館2階ロビーで8月25日（日）まで展示中です。

◆ 創刊雑誌に関する図書

『創刊号の「ノラマ」（うらわ美術館／編 岩波書店 2004.9）【R0275.ノラマ】
『時代を創った編集者 101』（寺田和也／編 斎藤創 2003.8）【I2143.ノラマ】
『日本雑誌協会史 第1部』（日本雑誌協会／編 日本雑誌協会 1988.10）【050/N71】
『日本雑誌協会史 第2部』（日本雑誌協会／編 日本雑誌協会 1990.10）【050/N71】
『雑誌大研究』（斎藤精一／著 日本工業新聞社 1979.2）【051.ノラマ】
『雑誌 100年の歩み』（浜田実信／著 グリーンアロー出版社 1994.9）【051.ノラマ】
『雑誌の死』（浜田実信／著 出版ニースース 1998.3）【051.ノラマ】
『雑誌は見えた』（植田義典／著 水曜社 2009.11）【051.ノラマ】
『創刊號に繋けた1人の編集者』（浜田実信／著 流動出版 1981.4）【051.ノラマ】
『創刊號大研究』（植高重樹／著 大陸書房 1982.11）【051.ノラマ】
『創刊の社会史』（雑誌功士／著 研究社 2009.11）【051.ノラマ】
『古雑誌探求』（小田六道／著 論創社 2009.4）【051.ノラマ】
『ミリオンセラーデビュー！』（印刷博物館／編著 東京書籍 2008.9）【051.ノラマ】

◆ 明治

（雑誌）
『明治時論』 1号（明治10年3月）珍聞館（複製版 本邦書籍）
『出版月評』 1号（明治20年8月）月評社（複製版 龍溪書舎）
『明門雑誌』 1号（明治21年4月）龍門社
『図書館雑誌』 1号（明治40年10月）日本文庫協会（複製版 学術文献普及会）
『中央公論』 25年5号（明治43年5月）反省社（図書）
『中央公論』100年を読む』（三浦朱美／著 中央公論社 1986.8）【051.3/ノ】
『明治大雑誌』（流動出版 1978.12）【051.ノ】
『明六雑誌 上』（山室信一／校注 岩波書店 1999.5）【B051.1/ノ】

◆ 大正

（雑誌）
『思潮』 創刊号（大正6年5月）（岩波書店）（複製版）
『思想』 1号（大正10年10月）（岩波書店）（複製版）
『種崎人』 創刊号（大正10年10月）（種崎き社）（複製版 まるぶ出版）

より詳しく知りたい方へ

~県立図書館にある今回の展示資料~

*雑誌：発行年月題「誌名」巻号 出版年 出版者（創刊号は創刊当時の出版者）
リスト掲載の雑誌は貸出ができませんが、複写が可能です。
*図書：「書名」著者名、刊行年 所蔵館【県立図書館の請求記号】
※以下に掲載した資料は、県立熊谷図書館2階ロビーで8月25日（日）まで展示中です。

創刊誌に関する図書

『創刊号の「ノラマ」（うらわ美術館／編 岩波書店 2004.9）【R0275.ノラマ】
『時代を創った編集者 101』（寺田和也／編 斎藤創 2003.8）【I2143.ノラマ】
『日本雑誌協会史 第1部』（日本雑誌協会／編 日本雑誌協会 1988.10）【050/N71】
『日本雑誌協会史 第2部』（日本雑誌協会／編 日本雑誌協会 1990.10）【050/N71】
『雑誌大研究』（斎藤精一／著 日本工業新聞社 1979.2）【051.ノラマ】
『雑誌 100年の歩み』（浜田実信／著 グリーンアロー出版社 1994.9）【051.ノラマ】
『雑誌の死』（浜田実信／著 出版ニースース 1998.3）【051.ノラマ】
『雑誌は見えた』（植田義典／著 水曜社 2009.11）【051.ノラマ】
『創刊號に繋けた1人の編集者』（浜田実信／著 流動出版 1981.4）【051.ノラマ】
『創刊號大研究』（植高重樹／著 大陸書房 1982.11）【051.ノラマ】
『創刊の社会史』（雑誌功士／著 研究社 2009.11）【051.ノラマ】
『古雑誌探求』（小田六道／著 論創社 2009.4）【051.ノラマ】
ミリオンセラーデビュー！（印刷博物館／編著 東京書籍 2008.9）【051.ミ】

◆ 明治

（雑誌）
『明治時論』 1号（明治10年3月）珍聞館（複製版 本邦書籍）
『出版月評』 1号（明治20年8月）月評社（複製版 龍溪書舎）
『明門雑誌』 1号（明治21年4月）龍門社
『図書館雑誌』 1号（明治40年10月）日本文庫協会（複製版 学術文献普及会）
中央公論 25年5号（明治43年5月）反省社（図書）
（書籍）
『中央公論』100年を読む』（三浦朱美／著 中央公論社 1986.8）【051.3/ノ】
明治大雑誌（流動出版 1978.12）【051.ノ】
『明治六雑誌』（山室信一／校注 岩波書店 1999.5）【B051.1/ノ】

◆ 大正

（雑誌）
『思潮』 創刊号（大正6年5月）（岩波書店）（複製版）
『思想』 1号（大正10年10月）（岩波書店）（複製版）
『種崎人』 創刊号（大正10年10月）（種崎き社）（複製版 まるぶ出版）

Figure A18 | The markdown output for Russian and Japanese documents.

1. บทนำ

เป้าหมายการพัฒนาที่ยั่งยืน (Sustainable development goals (SDGs) ให้ความสำคัญกับการสร้างหลักประกันการมีสุขภาวะที่ดีและส่งเสริมความเป็นอยู่ที่ดีสำหรับทุกคนในช่วงวัย ซึ่งมีเป้าหมายครอบคลุมในหลายประเด็นด้านสุขภาวะและความเป็นอยู่ที่ดี โดยมีนโยบายการสร้างและรักษาสำลังศักดินานุสุขภาพและเสริมขีดความสามารถในการลดความเสี่ยง และการบริหารจัดการความเสี่ยงด้านสุขภาพ ซึ่งสอดคล้องกับประเทศไทยที่ได้ความสำคัญและมีนโยบายในการพัฒนาแรงงานไทยสู่ความมั่นคง มั่งคั่ง ยั่งยืน ตามยุทธศาสตร์ชาติระยะ 20 ปี (ป. พ.ศ. 2560 – 2579) และจากแผนยุทธศาสตร์แห่งชาติ กลุ่มสุสตรีและเด็กปฐมวัย กลุ่มวัยเรียน กลุ่มวัยรุ่น กลุ่มวัยทำงาน และกลุ่มผู้สูงอายุเป็นกลุ่มที่กระทรวงสาธารณสุขให้ความสำคัญซึ่งมีความเชื่อมโยงกับยุทธศาสตร์ชาติประดิ่นที่ 13 การสร้างสุภาพแวดล้อมที่เอื้อต่อการมีสุขภาวะที่ดี เพื่อให้บรรลุเป้าหมาย “การสร้างเสริมให้คนไทยมีสุขภาวะที่ดี” ซึ่งเป็นกำลังสำคัญในการพัฒนาประเทศชาติ โดยเฉพาะอย่างยิ่งกลุ่มวัยทำงานหรือวัยแรงงาน จากข้อมูลของสำนักงานสถิติแห่งชาติรายงานว่าในปี พ.ศ. 2564 ประชากรในประเทศไทยมีงานทำ 37,751,297 คน ทำงานในพื้นที่ภาคตะวันออก จำนวน 3,362,833 คน [1] และเนื่องจากเศรษฐกิจโลกปี 2565-2567

1. ນາທຳກໍາ

เป้าหมายการพัฒนาที่ยั่งยืน (Sustainable development goals (SDGs) ให้ความสำคัญกับการสร้างหลักประกันการมีสุขภาพที่และส่งเสริมความเป็นอยู่ที่ดี สำหรับทุกคนในช่วงวัย ซึ่งมีเป้าหมายครอบคลุมในทุกประเดิมด้านสุขภาพและความเป็นอยู่ที่ดี โดยมีนโยบายการสร้างและรักษากำลังคนด้านสุขภาพและเสริมชุดความสามารถในการลดความเสี่ยงและการบริหารจัดการความเสี่ยงด้านสุขภาพ ซึ่งสอดคล้องกับประเทศไทยได้ความสำคัญและมีนโยบายในการพัฒนาแรงงานโดยสุขความมั่นคง ยังยืนตามยุทธศาสตร์ชั้นระยะ 20 ปี (ป.ศ. 2560 - 2579) และยุทธศาสตร์สุขภาพชั้นชาติ กลุ่มสรตร.และเด็กปฐมทั้ง กลุ่มวัยเรียน กลุ่มวัยรุ่น กลุ่มวัยทำงาน และกลุ่มวัยสุขภาพยังคงกลุ่มที่กระทรวงสาธารณสุขให้ความสำคัญ ซึ่งมีความเชื่อมโยงกับยุทธศาสตร์ชาติประเด็นที่ 13 การสร้างสุภาพแวดล้อมที่เอื้อต่อการมีสุขภาพที่เพื่อให้บรรลุเป้าหมาย “การสร้างเสริมให้คนไทยมีสุขภาพที่ดี” ซึ่งเป็นกำลังสำคัญในการพัฒนาประเทศไทย โดยเฉพาะอย่างยิ่งกลุ่มวัยทำงานหรือวัยแรงงาน จากข้อมูลของสำนักงานสถิติแห่งชาติรายงานว่า ในปี พ.ศ. 2564 ประชากรในประเทศไทยมีงานทำ 37,751,297 คน ทำงานในพื้นที่ภาคตะวันออก จำนวน 3,362,833 คน [1] และเมื่อจากเศรษฐกิจโลกปี 2565-2567

한국영화를 꽂피워낸 한국영화산업의 심장 그 새로운 박동

인터뷰 진행·정리 <영화부산> 편집팀

전 세계가 주목하는 한국영화와 한국 영화문화의 중심에는 영화진흥위원회가 있다. 2023년은 영화진흥위원회의 창립 50주년, 한국영화아카데미의 개교 40주년 그리고 기관 부수 1000만장을 맞이한 듯한 길이다. 그리고 한국영화산업과 그 내린 벤치마크와 참여한 앤솔러시 대제의 기로에서 격동의 전환기를 겪는 중이다. 지난 번세기 말 이후로 세계화로 영화의 시대를 맞이하기 위해 앞장섰고 있는 영화진흥위원회의 박·윤·위영장을 만나 한국영화산업의 어려움, 그리고 내년의 이야기를 들었다.

영화진흥위원회
박기용 위원장

영화제작위원회에 대한 간략한 소개를 부탁드립니다.

올해로 창립 50주년을 맞이한 영화진흥위원회(이하 영화진위)는 한마디로 말씀드린다면 한 국영화를 책임지는 정부 기관이다. 지난 K-콘텐츠와 K-컬처를 K-무비가 선도하고 있다고

올 상반기 영진위 창립 50주년을 기념하며 국민이 선정한 영진위와 한국영화 뉴스 Top10을 조사해 공개했다. 개인적으로 꼽는 영진위 최고 뉴스와 한국영화 최고 뉴스는 무엇인가.

