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Abstract
In this report, we propose PaddleOCR-VL, a SOTA and resource-efficient model tailored for
document parsing. Its core component is PaddleOCR-VL-0.9B, a compact yet powerful vision-
language model (VLM) that integrates a NaViT-style dynamic resolution visual encoder with
the ERNIE-4.5-0.3B language model to enable accurate element recognition. This innovative
model efficiently supports 109 languages and excels in recognizing complex elements (e.g.,
text, tables, formulas, and charts), while maintaining minimal resource consumption. Through
comprehensive evaluations on widely used public benchmarks and in-house benchmarks,
PaddleOCR-VL achieves SOTA performance in both page-level document parsing and element-
level recognition. It significantly outperforms existing solutions, exhibits strong competitiveness
against top-tier VLMs, and delivers fast inference speeds. These strengths make it highly suitable
for practical deployment in real-world scenarios.

Figure 1 | Performance of PaddleOCR-VL on OmniDocBench v1.0 and v1.5.
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1. Introduction

Documents serve as core information carriers, with their complexity and volume growing at
an exponential rate, making document parsing an indispensable key technology. The primary
goal of document parsing [1, 2, 3, 4] is to enable deep structural and semantic understanding
of a document’s layout. Specifically, it involves recognizing distinct text blocks and columns,
distinguishing formulas, tables, charts, and images, determining the correct reading order,
and detecting key elements (e.g., footnotes and image captions); these capabilities collectively
lay a solid foundation for efficient information retrieval and data management. Furthermore,
advanced document parsing enables large language models (LLMs) [5, 6, 7], especially when
combined with Retrieval-Augmented Generation (RAG) [8], to access high-quality knowledge
and enhance their practical applications.

The inherent complexity of modern documents presents unique challenges: they often
combine dense text, complex tables or chart, mathematical expressions, multiple languages
and handwritten texts, with deserve layout structures. Recent research [1, 9, 10, 11, 12] in
the field of document parsing primarily following two technological approaches. The first
approach [9, 10] employs pipeline methodologies based on specialized, modular expert models.
Although these methods offer strong performance, they are increasingly hindered by integration
complexity, cumulative error propagation, and inherent limitations when handling highly
complex documents. Secondly, end-to-end approaches [12, 13, 14] leveraging multimodal
models aim to simplify the workflow and enable joint optimization. However, these methods
often struggle with correct text order and can even generate hallucinations when faced with
lengthy or complex layouts, while also incurring substantial computational overhead for long
sequence outputs, thereby restricting their practical deployment.

To address these advancements and challenges, we present PaddleOCR-VL, a high-performance,
resource-efficient document parsing solution based on a vision-language model. This innovation
paves the way for the widespread application of multimodal document parsing, particularly in
resource-constrained environments. PaddleOCR-VL combines a robust layout analysis model
with a compact yet powerful vision-language model, PaddleOCR-VL-0.9B.

Firstly, PaddleOCR-VL performs layout detection and reading order prediction to obtain
the positional coordinates and reading order of elements (text blocks, tables, formulas, and
charts). Compared to multimodal methods that rely on grounding and sequence output (e.g.,
MinerU2.5 [2], Dolphin [3]), our method offers faster inference speeds, lower training costs, and
easier extensibility for new layout categories. Subsequently, the elements are segmented based
on their positions and fed into PaddleOCR-VL-0.9B for recognition. This vision-language model
is specifically designed for resource-efficient inference and excels at element recognition within
document parsing. By integrating a NaViT-style [15] dynamic high-resolution visual encoder
with the lightweight ERNIE-4.5-0.3B [5] language model, we have significantly enhanced the
model’s dense text recognition capabilities and decoding efficiency.

To train a powerful multimodal model, we have developed a high-quality training data
construction pipeline. We collected over 30 million training samples through public data
acquisition and data synthesis. We meticulously designed prompt engineering to guide the
automatic labeling by general large models, based on the recognition results of expert models.
Simultaneously, We performed data cleaning to remove low-quality or inconsistent annotations,
such as those caused by model hallucinations. We designed an evaluation engine, which is an
assessment collection that categorizes each element into more detailed categories. Through this
automated evaluation, we can analyze the current model’s training performance across different
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types. This allows us to conduct targeted hard sample mining based on element types and to
construct similar challenging examples through data synthesis. Finally, we incorporated manual
annotation for a small number of corner cases to complete the construction of the training data.

Comprehensive benchmarking on the public benchmarks, including OmniDocBench v1.0,
v1.5 [16] and olmOCR-Bench [12], and in-house ones demonstrate that PaddleOCR-VL achieves
SOTA performance in document parsing task, significantly outperforming existing pipeline-
based solutions and exhibiting strong competitiveness against leading vision-language models
(VLMs). Moreover, PaddleOCR-VL is optimized for efficiency, delivering substantially lower
latency and higher throughput than competing approaches.