먼저 양진우 최고 뉴스는 1973년 영화진흥공사 창립을 끝졌다. 1973년이면 한국영화가 들플 시장에 데뷔했다. 군사독재 시기에서 영화산업 자체가 정부에서 하던 20대의 영화사람이 수입·제작·배급을 할 수 있는 시기였다. 하기 역시도 맨날 정부의 재허가를 받아야 했던 상황에서 철저하게 국영영화 중심이었고, 수입과 배급은 단독·단위로만 했던 것이다. 그런 상황 속에서 영화인들이 이런 민족적인 한국영화는 진짜 죽는다는 위기의식을 가지고 한국영화를 진흥할 수 있는 기구 설립이 필요하다고 해서 만들어진 것이 영화진흥

한국영화를 꽂피워낸 한국영화산업의 심장 그 새로운 박동

인터뷰 진행·정리 <영화부산> 편집팀

전 세계가 주목하는 한국영화와 한국 영화문화의 중심에는 영화진흥위원회가 있다. 2023년은 영화진흥위원회의 창립 50주년 한국영화아카데미의 개교 40주년 그리고 기관의 부산 이전 10주년을 맞이한 뜻깊은 한 해다. 그리고 한국영화산업은 바 내린 펜데믹과 접어든 엔데믹 시대의 기로에서 격동의 대전환기를 겪는 중이기도 하다. 지난 반 세기로 부르기로 세운 영화의 시대를 맞이하기 위해 앞장서고 있는 영화진흥위원회의 박기용 위원장을 만나 한국영화산업의 어제와 오늘, 그리고 내일의 이야기를 들었다.

영화진흥위원회에 대한 간략한 소개를 부탁드린다

올해로 창립 50주년을 맞이한 영화진흥위원회(이하 영진위)는 한마디로 말씀드리면 한국영화를 책임지는 정부 기관이다. 저는 K-콘텐츠와 K-컬처를 K-무비가 선도하고 있다고 생각하는데 영진위는 그런 K-무비의 본사이라고 말씀드릴 수 있다.

을 상반기 영진위 창립 50주년을 기념하여 국민이 선정한 영진위와 한국영화 뉴스 Top10을 조사해 공개했다. 개인적으로 꼽는 영진위 최고 뉴스와 한국영화 최고 뉴스는 무엇인가.

먼저 영진위 최고 뉴스는 1973년 영화진흥공사 창립을 꼽겠다. 73년이면 한국영화가 멀지 어려울 때였다. 군사독재 시대이다. 영화산업 자체가 정부에서 허가한 20개의 영화사만이 수입, 제작, 배급을 할 수 있는 시기였다. 허가 역시도 매년 정부의 재허가를 받아야 했기 때문에 철저하게 국책영화 중심이었고, 수입과 배급은 돈벌이 수단에 그쳤다. 그런 상황 속에서 영화인들이 '이런 식이면 한국영화는 진짜 죽는다'라는 위기의식을 가지고 한국영화를 진흥할 수 있는 기구 설립이 필요하다고 해서 만들어진 것이 영화진흥공사다.

Figure A19 | The markdown output for Thai and Korean documents.

D.4.2. Handwriting Text Recognition

Mixed Printed and Handwritten Text

看法四：人工智能只是“辅助”学生学习，无法让他们获得自主学习能力。现在对人工智能的使用，并没有“傻瓜”到学生输入一个问题，就能立刻写出一篇完美论文的程度。（节选自《中国青年报》，有删改）

材料四

ChatGPT的问世是社会发展的必然，是人们需求的结果兑现。新事物带来新挑战，同时也带来新机遇。有人看到了问题背后的机遇，只看到问题的人，可能会开始不停地抱怨，进而错过了这个时代的宝贵机会。其实，这是因为心中定力不足，所以容易被变化左右。

《孟子》中有句话说，“虽有智慧，不如乘势”。我们心中有这样一份定力，在面对新的变化的时候，我们每一个从业者都可以升级自己的认知，打开我们生活的边界，借助外力，乘势而上！

面对ChatGPT等新兴智能科技，我们不应该因步自封，而应该正确认识它们给生活带来的怎样的便利，引发了怎样的革命。我们一路走来，本身就是站在一次又一次的革命史迹的潮流中，重塑自己的思维，进而重塑时代的面貌。（节选自《知乎》）

1. 下列对以上材料内容的理解和分析，正确的一项是（D）（3分）

A. ChatGPT 基于深度学习算法，通过简单的指令可实现对用户指令的弱化、分解和消解。

B. ChatGPT 能够与人聊天、完成 AI 绘画，但只能通过一些被认为入门级的专业测试。

C. ChatGPT 较以往人工智能机器而言，功能更强大，但网友的热议都是负面评价。

D. ChatGPT 问世是社会发展的必然，是人们需求的结果兑现，同时也给人类带来新机遇。

2. 目前，全球多国大学、科研机构发布明确的人工智能禁令，多家期刊、出版机构禁止将 ChatGPT 列为论文合著者。请结合材料三分析出现这些禁令的原因有哪些。（3分）

人工首魄会合学生的惰性，无法培养学生的独立思考能力与解题能力，无法让学生获得自主学习能力。

3. 【口语交际】班级就“如何正确看待 ChatGPT”这一话题展开讨论，请你结合上述材料，围绕话题准备发言稿，100字左右。（4分）（高阶思维）

同学们，网络是一把双刃剑。C.P.是科技发展的产物，他丰富了我们的日常生活，同时也带来一些弊端。不过，如果我们能正确使用C.P.就可以让它更好地帮助我们学习与生活，为我们的生活带来更多便利。

三、名著阅读

1. 读完《红星照耀中国》后，学校要为活动制作以“长征”为主题的文化墙，一共分3个版块，小文将仿照一、三板块的标题，为第二板块命名。（2分）

第一板块：新起点——瑞金 第二板块：转折点——遵义 第三板块：里程碑——会宁

2. 班上打算召开《红星照耀中国》读书交流会，同学们就“当代青少年如何传承长征精神”这一话题展开讨论，请说说你的看法。（4分）（高阶思维）

红军长征中，翻雪山、越草地，冰勇直前，毫不退缩，革命理想高于天。在当今时代，我们要弘扬艰苦奋斗、勇于拼搏的精神，要有居安思危的意识，把理想信念放在个人享受之前，努力为实现中华民族伟大复兴而奋斗。

— 16 —

Handwritten Formula

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta.$$

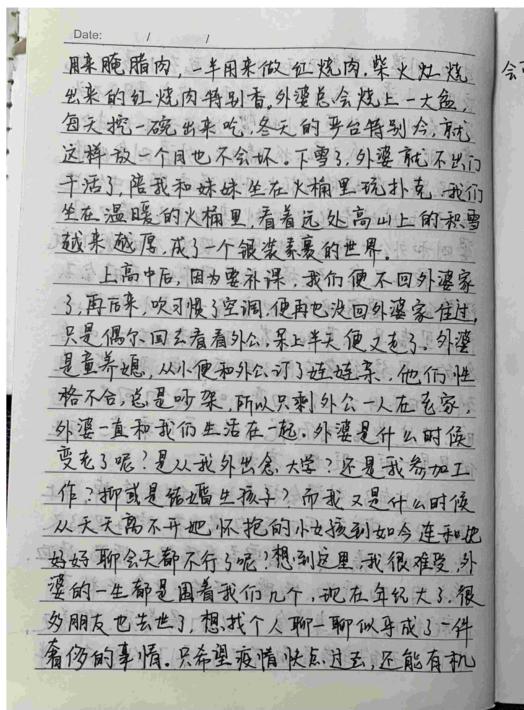
$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$$

$$\sin 2\alpha = 2 \sin \alpha \cos \alpha$$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 1 - 2 \sin^2 \alpha = 2 \cos^2 \alpha - 1$$

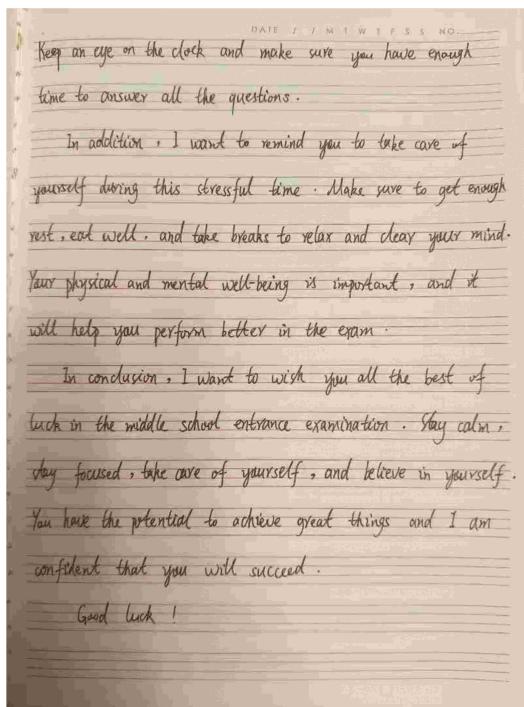
$$\sin^2 \alpha = \frac{1 - \cos 2\alpha}{2} \quad \cos^2 \alpha = \frac{1 + \cos 2\alpha}{2}$$


$$a \sin \alpha + b \cos \alpha = \sqrt{a^2 + b^2} \sin(\alpha + \theta) \text{ 其中 } \tan \theta = \frac{b}{a}$$

$$\sin 2\alpha = \frac{2 \tan \alpha}{1 + \tan^2 \alpha} \quad \cos 2\alpha = \frac{1 - \tan^2 \alpha}{1 + \tan^2 \alpha}$$

$$\tan 2\alpha = \frac{2 \tan \alpha}{1 - \tan^2 \alpha}$$

Figure A20 | The markdown output for Mixed Printed Handwritten Text and Handwritten Formula documents.


Handwriting Chinese

用来腌腊肉，一半用来做红烧肉。柴火灶烧出来的红烧肉特别香。外婆总会烧上一大盆，每天挖一碗出来吃。冬天的严寒特别冷，就这样放一个月也不会坏。下雪了，外婆就不出门干活了，陪我和妹妹坐在火桶里玩扑克。我们坐在温暖的火桶里，看着远处高山上的积雪越来越厚，成了一个银装素裹的世界。

上高中后，因为要补课，我们便不回外婆家了。再后来，吹习惯了空调，便再也没有回外婆家住过。只是偶尔回去看看外公，呆上半天便又走了。外婆是童养媳，从小便和外公订了娃娃亲，他们性格不合，总是吵架。所以只剩外公一人在老家，外婆一直和我们生活在一起。外婆是什么时候变老了呢？是从我外出念大学？还是我参加工作？抑或是结婚生孩子？而我又是什么时候从天天离不开她怀抱的小女孩到如今连和她好好聊会天都不行了呢？想到这里，我很难受。外婆的一生都是围着我们几个，现在年纪大了，很多朋友也去世了，想找个人聊一聊似乎成了一件奢侈的事情。只希望疫情快点过去，还能有机

Handwriting English

Keep an eye on the clock and make sure you have enough time to answer all the questions.

In addition, I want to remind you to take care of yourself during this stressful time. Make sure to get enough rest, eat well, and take breaks to relax and clear your mind. Your physical and mental well-being is important, and it will help you perform better in the exam.

In conclusion, I want to wish you all the best of luck in the middle school entrance examination. Stay calm, stay focused, take care of yourself, and believe in yourself. You have the potential to achieve great things and I am confident that you will succeed.

Good luck!

Figure A21 | The markdown output for Handwriting Chinese and Handwriting English documents.