PaddleOCR-VL actively addresses current challenges in document processing with a high-
performance, resource-efficient multimodal document parsing solution. Its key contributions
include:

• Compact yet Powerful VLM Architecture: We present a novel vision-language model that
is specifically designed for resource-efficient inference, achieving outstanding performance
in element recognition. By integrating a NaViT-style dynamic high-resolution visual
encoder with the lightweight ERNIE-4.5-0.3B language model, we significantly enhance
the model’s recognition capabilities and decoding efficiency. This integration maintains
high accuracy while reducing computational demands, making it well-suited for efficient
and practical document processing applications.

• High-quality Data Construction Methodology: We propose a systematic and compre-
hensive methodology for constructing high-quality datasets, providing a solid train data
foundation for efficient and robust document parsing. This methodology not only enables
us to construct high-quality data on demand, but also provides a new perspective on the
automated generation of high-quality data.

• SOTA Performance Document Parsing: PaddleOCR-VL achieves state-of-the-art perfor-
mance in document parsing task. It excels in recognizing complex document elements,
such as text, tables, formulas, and charts, making it suitable for a wide range of challeng-
ing content types, including handwritten text and historical documents. Supporting 109
languages, including major global languages and those with diverse scripts like Russian,
Arabic, and Hindi, PaddleOCR-VL is highly applicable to multilingual and globalized
document processing scenarios.

2. PaddleOCR-VL

2.1. Architecture

PaddleOCR-VL decomposes the complex task of document parsing into a two stages, as illus-
trated in Figure 2. The first stage, PP-DocLayoutV2, is responsible for layout analysis, where
it localizes semantic regions and predicts their reading order. Subsequently, the second stage,
PaddleOCR-VL-0.9B, leverages these layout predictions to perform fine-grained recognition
of diverse content, including text, tables, formulas, and charts. Finally, a lightweight post-
processing module aggregates the outputs from both stages and formats the final document into
structured Markdown and JSON.

2.1.1. Layout Analysis

Considering that end-to-end approaches based on VLM rely on long-sequence autoregressive
processes, which result in high latency and memory consumption, and increase the risk of
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Figure 2 | The overview of PaddleOCR-VL.

unstable layout analysis and hallucinations—problems that are particularly pronounced in
multi-column or mixed text–graphic layouts—we employ a dedicated lightweight model for
layout analysis, focusing specifically on element detection, classification, and reading order
prediction.

Specifically, we decouple the layout analysis process by introducing an independent model,
PP-DocLayoutV2, dedicated solely to this task. PP-DocLayoutV2 consists of an object detection
model (RT-DETR [17]) for elements localization and classification, as well as a lightweight
pointer network [18] with six transformer layers to accurately predict the reading order of layout
elements.

This separation enables us to fully leverage the advanced capabilities of the vision model,
which typically requires lower input image resolution, and contains significantly fewer parame-
ters. As a result, it achieves stable and accurate layout analysis, without the instability issues
that may arise in end-to-end approaches.

Figure 3 | Architecture of layout analysis model.

Architecturally, PP-DocLayoutV2 is composed of two sequentially connected networks, as
shown in Figure 3. The first is an RT-DETR-based [17] detection model that performs layout
element detection and classification. The detected bounding boxes and class labels are then
passed to a subsequent pointer network, which is responsible for ordering these layout elements.
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Specifically, we first apply per-class thresholds to select foreground proposals for the ordering
network. The selected proposals are embedded using absolute 2D positional encodings and
class label embeddings. Additionally, the encoder attention incorporates a geometric bias
mechanism from Relation-DETR [18] to explicitly model pairwise geometric relationships among
elements. The pairwise relation head linearly projects element representations into query and
key vectors, then computes bilinear similarities to produce pairwise logits, resulting in an 𝑁 × 𝑁

matrix that represents the relative order between each pair of elements. Finally, a deterministic
win-accumulation decoding algorithm recovers a topologically consistent reading order for the
detected layout elements.

In comparison to other specialized models, such as LayoutReader [19], our model achieves
higher performance with fewer parameters by efficiently extending RT-DETR [17] with a pointer
network.

2.1.2. Element-level Recognition

We systematically explore architecture configurations optimized for high accuracy and low
computational overhead, and propose the PaddleOCR-VL-0.9B as shown in Figure 4.

Figure 4 | Architecture of PaddleOCR-VL-0.9B.

We adopted an architectural style inspired by LLaVA [20], integrating a pre-trained vision
encoder with a dynamic resolution preprocessor, a randomly initialized 2-layer MLP projector,
and a pre-trained large language model. Our architecture achieves a balance the scale of vision
and language models to optimize performance in multi-elements recognition tasks.

Compared to earlier document parsing models based on fixed-resolution or tiling-based
approaches [4, 14, 21], our approach utilizes native dynamic high-resolution preprocessing. For
the vision encoder, we employed a NaViT-style [15] encoder initialized from Keye-VL’s [22]
vision model, which support native-resolution inputs. This design enables the vision-language
model to handle images of arbitrary resolution without distortion, yielding fewer hallucinations
and stronger performance on text-intensive tasks.
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The projector is a randomly initialized 2-layer MLP with GELU [23] activation, incorporating
a merge size of 2 to efficiently bridge visual features from the encoder to the language model’s
embedding space.

In auto-regressive language models, the entire sequence is generated by predicting one
token at a time. This approach means that the size of the decoder is directly linked to the
overall inference latency, so a smaller model will decode faster. With this in mind, we use
the ERNIE-4.5-0.3B [5] model, an open-source language model that balances a relatively small
number of parameters with strong inference efficiency. In our implementation, we further
enhance positional representation by incorporating a 3D-RoPE[24].

The combination of NaViT [15] with ERNIE-4.5-0.3B [5] has led to significant performance
improvements in documents parsing, achieving minimal memory usage and faster inference
speed.

2.2. Training Recipe

The following sections introduce the training details of these two modules: PP-DocLayoutV2 for
layout analysis and PaddleOCR-VL-0.9B for element recognition.

2.2.1. Layout Analysis

We employ the PP-DocLayoutV2 model to perform layout element localization, classification,
and reading order prediction. PP-DocLayoutV2 extends RT-DETR [17] by incorporating an
additional pointer network [18], which is responsible for predicting the reading order of detected
elements. The training process adopts a two-stage strategy: we first train the core RT-DETR [17]
model for layout detection and classification. Afterward, we freeze its parameters and indepen-
dently train the pointer network for reading order prediction.

For the first stage, we follow the training strategy of RT-DETR [17]. Specifically, we initialize
the model with PP-DocLayout_Plus-L [25] pretrained weights and train it for 100 epochs on our
self-constructed dataset comprising over 20,000 high-quality samples.

For the second stage, specifically, the model outputs a matrix representing the pairwise
ordering relationships between any two elements, and the Generalized Cross Entropy Loss
[26] is computed with respect to the ground truth labels, as this loss function demonstrates
increased robustness in scenarios where pre-annotated data are mixed into the dataset. We
utilize a constant learning rate 2e-4 and the AdamW optimizer to train 200 epochs.

2.2.2. Element-level Recognition

As described in Section 2.1.2, PaddleOCR-VL-0.9B consists of three modules: a vision encoder, a
projector, and a language model. We adopt a post-adaptation strategy using pre-trained models.
Specifically, the vision model is initialized with Keye-VL’s weights, and the language model is
initialized with ERNIE-4.5-0.3B’s weights. The model is trained based on the ERNIEKit [27]
repository and the training methodology for our VLM is divided into two stages, as outlined in
Table 1.

Stage 1: The initial stage focuses on pre-training alignment, where the model learns to
associate visual information from images with corresponding textual representations. This
crucial step is performed on a massive dataset comprising 29 million high-quality image-text
pairs. During this phase, which runs for one epoch, the model is trained to establish a coherent
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Stages Stage 1 Stage 2

Training Samples 29M 2.7M
Max Resolution 1280 × 28 × 28 2048 × 28 × 28
Sequence length 16384 16384
Trainable components All All
Batch sizes 128 128
Data Augmentation Yes Yes
Maximum LR 5 × 10−5 5 × 10−6

Minimum LR 5 × 10−6 5 × 10−7

Epoch 1 2

Table 1 | Training settings in stage 1 and stage 2.

understanding between diverse visual inputs and their semantic textual content. The training
utilizes a batch size of 128, a sequence length of 16384, and supports a maximum image resolution
of 1280×28×28, with data augmentation enabled to improve robustness. For optimization, the
learning rate is scheduled between a maximum of 5 × 10−5 and a minimum of 5 × 10−6. The
primary objective is to align the feature spaces of the vision encoder and the language model,
enabling them to jointly process multimodal information effectively. This large-scale pre-training
allows the model to capture intricate visual patterns, common textual structures, and their
interdependencies across a vast range of contexts, laying a strong foundation for subsequent
specialized tasks.

Stage 2: Following pre-training, the model undergoes instruction fine-tuning to adapt its
general multimodal understanding to specific downstream elements recognition tasks. This
stage utilizes a meticulously curated dataset of 2.7 million samples, which is intentionally
designed to be highly rich and diverse in its distribution. The training is conducted over two
epochs, maintaining the 128 batch size and 16384 sequence length, but increasing the maximum
resolution to 2048×28×28 to handle more detailed inputs. A finer learning rate is adopted, with
the maximum and minimum values set to 5 × 10−6 and 5 × 10−7, to carefully adjust the model on
specialized data. The richness of this dataset encompasses a wide variety of document types,
languages, writing systems, and visual complexities pertinent to real-world scenarios. During
this fine-tuning phase, the model is trained with explicit instructions for four types of tasks:

1. OCR: This task fine-tunes the model to accurately identify and extract textual content from
images, encompassing individual characters, words, text lines, text blocks and simple
layout structure of page-level texts.

2. Table Recognition: The model learns to parse tabular structures within documents. This
involves accurately extracting cell contents, identifying rows and columns, and recognize
the logical relationships between different table elements, ultimately generating structured
representations based on OTSL [28] format.

3. Formula Recognition: This instruction focuses on enabling the model to recognize and in-
terpret mathematical and scientific formulas. It aims to convert their visual representation
into a structured LATEXformat and distinguishes between inline \(...\) and display \[...\]
equations.