D.4.3. Vertical Text Recognition

Vertical Chinese Typesetting
Vertical Japanese Calligraphy

龙

Chinese Loong

祥瑞四灵之一。

龙，中国古代传说中的鳞虫之长，能兴云雨致万物，是善于变化的神兽。中国人自称「龙的传人」，龙是中国最重要的文化图腾之一，亦是中华民族精神的象征。

中国古代最早的辞典《尔雅》这样描述龙：「九似者，角似鹿，头似驼，眼似鬼，项似蛇，腹似鹿，鳞似鱼，爪似鹰，掌似虎，耳似牛。」龙的基本形态是蛇，也是多种动物和自然天象的开放集合。在先民的想象中，龙能显能隐、能细能巨、能短能长，更能呼风唤雨，具有超凡的威力。龙在历史中还衍生出很多种类，「有鳞曰蛟龙，有翼曰应龙，有角曰虬龙，无角曰螭龙」。又有「龙生九子」的说法，龙的九个儿子在人间各司其职。有关的事物皆冠以「龙」字，如：「龙颜」、「龙袍」、「龙种」等。在民间，龙代表着智慧，是贤德人才的象征。相传孔子见到老子后，认为老子是「人中之龙」。诸葛亮出山之前躬耕陇亩，自称「卧龙先生」。现在，人们也常用「望子成龙」表示希望子孙出人头地。同时，龙代表着吉庆、祥和，寓意施惠于民，风调雨顺，是祥瑞之兆。人们以赛龙舟、点龙灯的方式祈盼幸福的生活。

夕風の中日暮わだけ

が通り過ぎて中人パツ
と光つて咲いた。峠火を見てた。さつとまだ終
わらない夏が、曖昧な心を解かして繋い
だ。この夜が続いて欲しかつた。 東誠

觀自在菩薩行深般若波羅蜜多時照見五蘊皆空度一切苦厄舍利子色不異空空不異色色即是空空即是色受想行識亦復如是舍利子是諸法空相是諸法空相不生不滅不垢不淨不增不減

按天機金篆玉函經乃九天玄女授青烏子之秘文

吉凶禍福百中精去聖遠而人不古若雖有是書恐誤舛成詫宿度多秘不傳以故註釋不明龍穴宿度不清闕然不真天度與分金不相貫串以致發用無應禍福不准余深病之復請刊印並且行且學頤得要領從洪武二十三年至二十五年曾三編訂矣因遇嚴道令開而測地宿度之蓋及各官分度界限之起止始有著落用之禍福不借應如桴鼓緣羅經有三盤內層地盤十二支統六十龍七十

Figure A22 | The markdown output for various types of vertical documents.

D.5. Table Recognition

Table from Academic Papers

Models	LLM	Metrics	Life & Emotion	Art & Performance	Travel & Events	Sports & Outdoors	Knowledge	Tech & Fashion	Overall
- Close-source MLLMs									
Gemini-1.5 Pro [63]	Qwen2-7B	R & S	5.30	6.05	5.69	4.94	4.91	4.98	5.43
		T	5.25	5.76	5.75	4.41	4.46	4.49	5.18
		E	5.28	5.75	5.60	4.59	4.45	4.43	5.15
		C	4.64	4.91	4.77	3.85	4.27	4.03	4.51
- Open-source MLLMs									
VideoLaMA2 [23]	Qwen2-7B	R & S	3.89	4.80	4.56	4.01	3.39	3.54	4.15
		T	4.09	4.83	4.93	3.89	3.44	3.71	4.29
		E	4.36	5.01	5.02	4.08	3.44	3.49	4.38
		C	2.95	3.46	3.69	2.56	2.32	2.52	3.05
video-SALMNN [22]	Vicuna-13B-v1.5	R & S	2.43	3.53	2.98	2.68	2.32	2.51	2.83
		T	3.24	4.18	3.97	3.23	2.96	3.00	3.55
		E	3.11	4.12	3.84	3.13	2.56	2.70	3.38
		C	1.85	2.51	2.51	1.77	1.68	1.84	2.12
- With HarmonySet									
VideoLaMA2 (HarmonySet)	Qwen2-7B	R & S	5.43	6.35	6.03	4.94	5.33	4.83	5.55
		T	5.12	5.21	5.03	4.84	5.21	4.85	5.06
		E	5.25	6.41	5.84	4.00	4.88	4.47	5.26
		C	4.87	4.98	4.72	3.31	5.23	4.09	4.62

Table with Watermark

Day	Regular Hours	Overtime Hours	Sick	Vacation	Total
Monday	11/1/2013				
Tuesday	11/2/2013				
Wednesday	11/3/2013				
Thursday	11/4/2013				
Friday	11/5/2013				
Saturday	11/6/2013				
Sunday	11/7/2013				
Monday	11/8/2013				
Tuesday	11/9/2013				
Wednesday	11/10/2013				
Thursday	11/11/2013				
Friday	11/12/2013				
Saturday	11/13/2013				
Sunday	11/14/2013				

Table from Financial Reports

J\$'000		2018	2019
Assets			
Current Assets			
Inventorys		2,199,273	3,225,686
Receivables and prepayments		2,302,693	2,585,519
Investment securities		269,530	130,385
Cash and short-term deposits		3,968,075	3,974,545
		8,739,571	9,916,135
Non-Current Assets			
Property, plant and equipment		6,775,727	6,724,278
Investment in associates		-	593,961
Loans receivable		-	165,545
Investment securities		215,760	379,060
		6,991,487	7,862,844
Total Assets		15,731,058	17,778,979
Liabilities			
Current Liabilities			
Trade and other payables		3,873,904	3,336,064
Short-term borrowings		376,686	485,724
Taxation payable		362,940	444,969
		4,613,530	4,266,757
Non-Current Liabilities			
Deferred tax liabilities		257,430	213,511
Borrowings		2,169,937	2,213,130
		2,427,367	2,426,641
Total Liabilities		7,040,897	6,693,398
Equity			
Capital and reserves attributable to the company's equity holders			
Share capital		1,192,647	1,192,647
Capital reserve		119,946	130,832
Translation reserve		30,086	29,048
Retained earnings		7,347,482	9,733,054
Total Equity		8,690,161	11,085,581
Total Liabilities and Equity		15,731,058	17,778,979

J\$'000		2018	2019
Assets			
Current Assets			
Inventorys		2,199,273	3,225,686
Receivables and prepayments		2,302,693	2,585,519
Investment securities		269,530	130,385
Cash and short-term deposits		3,968,075	3,974,545
		8,739,571	9,916,135
Non-Current Assets			
Property, plant and equipment		6,775,727	6,724,278
Investment in associates		-	593,961
Loans receivable		-	165,545
Investment securities		215,760	379,060
		6,991,487	7,862,844
Total Assets		15,731,058	17,778,979
Liabilities			
Current Liabilities			
Trade and other payables		3,873,904	3,336,064
Short-term borrowings		376,686	485,724
Taxation payable		362,940	444,969
		4,613,530	4,266,757
Non-Current Liabilities			
Deferred tax liabilities		257,430	213,511
Borrowings		2,169,937	2,213,130
		2,427,367	2,426,641
Total Liabilities		7,040,897	6,693,398
Equity			
Capital and reserves attributable to the company's equity holders			
Share capital		1,192,647	1,192,647
Capital reserve		119,946	130,832
Translation reserve		30,086	29,048
Retained earnings		7,347,482	9,733,054
Total Equity		8,690,161	11,085,581
Total Liabilities and Equity		15,731,058	17,778,979

Figure A23 | The markdown output for various types of Tables.

51

Table with Image

双臂水平外伸，掌心朝上，向上招手，双臂移动速度表示上升率大小	向上移动 (上升高度)	
双臂水平外伸，掌心朝下，向下招手，双臂移动速度表示上升率大小	向下移动 (下降高度)	
一臂水平指向右侧，另一臂反复向所指方向挥动，示意直升机应向左移动（转向）	向左移动 (转向)	
一臂水平指向左侧，另一臂反复向所指方向挥动，示意直升机应向右移动（转向）	向右移动 (转向)	

Table with Formula

电路	电流	$I = \frac{q}{t}$
	电阻串联	$R = R_1 + R_2 + R_3$
	电阻并联	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$
	电池串联	$E = nE, r_{\text{总}} = nr$
	电池并联	$E_{\text{总}} = E, r_{\text{总}} = r/n$
	欧姆定律	$U = E - Ir$
		$I = \frac{E}{R+r}$ 或 $I = \frac{U}{R}$
	电阻定律	$R = \rho \frac{L}{S}$ 或 电阻率 $\rho = \frac{RS}{L}$
	电功	$W = UIt$
	电热	$Q = I^2Rt$
	功率	$P = UI, P_R = I^2R$

双臂水平外伸，掌心朝上，向上招手，双臂移动速度表示上升率大小	向上移动 (上升高度)	
双臂水平外伸，掌心朝下，向下招手，双臂移动速度表示上升率大小	向下移动 (下降高度)	
一臂水平指向右侧，另一臂反复向所指方向挥动，示意直升机应向左移动（转向）	向左移动 (转向)	
一臂水平指向左侧，另一臂反复向所指方向挥动，示意直升机应向右移动（转向）	向右移动 (转向)	

Photo Table

序号	深度/cm	橡皮膜朝向	压强计左右液面高度差/cm
1	5	朝上	4.9
2	5	朝下	4.9
3	5	朝侧面	4.9
4	10	朝侧面	9.7
5	15	朝侧面	14.6

序号	深度/cm	橡皮膜朝向	压强计左右液面高度差/cm
1	5	朝上	4.9
2	5	朝下	4.9
3	5	朝侧面	4.9
4	10	朝侧面	9.7
5	15	朝侧面	14.6

Figure A24 | The markdown output for various types of Tables.

D.6. Formula Recognition

Complex Printed Expressions

$$\begin{aligned} & \frac{6f''(x_2)(\nu(\lambda_1^2 - 1 + \theta^2 f(x_2)^2) + f'(x_2)^2 - 1)}{f'(x_2)} - \frac{6\theta^2 f(x_2)(\lambda_1^2 - 1 + \theta^2 f(x_2)^2 + \nu(f'(x_2)^2 - 1))}{f'(x_2)} \\ & + \dots + \frac{4H^2 \lambda_1^2 \theta^2 (1 - \nu) f'(x_2) f''(x_2)}{\lambda_1^2 + \theta^2 f(x_2)^2} - \frac{H^2 \lambda_1^2 \theta^4 (1 - \nu) f(x_2) f'(x_2) (\lambda_1^2 + \theta^2 f(x_2)^2 + f'(x_2)^2)}{(\lambda_1^2 + \theta^2 f(x_2)^2)^2} \\ & + \dots + 12f'(x_2)(\theta^2 \nu f(x_2) + f''(x_2)) = 0. \end{aligned}$$

$$\begin{aligned} & \frac{6f''(x_2)(\nu(\lambda_1^2 - 1 + \theta^2 f(x_2)^2) + f'(x_2)^2 - 1)}{f'(x_2)} - \frac{6\theta^2 f(x_2)(\lambda_1^2 - 1 + \theta^2 f(x_2)^2 + \nu(f'(x_2)^2 - 1))}{f'(x_2)} \\ & + \dots + \frac{4H^2 \lambda_1^2 \theta^2 (1 - \nu) f'(x_2) f''(x_2)}{\lambda_1^2 + \theta^2 f(x_2)^2} - \frac{H^2 \lambda_1^2 \theta^4 (1 - \nu) f(x_2) f'(x_2) (\lambda_1^2 + \theta^2 f(x_2)^2 + f'(x_2)^2)}{(\lambda_1^2 + \theta^2 f(x_2)^2)^2} \\ & + \dots + 12f'(x_2)(\theta^2 \nu f(x_2) + f''(x_2)) = 0. \end{aligned}$$

Handwritten Expressions

$$\therefore f[g(x)] = \begin{cases} 1, & |x| \in [0, 1) \cup [2, +\infty) \\ 0, & |x| \in [1, 2) \end{cases}$$

$$\therefore f[g(x)] = \begin{cases} 1, & |x| \in [0, 1) \cup [2, +\infty) \\ 0, & |x| \in [1, 2) \end{cases}$$

Screen-Captured Expressions

$$\begin{aligned} f(x) &= 2x^2 + 2x + 3, \\ f(3) &= 2 \cdot 3^2 + 2 \cdot 3 + 3 = 27, \\ f(a) &= 2a^2 + 2a + 3, \\ f(0) &= 0 + 0 + 3 = 3, \text{ etc.} \end{aligned}$$

$$\begin{aligned} f(x) &= 2x^2 + 2x + 3, \\ f(3) &= 2 \cdot 3^2 + 2 \cdot 3 + 3 = 27, \\ f(a) &= 2a^2 + 2a + 3, \\ f(0) &= 0 + 0 + 3 = 3, \text{ etc.} \end{aligned}$$

Vertical Formula

$$\begin{array}{r} 123 \\ 3)370 \\ \hline 3 \\ \hline 7 \\ 6 \\ \hline 10 \\ 9 \\ \hline 1 \end{array} \quad \begin{array}{r} 123 \\ 3)370 \\ \hline 3 \\ \hline 7 \\ 6 \\ \hline 10 \\ 9 \\ \hline 1 \end{array} \quad \begin{array}{r} 853 \\ \times 95 \\ \hline 4265 \\ 7677 \\ \hline 81035 \end{array}$$

Figure A25 | The markdown output for various types of Formulas.

Complex Printed Expressions

$$\begin{aligned}
 A &= 4 \iint_D \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} dx dy \\
 &= 4 \iint_D \frac{a}{\sqrt{a^2 - x^2 - y^2}} dx dy \xrightarrow{\text{极坐标}} 4a \iint_D \frac{1}{\sqrt{a^2 - \rho^2}} \rho d\rho d\theta \\
 &= 4a \int_0^{\frac{\pi}{2}} d\theta \int_0^{a \cos \theta} \frac{\rho}{\sqrt{a^2 - \rho^2}} d\rho \\
 &= 4a^2 \int_0^{\frac{\pi}{2}} (1 - \sin \theta) d\theta = 2a^2(\pi - 2).
 \end{aligned}$$

$$\begin{aligned}
 A &= 4 \iint_D \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} dx dy \\
 &= 4 \iint_D \frac{a}{\sqrt{a^2 - x^2 - y^2}} dx dy \xrightarrow{\text{极坐标}} 4a \iint_D \frac{1}{\sqrt{a^2 - \rho^2}} \rho d\rho d\theta \\
 &= 4a \int_0^{\frac{\pi}{2}} d\theta \int_0^{a \cos \theta} \frac{\rho}{\sqrt{a^2 - \rho^2}} d\rho \\
 &= 4a^2 \int_0^{\frac{\pi}{2}} (1 - \sin \theta) d\theta = 2a^2(\pi - 2).
 \end{aligned}$$

Screen-Captured Expressions

$$\varphi(\text{MnO}_2/\text{Mn}^{2+}) = \varphi^\ominus(\text{MnO}_2/\text{Mn}^{2+}) + \frac{0.059}{n} \lg \frac{[\text{氧化型}]}{[\text{还原型}]}$$

$$\varphi(\text{MnO}_2/\text{Mn}^{2+}) = \varphi^\ominus(\text{MnO}_2/\text{Mn}^{2+}) + \frac{0.059}{n} \lg \frac{[\text{氧化型}]}{[\text{还原型}]}$$

Handwritten Expressions

$$e^{\frac{1}{x}+b} = 0. \left\{ \begin{array}{l} b > 0 \text{ 非间断点} \\ b < 0. \text{ 为一断点} \end{array} \right.$$

$$e^{\frac{1}{x}} + b = 0. \left\{ \begin{array}{l} b > 0 \text{ 非间断点} \\ b < 0 \text{ 为一断点} \end{array} \right.$$

$$S_{\text{总}} = \frac{1}{2} g_{\text{地球}} t_1^2 + v_0 t_2 + \frac{1}{2} a_{\text{空气}} t_2^2$$

$$S_{\text{总}} = \frac{1}{2} g_{\text{地球}} t_1^2 + v_0 t_2 + \frac{1}{2} a_{\text{空气}} t_2^2$$

Figure A26 | The markdown output for various types of Formulas.

D.7. Chart Recognition

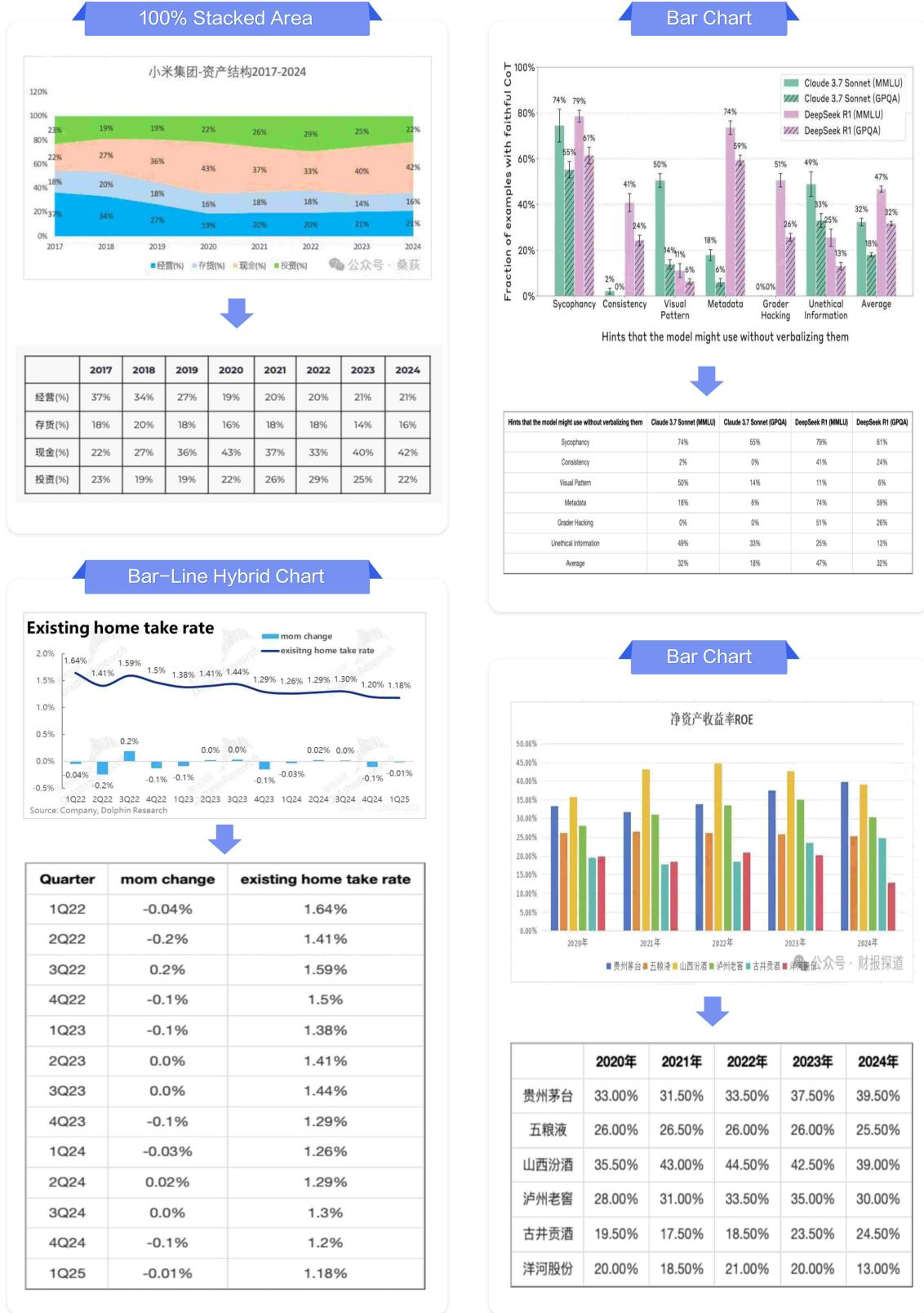


Figure A27 | The markdown output for various types of Charts.

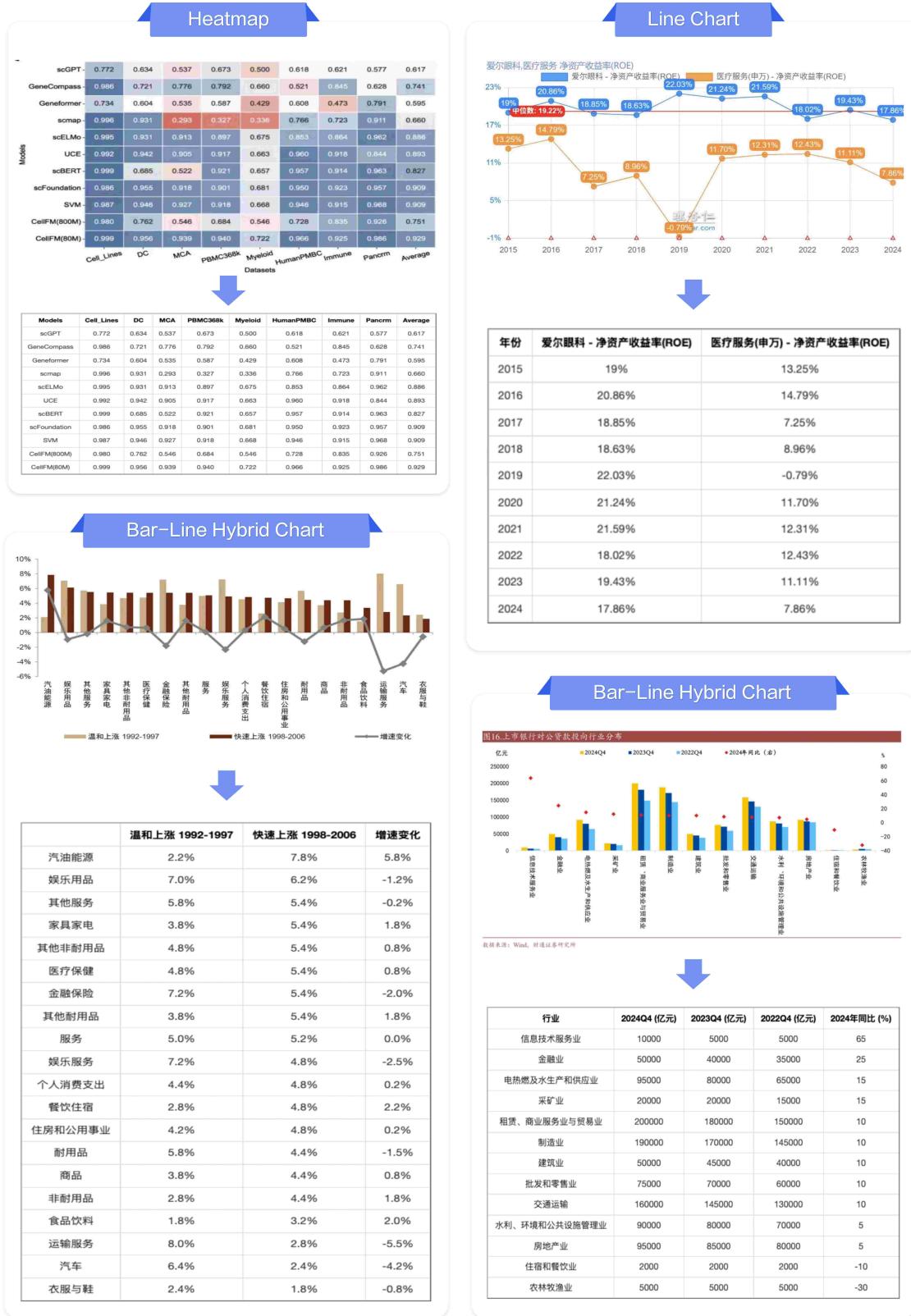


Figure A28 | The markdown output for various types of Charts.