4. Chart Recognition: This task trains the model to recognition information from various
types of charts, such as bar charts, line graphs, and pie charts and convert Markdown
format tables.
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3. Dataset

To build our high-quality and diverse training dataset, we propose a systematic methodology
for constructing such datasets. As illustrated in Figure 5, we gather a diverse set of data from
multiple sources to ensure comprehensive coverage. High-quality labels are then generated
through automated annotation using large models, which guarantees precision and consistency.
Additionally, we refine the training data by integrating challenging examples, which enhances
the model’s performance and robustness. Each of these crucial steps is detailed in the following
sections.

Figure 5 | The construction process of training data for PaddleOCR-VL-0.9B.

3.1. Data Curation

To ensure the breadth and diversity of the dataset, data is collected from four main sources:
open-source dataset, synthesizing dataset, network accessible dataset, and in-house dataset.

1. Open Source Dataset: As the foundation of our dataset, we systematically aggregated and
curated a wide array of established public datasets. For textual content, we sourced data
from the canonical dataset CASIA-HWDB [29]. Our mathematical expression data is de-
rived from UniMER-1M [30] and MathWriting [31]. To ensure comprehensive coverage of
data visualizations, we incorporated a rich spectrum of chart and graph datasets, including
ChartQA [32], PlotQA [33], Chart2Text [34], DVQA [35], Unichart [36], Beagle [37], Chart-
INFO [38], visText [39], and ExcelChart [40]. Each of these sources underwent an initial
filtering and cleaning protocol to rectify or discard noisy and low-quality annotations.

2. Data Synthesizing Dataset: Due to the naturally imbalanced distribution of public data,
we employed a data synthesizing strategy to produce large volumes of missing data
types at low cost, providing our proposed model with the unbiased document parsing
performance.

3. Network Accessible Dataset: To improve model generalization and robustness against the
complexities of unstructured real-world documents, we amassed an extensive corpus of
publicly accessible data harvested from the Internet. This public collection was deliberately
curated to encompass a rich spectrum of document types and visual styles. It includes
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academic papers, newspapers, formal scientific journal articles, scanned handwritten
documents, diverse examination papers, and slides, etc. The integration of these varied
sources proved instrumental in significantly broadening the stylistic, structural, and
domain diversity of our training data, thereby mitigating the risk of overfitting to clean,
canonical datasets.

4. In-house Dataset: Through years of research in the field of OCR, we have accumulated
extensive datasets with diverse data types across all tasks of document parsing. We incor-
porate all in-house datasets into training with precisely controlled proportions, which have
become unnecessary factors that enable our models to achieve outstanding performance.

3.2. Automatic Data Annotation

After acquiring the raw data, we utilize an automatic data annotations process for large-scale
labeling. Initially, we employ the expert model, PP-StructureV3, to conduct preliminary process-
ing on the data, generating pseudo labels that may contain some inaccuracies. Subsequently,
through prompt engineering, we create prompts that include the original images and their asso-
ciated pseudo labels, which are then submitted to more advanced multimodal large language
models, ERNIE-4.5-VL [5] and Qwen2.5VL [24]. These sophisticated models refine and enhance
the initial results by analyzing the image content, resulting in improved labels. Finally, to ensure
the quality of the labels, the system performs a hallucination filtering step, which eliminates
any potentially incorrect content generated by the large models, thereby producing reliable and
high-quality labels.

3.3. Hard Cases Mining

To overcome performance bottlenecks in specific complex scenarios, we propose a hard case
mining process for targeted performance improvement. We firstly develop a eval engine for
various types. We created substantial evaluation data with precisely labeled data obtained
through manual annotation. Theses evaluation datasets are categorized into several types: text
data includes 23 categories such as Chinese, English, printed, handwritten, Japanese, Latin, and
emojis; table data includes 20 categories such as limited tables, unlimited tables, handwritten
tables, checklists, invoices, and rotated tables; formula data includes 4 categories such as Chinese
and English formulas, handwritten and printed, simple, and complex; chart data includes 11
categories such as Chinese and English charts, line charts, and bar charts, sourced from diverse
origins to cover different document. By inference on this evaluation set and using corresponding
professional metrics (e.g., EditDist for Text, TEDS [41] for Tables, RMS-F1 [42] for Charts, and
BLEU [43] for Formulas), we can accurately identify hard cases where the model performs
poorly. Finally, for these identified weaknesses, the system utilizes a rich set of resources (such
as Font Library, CSS Library, Corpus) and rendering tools (like XeLaTeX and web browsers) to
synthetically generate a large volume of new, high-quality hard cases.

4. Evaluation

To thoroughly assess the effectiveness of PaddleOCR-VL, we compared it against leading
general vision language models and specialized document parsing models across multiple
public benchmarks and in-house benchmarks. We conducted comprehensive performance
comparisons in two aspects: page-level document parsing and element-level recognition, which
are detailed in Sections 4.1 and 4.2. Page-level involves analyzing entire pages of a document to
parsing their overall content, structure and layout, while element-level is dedicated exclusively
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to assessing the recognition of specific elements, such as text, tables, formulas, and charts, within
the document.

4.1. Page-level Evaluation

This section details the evaluation of end-to-end document parsing capabilities using the fol-
lowing three benchmarks, aiming to measure its overall performance in real-world document
scenarios.