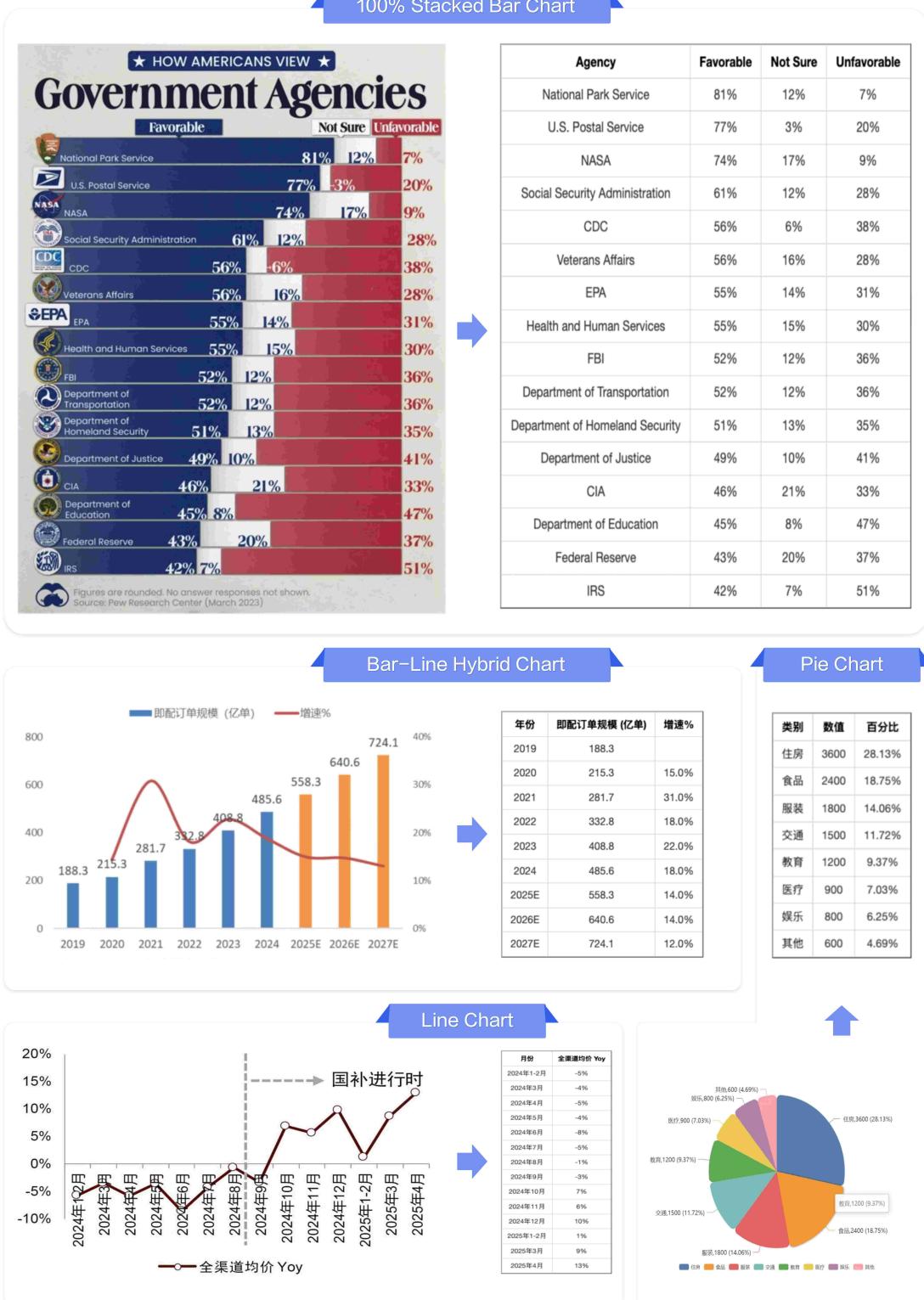


Figure A29 | The markdown output for various types of Charts.

E. Compare with Others

PaddleOCR-VL showcases superior performance in scenarios involving PDF pages with complex layout, consistently outperforming existing state-of-the-art (SOTA) models. This is evident from Figures [A30](#) and [A31](#), which highlight its exceptional capability in handling pages with intricate layouts and unique elements, surpassing other solutions.

Moreover, the model demonstrates exceptionally high recognition accuracy in several domains, including Multilingual Text Recognition, Handwriting Text Recognition, and Vertical Text Recognition. Figures [A32](#)- [A37](#) illustrate how PaddleOCR-VL outperforms competitors such as MinerU2.5 [\[2\]](#) and MonkeyOCR [\[1\]](#), which tend to misidentify languages like Russian and Hindi as English, overlook some handwritten characters, and struggle with vertical text recognition.

In dealing with complex tables, PaddleOCR-VL's parsing accuracy stands out, as evidenced by Figures [A38](#) and [A39](#). This is a domain where other models frequently encounter difficulties.

Additionally, Figure [A40](#) demonstrates PaddleOCR-VL's proficiency in accurately parsing complex formulas. In contrast, other SOTA models often produce incorrect or flawed outputs when faced with challenging mathematical notations.

Finally, as depicted in Figures [A41](#) and [A42](#), PaddleOCR-VL also excels in Chart Recognition. It outperforms multi-modal large language models like Qwen2.5VL-72B [\[24\]](#) and GPT-4o by accurately reconstructing the structure and content of charts.

E.1. Layout Detection

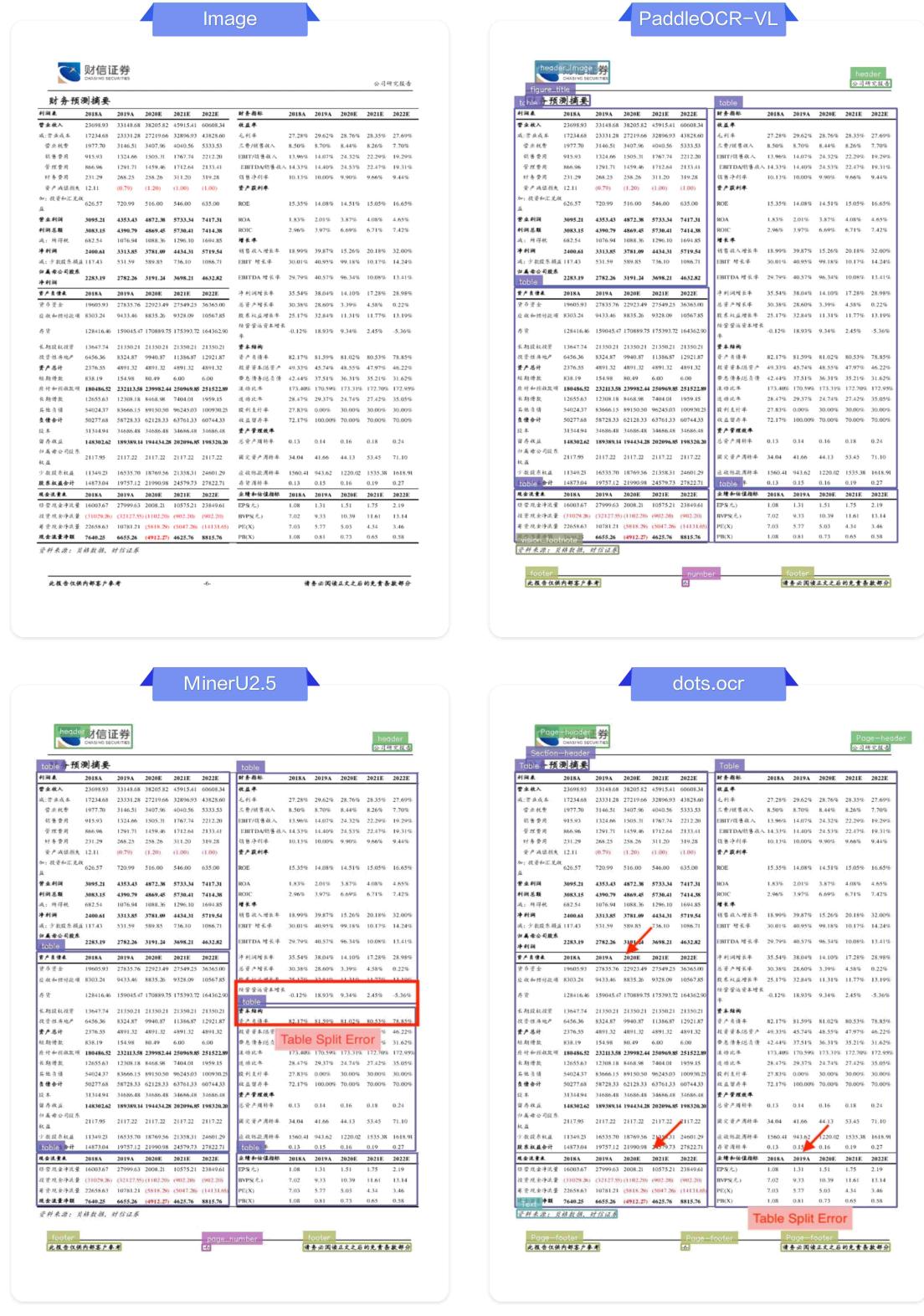


Figure A30 | Compare with others in Layout Detection.

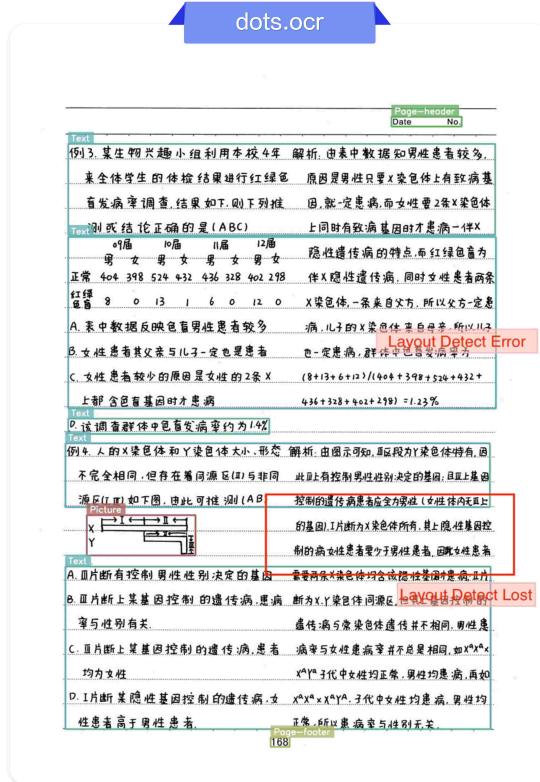
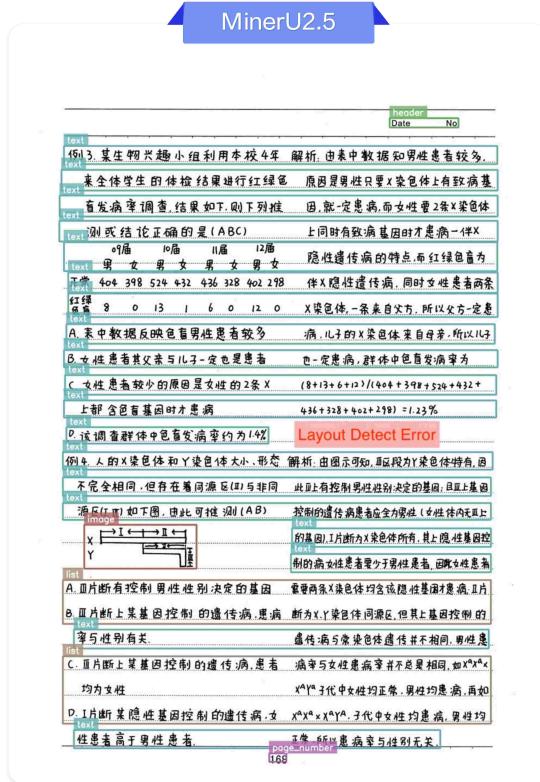
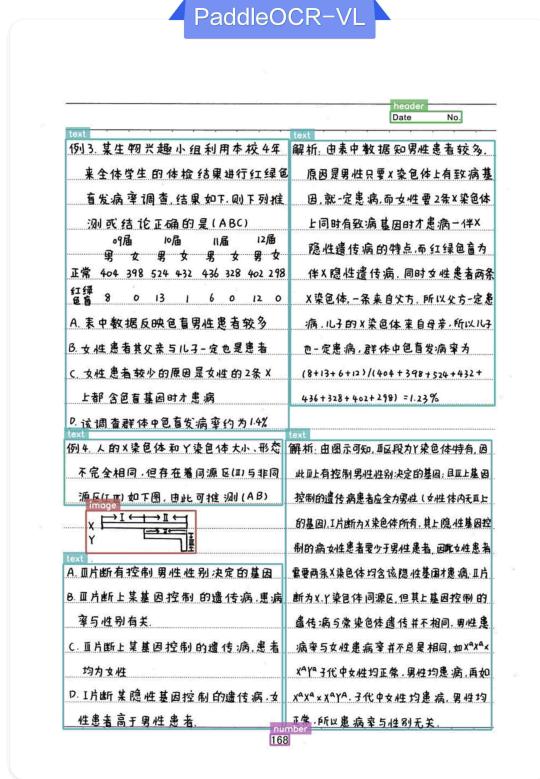
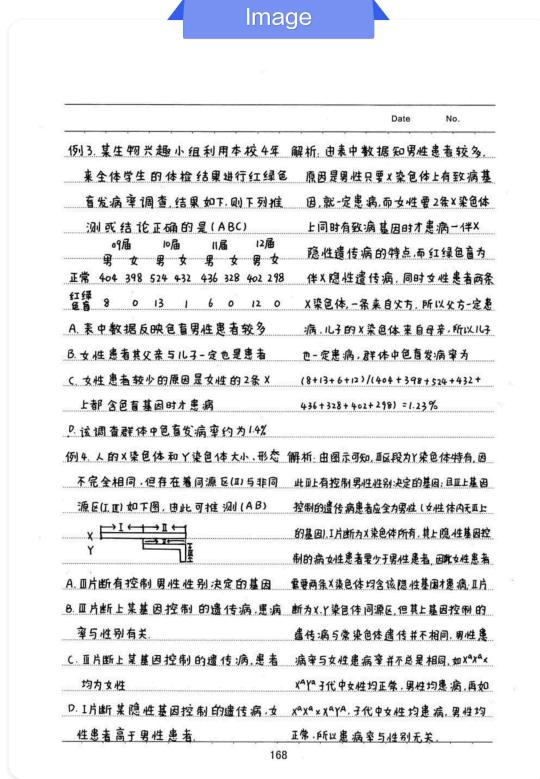