OmniDocBench v1.5 To comprehensively evaluate the document parsing capabilities, we
conducted extensive experiments on the OmniDocBench v1.5 [2] benchmark. It is an expansion
of version v1.0, adding 374 new documents for a total of 1,355 document pages. It features a
more balanced distribution of data in both Chinese and English, as well as a richer inclusion of
formulas and other elements. The evaluation method has been updated, with formulas assessed
using the CDM method. The overall metric is a weighted combination of the metrics for text,
formulas, and tables.

Table 2 demonstrate that PaddleOCR-VL achieves SOTA performance, outperforming exist-
ing pipeline tools, general VLMs, and other specialized document parsing models across all key
metrics. Specifically, our model achieves a top-ranking overall score of 92.56, surpassing the next
best model, MinerU2.5-1.2B (90.67). Moreover, our model establishes new SOTA results in the
sub-tasks, including the lowest Text-Edit distance [44] of 0.035, the highest Formula-CDM score
of 91.43, the leading scores of 89.76 and 93.52 in Table-TEDS and Table-TEDS-S, and the best
readering ordering scores of 0.043, respectively. These results underscore its superior accuracy
in text recognition, formula recognition, and complex table structure analysis.

Model Type Methods Parameters Overall↑ TextEdit↓ FormulaCDM↑ TableTEDS↑ TableTEDS-S↑ Reading OrderEdit↓

Pipeline Tools
Marker-1.8.2 [45] - 71.30 0.206 76.66 57.88 71.17 0.250
Mineru2-pipeline [14] - 75.51 0.209 76.55 70.90 79.11 0.225
PP-StructureV3 [10] - 86.73 0.073 85.79 81.68 89.48 0.073

General VLMs

GPT-4o [7] - 75.02 0.217 79.70 67.07 76.09 0.148
InternVL3-76B [46] 76B 80.33 0.131 83.42 70.64 77.74 0.113
InternVL3.5-241B [47] 241B 82.67 0.142 87.23 75.00 81.28 0.125
Qwen2.5-VL-72B [24] 72B 87.02 0.094 88.27 82.15 86.22 0.102
Gemini-2.5 Pro [48] - 88.03 0.075 85.82 85.71 90.29 0.097

Specialized VLMs

Dolphin [3] 322M 74.67 0.125 67.85 68.70 77.77 0.124
OCRFlux-3B [49] 3B 74.82 0.193 68.03 75.75 80.23 0.202
Mistral OCR [50] - 78.83 0.164 82.84 70.03 78.04 0.144
POINTS-Reader [4] 3B 80.98 0.134 79.20 77.13 81.66 0.145
olmOCR-7B [12] 7B 81.79 0.096 86.04 68.92 74.77 0.121
MinerU2-VLM [14] 0.9B 85.56 0.078 80.95 83.54 87.66 0.086
Nanonets-OCR-s [51] 3B 85.59 0.093 85.90 80.14 85.57 0.108
MonkeyOCR-pro-1.2B [1] 1.9B 86.96 0.084 85.02 84.24 89.02 0.130
MonkeyOCR-3B [1] 3.7B 87.13 0.075 87.45 81.39 85.92 0.129
dots.ocr [52] 3B 88.41 0.048 83.22 86.78 90.62 0.053
MonkeyOCR-pro-3B [1] 3.7B 88.85 0.075 87.25 86.78 90.63 0.128
MinerU2.5 [2] 1.2B 90.67 0.047 88.46 88.22 92.38 0.044
PaddleOCR-VL 0.9B 92.56 0.035 91.43 89.76 93.52 0.043

Table 2 | Comprehensive evaluation of document parsing on OmniDocBench v1.5. Results are
reported by OmniDocBench [16] unless Ours.

OmniDocBench v1.0 A publicly available benchmark dataset specifically is designed to evalu-
ate real-world document parsing capabilities. It comprises 981 PDF pages, spanning 9 distinct
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document types, 4 layout styles, and 3 language categories.

Based on the experimental results presented in Table 3, PaddleOCR-VL demonstrates su-
perior performance with an average overall edit distance of 0.115, demonstrating its superior
capability in document parsing. The model excels in formula edit distance (0.241 EN, 0.316
ZH), and achieves the SOTA performance (0.062) and a comparable SOTA performance (0.041)
for Chinese and English text edit distance respectively, showcasing its accuracy in handling
textual and formulaic data. Although the model exhibits slightly lower performance in the
English Table TEDS (88.0), this can be largely attributed to typo-related annotation errors in
OmniDocBench v1.0. Nevertheless, it demonstrates a clear advantage in the Chinese Table TEDS
(92.14). Regarding the reading order edit distance, the model achieves the best performance in
Chinese (0.063) and a comparable SOTA result in English (0.045), emphasizing its capability to
maintain structural integrity and logical document flow.