Figure A31 | Compare with others in Layout Detection.

E.2. Text Recognition

E.2.1. Multilingual Text Recognition

Figure A32 | Compare with others in Multilingual Text Recognition.

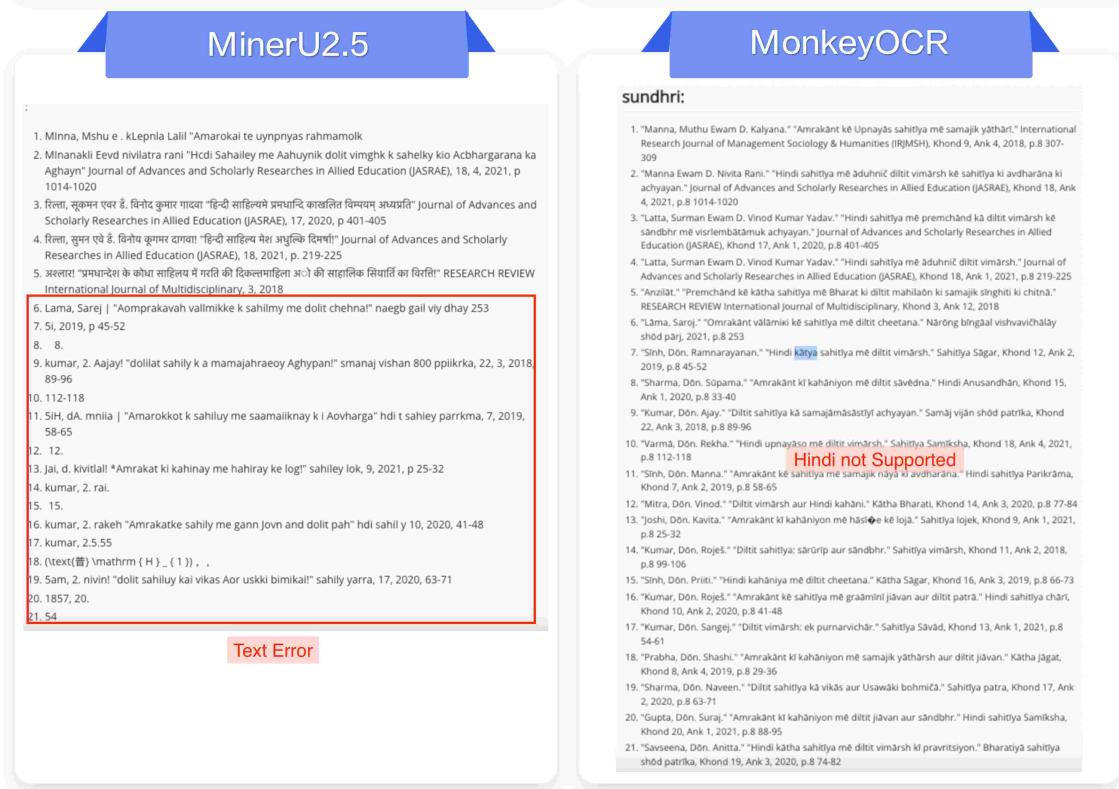
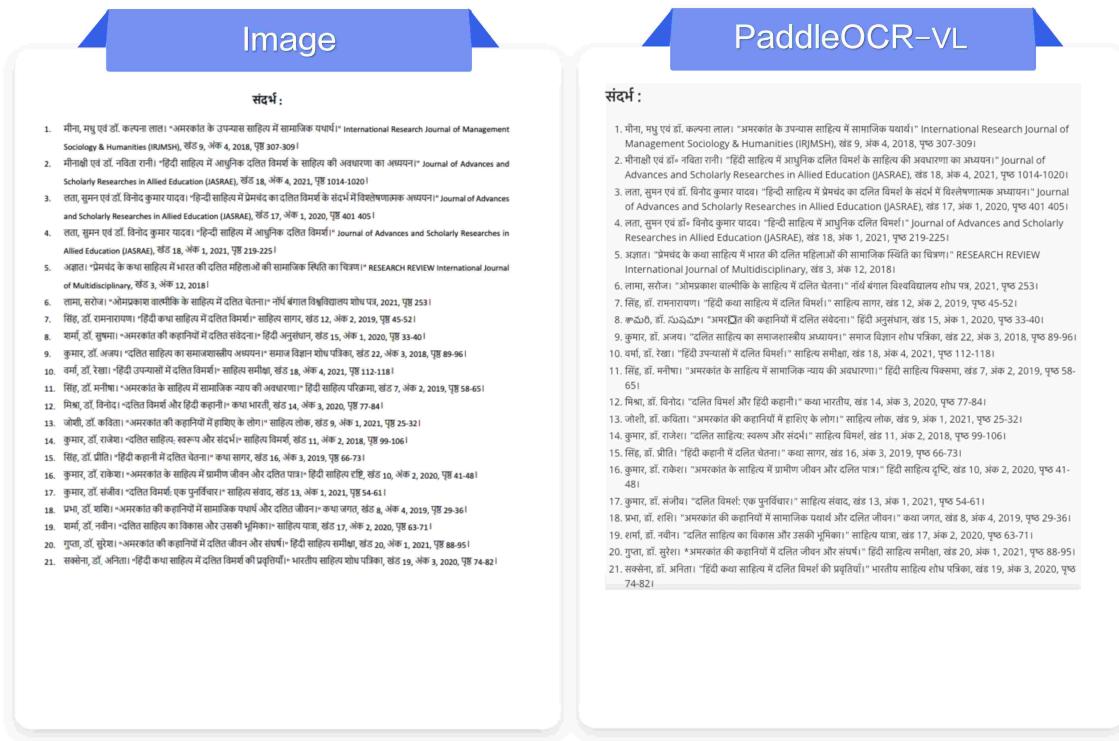



Figure A33 | Compare with others in Multilingual Text Recognition.

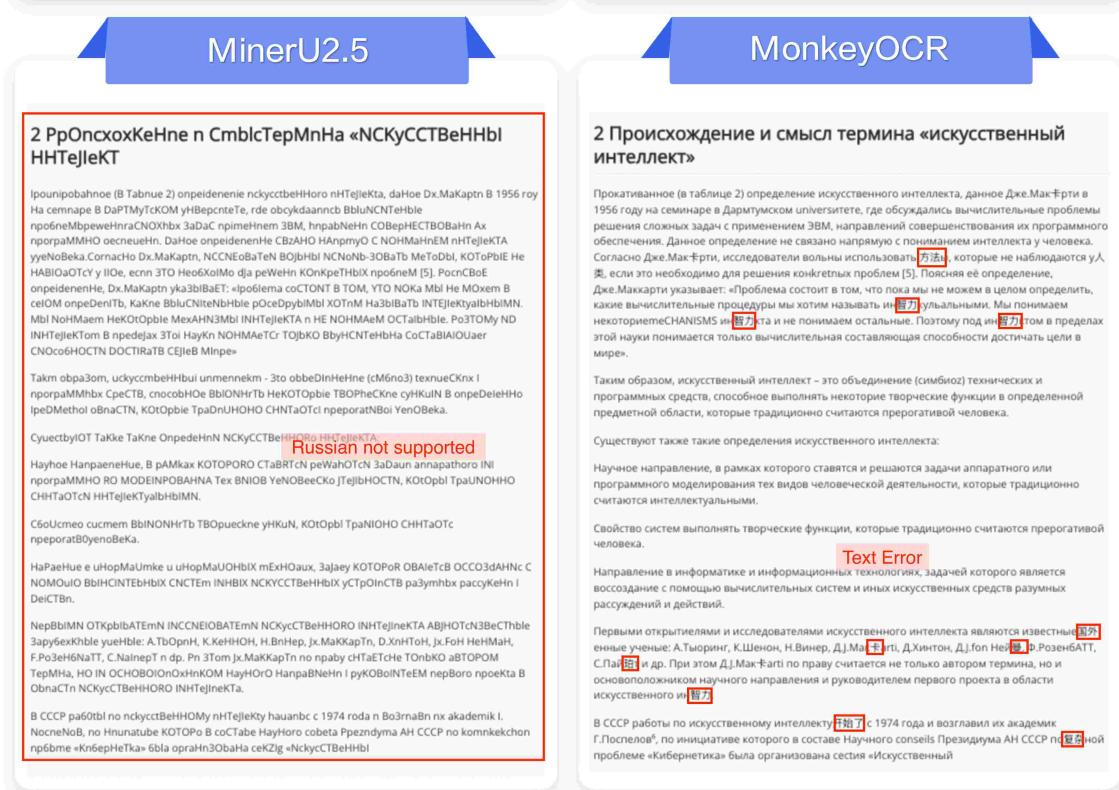


Figure A34 | Compare with others in Multilingual Text Recognition.

E.2.2. Handwriting Text Recognition

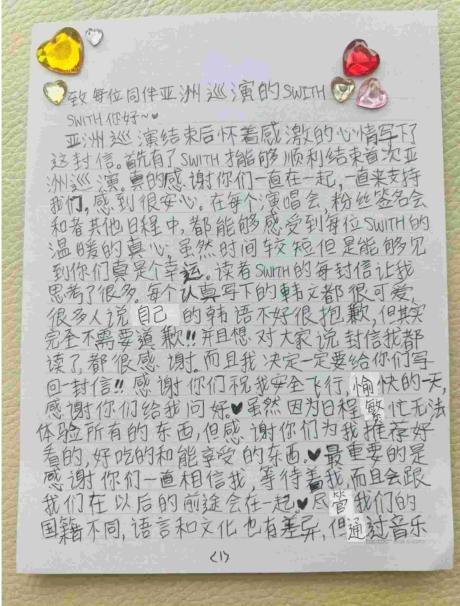

Image	PaddleOCR-VL
<p>致每位同伴亚洲巡演的SWITH SWITH你好~ 亚洲巡演结束后怀着感激的心情写下了这封信。首先有了SWITH才能够顺利结束首次亚洲巡演。真的感谢你们一直在一起，一直来支持我们，感到很安心。在每个演唱会，粉丝签名会和着其他日程中，都能够感受到每位SWITH的温暖的真心。虽然时间较短但是能够见到你们真是个幸运。读者SWITH的每封信让我思考了很多。每个认真写下的韩文都很可爱，很多人说自己的韩语不好很抱歉，但其实完全不需要道歉!!并且想对大家说封信我都读了，都很感谢。而且我决定一定要给你们写回一封信！感谢你们祝我安全飞行，愉快的一天！感谢你们给我问好。虽然因为日程繁忙无法体验所有的东西，但感谢你们为我推荐好看的好吃的和能享受的东西。最重要的是感谢你们一直相信我，等待着我，而且会跟我们在以后的前途会在一起。尽管我们的国籍不同，语言和文化也有差异，但通过音乐</p>	<p>致每位同伴亚洲巡演的SWITH SWITH你好~ 亚洲巡演结束后怀着感激的心情写下了这封信。首先有了SWITH才能够顺利结束首次亚洲巡演。真的感谢你们一直在一起，一直来支持我们，感到很安心。在每个演唱会，粉丝签名会和着其他日程中，都能够感受到每位SWITH的温暖的真心。虽然时间较短但是能够见到你们真是个幸运。读者SWITH的每封信让我思考了很多。每个认真写下的韩文都很可爱，很多人说自己的韩语不好很抱歉，但其实完全不需要道歉!!并且想对大家说封信我都读了，都很感谢。而且我决定一定要给你们写回一封信！感谢你们祝我安全飞行，愉快的一天！感谢你们给我问好。虽然因为日程繁忙无法体验所有的东西，但感谢你们为我推荐好看的好吃的和能享受的东西。最重要的是感谢你们一直相信我，等待着我，而且会跟我们在以后的前途会在一起。尽管我们的国籍不同，语言和文化也有差异，但通过音乐</p>
MinerU2.5	MonkeyOCR
<p>亚洲巡演结束后怀着感激的心情写下了这封信。首先有了SWITH才能够顺利结束首次亚洲巡演。真的感谢你们一直在一起，一直来支持我们，感到很安心。在每个演唱会，粉丝签名会和着其他日程中，都能够感受到每位SWITH的温暖的真心。虽然时间较短但是能够见到你们真是个幸运。读者SWITH的每封信让我思考了很多。每个认真写下的韩文都很可爱，很多人说自己的韩语不好很抱歉，但其实完全不需要道歉”，并且想对大家说封信我都读了，都很感谢，而且我决定一定要给你们写回一封信”，感谢你们祝我安全飞行，愉快的一天，感谢你们给我问好。虽然因为日程繁忙无法体验所有的东西，但感谢你们为我推荐好看的好吃的和能享受的东西。最重要的是感谢你们一直相信我，等待着我，而且会跟我们在以后的前途会在一起。尽管我们的国籍不同，语言和文化也有差异，但通过音乐</p> <p>Missing Text</p>	<p>亚洲巡演结束后怀着感激的心情写下了这封信。首先有了SWITH才能够顺利结束首次亚洲巡演。真的感谢你们一直在一起，一直来支持我们，感到很安心。在每个演唱会，粉丝签名会和着其他日程中，都能够感受到每位SWITH的温暖的真心。虽然时间较短但是能够见到你们真是个幸运。读者SWITH的每封信让我思考了很多。每个认真写下的韩文都很可爱，很多人说自己的韩语不好很抱歉，但其实完全不需要道歉!!并且想对大家说，封信我都读了，都很感谢。而且我决定一定要给你们写回一封信!!感谢你们祝我安全飞行，愉快的一天!感谢你们给我问好。虽然因为日程繁忙无法体验所有的东西，但感谢你们为我推荐好看的好吃的和能享受的东西。最重要的是感谢你们一直相信我，等待着我，而且会跟我们在以后的前途会在一起。尽管我们的国籍不同，语言和文化也有差异，但通过音乐</p> <p>Missing Text</p>

Figure A35 | Compare with others in Handwriting Text Recognition.

Figure A36 | Compare with others in Handwriting Text Recognition.

E.2.3. Vertical Text Recognition

Figure A37 | Compare with others in Vertical Text Recognition.

E.3. Table Recognition

MinerU2.5

Parsing Failed

Figure A38 | Compare with others in Table Recognition.

Image

操作顺序	手势目的 机械动作)	手势图示	操作说明
1	微速起钩		两小臂水平伸向侧前方,五指伸开,手心朝上,以腕部为轴,向上摆动;当要求双机以不同速度起升时,指挥起升快的一方,手要高于另一只手
2	慢速起钩		两小臂水平伸向侧前方,五指伸开,手心朝上,手臂以肘部为轴向上摆动;当要求双机以不同速度起升时,指挥起升速度快的一方,手要高于另一只手
3	全速升钩		两臂下垂,五指伸开,手心朝上,全臂向上挥动
4	微速落钩		两小臂水平伸向侧前方,五指伸开,手心朝下,手以腕部为轴向下摆动;当要求双机以不同的速度降落时,指挥降落速度快一方,手要低于另一只手

PaddleOCR-VL

操作顺序	手势目的 机械动作)	手势图示	操作说明
1	微速起钩		两小臂水平伸向侧前方,五指伸开,手心朝上,以腕部为轴,向上摆动;当要求双机以不同速度起升时,指挥起升快的一方,手要高于另一只手
2	慢速起钩		两小臂水平伸向侧前方,五指伸开,手心朝上,手臂以肘部为轴向上摆动;当要求双机以不同速度起升时,指挥起升速度快的一方,手要高于另一只手
3	全速升钩		两臂下垂,五指伸开,手心朝上,全臂向上挥动
4	微速落钩		两小臂水平伸向侧前方,五指伸开,手心朝下,手以腕部为轴向下摆动;当要求双机以不同的速度降落时,指挥降落速度快一方,手要低于另一只手

MinerU2.5

操作顺序	手势目的 机械动作)	手势图示	操作说明
1	微速起钩		两小臂水平伸向侧前方,五指伸开,手心朝上,以腕部为轴,向上摆动;当要求双机以不同速度起升时,指挥起升快的一方,手要高于另一只手
2	慢速起钩		两小臂水平伸向侧前方,五指伸开,手心朝上,手臂以肘部为轴向上摆动;当要求双机以不同速度起升时,指挥起升速度快的一方,手要高于另一只手
3	全速升钩		两臂下垂,五指伸开,手心朝上,全臂向上挥动
4	微速落钩		两小臂水平伸向侧前方,五指伸开,手心朝下,手以腕部为轴向下摆动;当要求双机以不同的速度降落时,指挥降落速度快一方,手要低于另一只手

Image Lost

MonkeyOCR

操作顺序	手势目的 机械动作)	手势图示	操作说明
1	微速起钩		两小臂水平伸向侧前方,五指伸开,手心朝上,以腕部为轴,向上摆动;当要求双机以不同速度起升时,指挥起升快的一方,手要高于另一只手
2	慢速起钩		两小臂水平伸向侧前方,五指伸开,手心朝上,手臂以肘部为轴向上摆动;当要求双机以不同速度起升时,指挥起升速度快的一方,手要高于另一只手
3	全速升钩		两臂下垂,五指伸开,手心朝上,全臂向上挥动
4	微速落钩		两小臂水平伸向侧前方,五指伸开,手心朝下,手以腕部为轴向下摆动;当要求双机以不同的速度降落时,指挥降落速度快一方,手要低于另一只手

Image Lost

Figure A39 | Compare with others in Table Recognition.

E.4. Formula Recognition

Image

① $\frac{13}{14)191}$

$$\frac{14}{51} \quad \frac{42}{9}$$

$$\begin{vmatrix} f(\alpha)f(\beta)f(\gamma) \\ g(\alpha)g(\beta)g(\gamma) \\ h(\alpha)h(\beta)h(\gamma) \end{vmatrix} = \begin{vmatrix} 1 & \alpha & \alpha^2 & b_0 \\ 1 & \beta & \beta^2 & c_0 \\ 1 & \gamma & \gamma^2 & r \\ 0 & r & q & p \end{vmatrix} \cdot \begin{vmatrix} c_0 & a_1 & a_2 & a_3 & a_4 \\ b_0 & b_1 & b_2 & b_3 & b_4 \\ c_0 & c_1 & c_2 & c_3 & c_4 \\ r & q & p & 1 & 0 \\ 0 & r & q & p & 1 \end{vmatrix}$$

② $\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \xrightarrow{\text{第3列加上第1列的} k \text{倍}} \begin{bmatrix} a_{11} & a_{12} & a_{13} + ka_{11} \\ a_{21} & a_{22} & a_{23} + ka_{21} \\ a_{31} & a_{32} & a_{33} + ka_{31} \end{bmatrix}$

③ $|\mathbf{A}| = \frac{1}{2}n(n+1) \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 2 & 3 & 4 & \cdots & n & 1 \\ 3 & 4 & 5 & \cdots & 1 & 2 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ n-1 & n & 1 & \cdots & n-3 & n-2 \\ n & 1 & 2 & \cdots & n-2 & n-1 \end{vmatrix}$

$$= \frac{1}{2}n(n+1) \begin{vmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 2 & 1 & 2 & \cdots & n-2 & -1 \\ 3 & 1 & 2 & \cdots & -2 & -1 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ n-1 & 1 & 2-n & \cdots & -2 & -1 \\ n & 1-n & 2-n & \cdots & -2 & -1 \end{vmatrix}$$

$$= \frac{1}{2}n(n+1) \begin{vmatrix} 1 & 2 & \cdots & n-2 & -1 \\ 1 & 2 & \cdots & -2 & -1 \\ 1 & 2-n & \cdots & -2 & -1 \\ 1-n & 2-n & \cdots & -2 & -1 \end{vmatrix}$$

④ $y = ax^2 + bx + c \ (a \neq 0)$
 $= a(x-h)^2 + k$ 顶点式 $h = -\frac{b}{2a}$
 $= a(x-x_1)(x-x_2)$ 交点式

PaddleOCR-VL

① $\frac{13}{14)191}$

$$\frac{14}{51} \quad \frac{42}{9}$$

$$\begin{vmatrix} f(\alpha)f(\beta)f(\gamma) \\ g(\alpha)g(\beta)g(\gamma) \\ h(\alpha)h(\beta)h(\gamma) \end{vmatrix} = \begin{vmatrix} 1 & \alpha & \alpha^2 \\ 1 & \beta & \beta^2 \\ 1 & \gamma & \gamma^2 \end{vmatrix} \cdot \begin{vmatrix} c_0 & a_1 & a_2 & a_3 & a_4 \\ b_0 & b_1 & b_2 & b_3 & b_4 \\ c_0 & c_1 & c_2 & c_3 & c_4 \\ r & q & p & 1 & 0 \\ 0 & r & q & p & 1 \end{vmatrix}$$

② $\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \xrightarrow{\text{第3列加上第1列的} k \text{倍}} \begin{bmatrix} a_{11} & a_{12} & a_{13} + ka_{11} \\ a_{21} & a_{22} & a_{23} + ka_{21} \\ a_{31} & a_{32} & a_{33} + ka_{31} \end{bmatrix}$

③ $|\mathbf{A}| = \frac{1}{2}n(n+1) \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 2 & 3 & 4 & \cdots & n & 1 \\ 3 & 4 & 5 & \cdots & 1 & 2 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ n-1 & n & 1 & \cdots & n-3 & n-2 \\ n & 1 & 2 & \cdots & n-2 & n-1 \end{vmatrix}$

$$= \frac{1}{2}n(n+1) \begin{vmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 2 & 1 & 2 & \cdots & n-2 & -1 \\ 3 & 1 & 2 & \cdots & -2 & -1 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ n-1 & 1 & 2-n & \cdots & -2 & -1 \\ n & 1-n & 2-n & \cdots & -2 & -1 \end{vmatrix}$$

$$= \frac{1}{2}n(n+1) \begin{vmatrix} 1 & 2 & \cdots & n-2 & -1 \\ 1 & 2 & \cdots & -2 & -1 \\ 1 & 2-n & \cdots & -2 & -1 \\ 1-n & 2-n & \cdots & -2 & -1 \end{vmatrix}$$