Method Type Methods AvgOverallEdit ↓ OverallEdit↓ TextEdit↓ FormulaEdit↓ TableTEDS↑ TableEdit↓ Reading OrderEdit↓
EN ZH EN ZH EN ZH EN ZH EN ZH EN ZH

Pipeline Tools

Docling-2.14.0 [11] 0.749 0.589 0.909 0.416 0.987 0.999 1 61.3 25.0 0.627 0.810 0.313 0.837
OpenParse-0.7.0 [53] 0.730 0.646 0.814 0.681 0.974 0.996 1 64.8 27.5 0.284 0.639 0.595 0.641
Unstructured-0.17.2 [54] 0.651 0.586 0.716 0.198 0.481 0.999 1 0 0.1 1 0.998 0.145 0.387
Pix2Text-1.1.2.3 [55] 0.424 0.320 0.528 0.138 0.356 0.276 0.611 73.6 66.2 0.584 0.645 0.281 0.499
Marker-1.7.1 [45] 0.397 0.296 0.497 0.085 0.293 0.374 0.688 67.6 54.0 0.609 0.678 0.116 0.329
Mathpix [56] 0.278 0.191 0.364 0.105 0.381 0.306 0.454 77.0 67.1 0.243 0.320 0.108 0.304
MinerU-pipeline [9] 0.203 0.162 0.244 0.072 0.111 0.313 0.581 77.4 79.5 0.166 0.150 0.097 0.136
PP-StructureV3 [10] 0.176 0.145 0.206 0.058 0.088 0.295 0.535 77.2 83.9 0.159 0.109 0.069 0.091

General VLMs

InternVL2-76B [57] 0.442 0.440 0.443 0.353 0.290 0.543 0.701 63.0 60.2 0.547 0.555 0.317 0.228
GPT-4o [7] 0.316 0.233 0.399 0.144 0.409 0.425 0.606 72.0 62.9 0.234 0.329 0.128 0.251
InternVL3-78B [46] 0.257 0.218 0.296 0.117 0.210 0.380 0.533 69.0 73.9 0.279 0.282 0.095 0.161
Qwen2.5-VL-72B [24] 0.238 0.214 0.261 0.092 0.180 0.315 0.434 81.4 83.0 0.341 0.262 0.106 0.168
Gemini2.5-Pro [48] 0.180 0.148 0.212 0.055 0.168 0.356 0.439 85.8 86.4 0.130 0.119 0.049 0.121

Specialized VLMs

Nougat [58] 0.713 0.452 0.973 0.365 0.998 0.488 0.941 39.9 0.0 0.572 1 0.382 0.954
SmolDocling-256M [13] 0.655 0.493 0.816 0.262 0.838 0.753 0.997 44.9 16.5 0.729 0.907 0.227 0.522
olmOCR-7B [12] 0.398 0.326 0.469 0.097 0.293 0.455 0.655 68.1 61.3 0.608 0.652 0.145 0.277
GOT [21] 0.349 0.287 0.411 0.189 0.315 0.360 0.528 53.2 47.2 0.459 0.520 0.141 0.280
OCRFlux-3B [49] 0.294 0.238 0.349 0.112 0.256 0.447 0.716 69.0 80.0 0.269 0.162 0.126 0.263
Nanonets-OCR-s [51] 0.289 0.283 0.295 0.134 0.231 0.518 0.546 76.8 79.4 0.343 0.201 0.135 0.200
Dolphin [3] 0.259 0.205 0.313 0.092 0.204 0.447 0.606 76.1 66.9 0.193 0.282 0.088 0.160
MinerU2-VLM [14] 0.186 0.133 0.238 0.045 0.115 0.273 0.506 82.1 83.4 0.150 0.209 0.066 0.122
MonkeyOCR-pro-1.2B [1] 0.184 0.146 0.221 0.068 0.118 0.272 0.452 81.3 85.5 0.149 0.134 0.093 0.179
MonkeyOCR-pro-3B [1] 0.172 0.138 0.206 0.067 0.107 0.246 0.421 81.5 87.5 0.139 0.111 0.100 0.185
dots.ocr [52] 0.143 0.125 0.160 0.032 0.066 0.329 0.416 88.6 89.0 0.099 0.092 0.040 0.067
MinerU2.5 [2] 0.143 0.111 0.174 0.050 0.074 0.258 0.473 88.3 89.2 0.089 0.083 0.045 0.068
PaddleOCR-VL 0.115 0.105 0.126 0.041 0.062 0.241 0.316 88.0 92.1 0.093 0.062 0.045 0.063

Table 3 | Comprehensive evaluation of document parsing on OmniDocBench v1.0. Results are
reported by OmniDocBench [16] unless MinerU2.5 and Ours.

olmOCR-Bench olmOCR-Bench [12] includes 1,402 PDF documents and 7,010 test cases,
addressing diverse document types and extraction challenges. It offers a detailed evaluation
framework for PDF content extraction by assessing tools and models through simple, clear,
and machine-verifiable unit tests. This approach avoids biased evaluations and soft metric
comparisons, allowing for the detection of subtle but significant extraction errors.

Table 4 highlights the outstanding performance of PaddleOCR-VL in the olmOCR-Bench
evaluation, achieving the highest overall score of 80.0 ± 1.0. It excels in various categories,
leading in ArXiv (85.7), Headers and Footers (97.0) and securing second place in Multi-column
text (79.9), Long Tiny Text (85.7). These results highlight the proposed model’s capability to
effectively manage diverse document types, reinforcing its status as a top solution in document
parsing and its reliability in complex OCR tasks.
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Methods
Unit Test Pass Rate ↑

Overall ArXiv Old Scans Math Tables Old Scans Headers and Footers Multi column Long Tiny Text Base

GOT [21] 48.3 ± 1.1 52.7 52.0 0.2 22.1 93.6 42.0 29.9 94.0
Gemini Flash 2 (No Anchor) [48] 57.8 ± 1.1 32.1 56.3 61.4 27.8 48.0 58.7 84.4 94.0
MinerU-pipeline [9] 61.5 ± 1.1 75.4 47.4 60.9 17.3 96.6 59.0 39.1 96.6
Gemini Flash 2 (Anchored) [48] 63.8 ± 1.2 54.5 56.1 72.1 34.2 64.7 61.5 71.5 95.6
Nanonets-OCR-s [51] 64.5 ± 1.1 67.0 68.6 77.7 39.5 40.7 69.9 53.4 99.3
Qwen2.5-VL-7B (No Anchor) [24] 65.5 ± 1.2 63.1 65.7 67.3 38.6 73.6 68.3 49.1 98.3
GPT-4o (No Anchor) [7] 68.9 ± 1.1 51.5 75.5 69.1 40.9 94.2 68.9 54.1 96.7
GPT-4o (Anchored) [7] 69.9 ± 1.1 53.5 74.5 70.0 40.7 93.8 69.3 60.6 96.8
Marker-1.8.2 [45] 70.1 ± 1.1 76.0 57.9 57.6 27.8 84.9 72.9 84.6 99.1
olmOCR v0.1.75 (No Anchor) [12] 74.7 ± 1.1 71.5 71.4 71.4 42.8 94.1 77.7 71.0 97.8
olmOCR v0.1.75 (Anchored) [12] 75.5 ± 1.0 74.9 71.2 71.0 42.2 94.5 78.3 73.3 98.3
MonkeyOCR-pro-3B [1] 75.8 ± 1.0 83.8 68.8 74.6 36.1 91.2 76.6 80.1 95.3
MinerU2.5 [2] 77.5 ± 1.0 81.1 74.0 85.1 33.8 96.3 65.5 89.8 94.4
dots.ocr [52] 79.1 ± 1.0 82.1 64.2 88.3 40.9 94.1 82.4 81.2 99.5
PaddleOCR-VL 80.0 ± 1.0 85.7 71.0 84.1 37.8 97.0 79.9 85.7 98.5

Table 4 | Comprehensive evaluation of document parsing on olmOCR-Bench. Results are
reported by olmOCR-Bench [12] unless MinerU2.5 and Ours.

4.2. Element-level Evaluation

This section centers on evaluating the element-level capabilities of PaddleOCR VL 0.9B. We
thoroughly assessed four tasks: text, tables, formulas, and charts using both public competition
data and in-house data.

4.2.1. Text Recognition

For text recognition, we utilize three benchmarks to validate the effectiveness of models based
on the edit distance metric.

OmniDocBench-OCR-block: From the 1355 images of OmniDocBench v1.5, we extracted all
text-related sub-images based on layout detection labels, removing any with null annotations.
This process resulted in a total of 17,148 block-level images. This evaluation set is named
OmniDocBench-OCR-block, with the ground truth still sourced from OmniDocBench. This
evaluation set can more accurately assess the model’s text recognition performance on without
being affected by layout detection. We use the average normalized edit distance for evaluation.

In Table 5, we present a comprehensive comparison of performance across various document
types using different models. Our model, PaddleOCR-VL, consistently demonstrates superior
performance, achieving the lowest error rates in almost all categories. Specifically, PaddleOCR-
VL achieves the best results in the PPT2PDF (0.049), Academic Literature (0.021), Book (0.045),
Colorful Textbook (0.081), Exam Paper (0.115), Magazine (0.020), Newspaper (0.034), Note
(0.081), and Research Report (0.033) categories. These results highlight PaddleOCR-VL’s robust
and versatile capability in handling diverse document types, establishing it as the leading
method in the OmniDocBench-OCR-block performance evaluation.

13



Methods Edit Distance ↓
PPT2PDF Academic

Literature
Book Colorful

Textbook
Exam
Paper

Magazine Newspaper Note Research
Report

Qwen2.5-VL-72B [24] 0.054 0.023 0.061 0.084 0.195 0.032 0.056 0.118 0.040
MonkeyOCR-pro-3B [1] 0.058 0.021 0.064 0.096 0.116 0.023 0.058 0.124 0.052
MinerU2.5 [2] 0.195 0.089 0.111 0.234 0.194 0.147 0.056 0.142 0.094
Dolphin [3] 0.237 0.095 0.135 0.347 0.248 0.233 0.121 0.309 0.213
PaddleOCR-VL 0.049 0.021 0.045 0.081 0.115 0.020 0.034 0.081 0.033

Table 5 | Overall Comparison of OmniDocBench-OCR-block Performance.

In-house-OCR: This is our self-built line-level text evaluation dataset which contains 107452
samples with high-quality labels. The dataset includes various text types such as handwritten
Chinese, handwritten English, printed Chinese, printed English, traditional Chinese, ancient
texts, general scenarios, Pinyin, obscure characters, vertical text, single characters, emojis, and
artistic fonts. It also comprises evaluation sets for 109 languages, such as Latin and Japanese.