④ $y = ax^2 + bx + c \ (a \neq 0)$
 $\vec{AB} = -2\hat{i} - 5\hat{k}$ $\vec{AC} = \hat{i} - 2\hat{j} - \hat{k}$
 $\vec{AB} \times \vec{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -2 & 0 & -5 \\ 1 & -2 & -1 \end{vmatrix} \Rightarrow -10\hat{i} - 7\hat{j} + 4\hat{k}$
 $= a(x-x_1)(x-x_2)$ 交点式

MinerU2.5

① $\frac{13}{14)191}$

$$\begin{vmatrix} f(\alpha)f(\beta)f(\gamma) \\ g(\alpha)g(\beta)g(\gamma) \\ h(\alpha)h(\beta)h(\gamma) \end{vmatrix} = \begin{vmatrix} 1 & \alpha & \alpha^2 & b_0 \\ 1 & \beta & \beta^2 & c_0 \\ 1 & \gamma & \gamma^2 & r \\ 0 & r & q & p \end{vmatrix}.$$

② $\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \xrightarrow{\text{第3列加上第1列的} k \text{倍}} \begin{bmatrix} a_{11} & a_{12} & a_{13} + ka_{11} \\ a_{21} & a_{22} & a_{23} + ka_{21} \\ a_{31} & a_{32} & a_{33} + ka_{31} \end{bmatrix}$

③ $|\mathbf{A}| = \frac{1}{2}n(n+1) \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 2 & 3 & 4 & \cdots & n & 1 \\ 3 & 4 & 5 & \cdots & 1 & 2 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ n-1 & n & 1 & \cdots & n-3 & n-2 \\ n & 1 & 2 & \cdots & n-2 & n-1 \end{vmatrix}$

$$= \frac{1}{2}n(n+1) \begin{vmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 2 & 1 & 2 & \cdots & n-2 & -1 \\ 3 & 1 & 2 & \cdots & -2 & -1 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ n-1 & 1 & 2-n & \cdots & -2 & -1 \\ n & 1-n & 2-n & \cdots & -2 & -1 \end{vmatrix}$$

$$= \frac{1}{2}n(n+1) \begin{vmatrix} 1 & 2 & \cdots & n-2 & -1 \\ 1 & 2 & \cdots & -2 & -1 \\ 1 & 2-n & \cdots & -2 & -1 \\ 1-n & 2-n & \cdots & -2 & -1 \end{vmatrix}$$

④ $y = ax^2 + bx + c \ (a \neq 0) = a(x-h)^2 + k$ 顶点式 $h = -\frac{b}{2a} = a(x-x_1)^2 (x-x_2)$ 交点式

⑤ $\vec{AB} = -2\hat{i} - 5\hat{k}$ $\vec{AC} = \hat{i} - 2\hat{j} - \hat{k}$
 $\vec{AB} \times \vec{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -2 & 0 & -5 \\ 1 & -2 & -1 \end{vmatrix} \Rightarrow -10\hat{i} - 7\hat{j} + 4\hat{k}$
 $= a(1x - x_1)(1x - x_2)$ 交点式

dots.ocr

① $\frac{13}{14)191}$

$$\begin{vmatrix} f(\alpha)f(\beta)f(\gamma) \\ g(\alpha)g(\beta)g(\gamma) \\ h(\alpha)h(\beta)h(\gamma) \end{vmatrix} = \begin{vmatrix} 1 & \alpha & \alpha^2 & b_0 \\ 1 & \beta & \beta^2 & c_0 \\ 1 & \gamma & \gamma^2 & r \\ 0 & r & q & p \end{vmatrix} \cdot \begin{vmatrix} c_0 & a_1 & a_2 & a_3 & a_4 \\ b_0 & b_1 & b_2 & b_3 & b_4 \\ c_0 & c_1 & c_2 & c_3 & c_4 \\ r & q & p & 1 & 0 \\ 0 & r & q & p & 1 \end{vmatrix}$$

② $\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \xrightarrow{\text{第3列加上第1列的} k \text{倍}} \begin{bmatrix} a_{11} & a_{12} & a_{13} + ka_{11} \\ a_{21} & a_{22} & a_{23} + ka_{21} \\ a_{31} & a_{32} & a_{33} + ka_{31} \end{bmatrix}$

③ $|\mathbf{A}| = \frac{1}{2}n(n+1) \begin{vmatrix} 1 & 2 & \cdots & n-2 & -1 \\ 1 & 2 & \cdots & -2 & -1 \\ 1 & 2-n & \cdots & -2 & -1 \\ 1-n & 2-n & \cdots & -2 & -1 \end{vmatrix}$

④ $= a(1x - x_1)(1x - x_2)$ 交点式

⑤ $|\vec{AB} \times \vec{AC}| = \sqrt{(-10)^2 + (-7)^2 + (4)^2}$

Figure A40 | Compare with others in Formula Recognition.

E.5. Chart Recognition

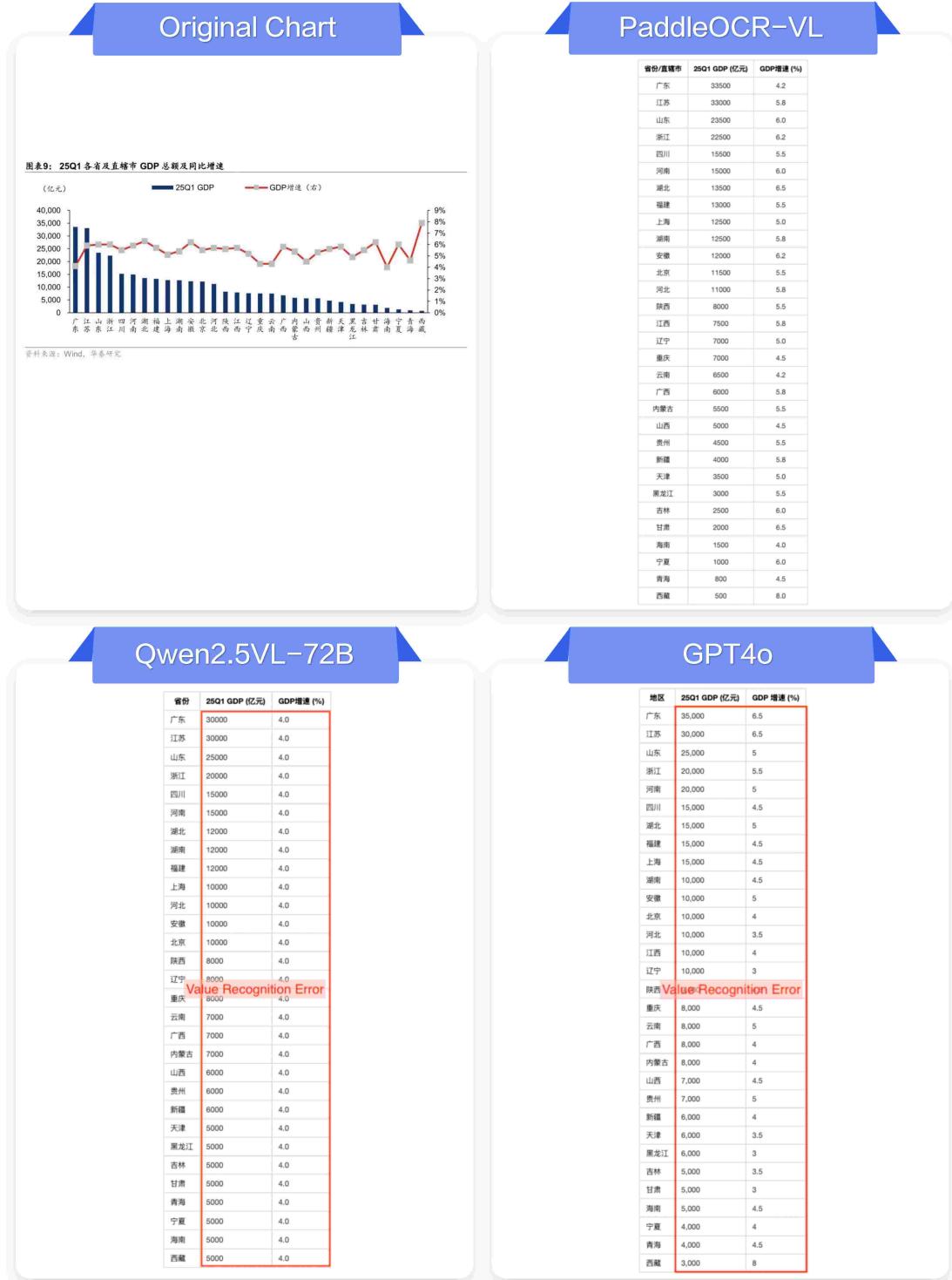
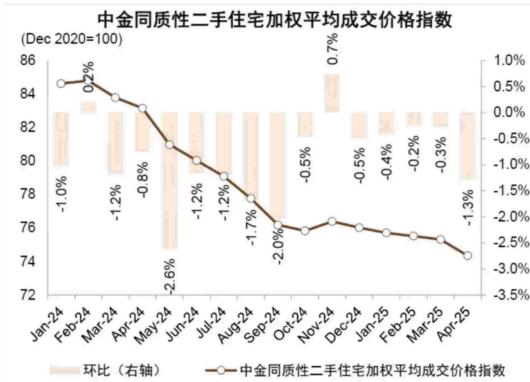



Figure A41 | Compare with others in Chart Recognition.

Original Chart

PaddleOCR-VL

日期	中金同质性二手住宅加权平均成交价格指数 (Dec 2020=100)	环比 (右轴)
Jan-24	84.5%	-1.0%
Feb-24	84.8%	0.2%
Mar-24	83.8%	-1.2%
Apr-24	83.0%	-0.8%
May-24	81.0%	-2.6%
Jun-24	80.0%	-1.2%
Jul-24	79.0%	-1.2%
Aug-24	78.0%	-1.7%
Sep-24	76.0%	-2.0%
Oct-24	75.8%	-0.5%
Nov-24	75.5%	-0.7%
Dec-24	75.2%	-0.3%
Jan-25	75.0%	-0.3%
Feb-25	75.2%	-0.2%
Mar-25	75.0%	-0.3%
Apr-25	74.0%	-1.3%

Qwen3VL-30B-A3B

日期	中金同质性二手住宅加权平均成交价格指数	环比 (右轴)
Jan-24	85.0	-1.0%
Feb-24	84.8	-1.2%
Mar-24	84.2	-0.8%
Apr-24	83.6	-2.6%
May-24	81.4	-1.2%
Jun-24	80.8	-1.2%
Jul-24	80.2	-1.7%
Aug-24	79.4	-2.0%
Sep-24	77.8	-0.5%
Oct-24	78.2	0.7%
Nov-24	78.0	-0.5%
Dec-24	77.8	-0.4%
Jan-25	77.6	-0.2%
Feb-25	77.4	-0.3%
Mar-25	77.2	-1.3%
Apr-25	74.0	Value Lost

GPT4o

时间	环比变化
Jan-24	-1.0%
Feb-24	0.2%
Mar-24	-1.2%
Apr-24	-0.8%
May-24	-2.6%
Jun-24	-1.2%
Jul-24	-1.7%
Aug-24	-2.0%
Sep-24	0.7%
Oct-24	-0.5%
Nov-24	-0.5%
Dec-24	-0.4%
Jan-25	-0.2%
Feb-25	-0.3%
Mar-25	-1.3%
Apr-25	-

Figure A42 | Compare with others in Chart Recognition.