Table 6 provides a detailed evaluation of performance across multiple languages and text
types. In the Multilingual Metrics (Table 6a), the model demonstrates outstanding accuracy
with the lowest edit distances in all evaluated scripts: Arabic(0.122), Korean(0.052), Tamil(0.043),
Greek(0.135), Thai(0.081), Telugu (0.114), Devanagari (0.097), Cyrillic (0.109), Latin (0.013), and
Japanese (0.096), indicating superior capability in handling diverse languages. Similarly, in the
Text Type Metrics (Table 6b), it excels in various text types, achieving the lowest error rates in
categories like Handwritten CN (0.089), Handwritten EN (0.042), Printed CN (0.035), Printed EN
(0.016), Traditional Chinese (0.048), Ancient Texts(0.198), General Scene (0.067), Pinyin (0.113),
Rare Characters (0.001), Vertical Text (0.005), Single Characters (0.027), Emoji (0.057), and Art
Font (0.165). These impressive results underscore the model’s robust performance and versatility,
establishing it as the leading OCR solution in this benchmark comparison.

Methods Edit Distance ↓
Arabic Korean Tamil Greek Thai Telugu Devanagari Cyrillic Latin Japanese

Qwen2.5-VL-72B [24] 0.405 0.056 0.389 0.165 0.194 0.758 0.164 0.220 0.021 0.181
Dolphin [3] 0.682 0.699 0.912 0.691 0.709 0.832 0.818 0.549 0.037 0.309
MonkeyOCR-pro-3B [1] 0.601 0.182 0.921 0.449 0.876 0.909 0.896 0.387 0.036 0.262
MinerU2.5 [2] 0.978 0.917 0.957 0.661 0.880 0.937 0.915 0.832 0.063 0.588
PaddleOCR-VL 0.122 0.052 0.043 0.135 0.081 0.011 0.097 0.109 0.013 0.086

(a) Multilingual Metrics.

Methods
Edit Distance ↓

Hand-
written

CN

Hand-
written

EN

Printed
CN

Printed
EN

Trad.
Chinese

Ancient
Texts

General
Scene

Pinyin Rare
Char.

Vertical
Text

Single
Char.

Emoji Art
Font

Dolphin [3] 0.236 0.145 0.074 0.025 0.095 0.218 0.113 0.183 0.092 0.190 0.202 0.225 0.230
MonkeyOCR-pro-3B [1] 0.253 0.071 0.048 0.023 0.295 0.529 0.144 0.165 0.063 0.086 0.110 0.184 0.263
Qwen2.5-VL-72B [24] 0.188 0.047 0.037 0.018 0.100 0.387 0.122 0.186 0.034 0.090 0.041 0.134 0.220
MinerU2.5 [2] 0.370 0.088 0.041 0.023 0.232 0.950 0.179 0.256 0.048 0.962 0.097 0.174 0.337
PaddleOCR-VL 0.089 0.042 0.035 0.016 0.048 0.198 0.067 0.113 0.001 0.005 0.027 0.057 0.165

(b) Text Type Metrics.

Table 6 | Comparison of In-house-OCR Edit Distance Performance.

Ocean-OCR-Handwritten: This is a line and paragraph levels handwritten evaluation dataset
designed for comprehensive handwriting recognition assessment. It contains 400 samples,
evenly divided into four subsets of 100 images each. The dataset covers both real and synthetic
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handwriting in Chinese and English. Real samples are collected from established handwriting
datasets such as CASIA-HWDB [29], GNHK [59], and BRUSH [60], while synthetic samples are
generated to simulate diverse writing styles, character densities, and layouts. The benchmark
aims to provide balanced and fine-grained evaluation for handwritten text recognition across
different scripts and writing conditions.

Table 7 presents a comparison of OCR performance for handwritten English and Chinese
text on the Ocean-OCR-Bench. Our model demonstrates superior performance across all metrics
in both languages. For English, it achieves the best edit distance of 0.118 and excels in F1-score,
Precision, Recall, BLEU, and METEOR, establishing itself as the leading model. In Chinese,
PaddleOCR-VL sets a benchmark with an edit distance of 0.034 and leads in all other metrics,
showcasing its outstanding precision and reliability.

Methods Edit Distance ↓ F1-score ↑ Precision↑ Recall↑ BLEU↑ METEOR↑
EN ZH EN ZH EN ZH EN ZH EN ZH EN ZH

InternVL2.5-4B [57] 0.197 0.240 0.661 0.741 0.674 0.754 0.655 0.734 0.406 0.473 0.652 0.687
MiniCPM-V2.6-8B [61] 0.147 0.175 0.727 0.810 0.747 0.811 0.714 0.812 0.443 0.583 0.727 0.774
Qwen2-VL-7B [62] 0.127 0.113 0.760 0.881 0.773 0.884 0.754 0.884 0.490 0.666 0.756 0.859

GOT [21] 0.616 0.402 0.283 0.568 0.309 0.618 0.273 0.544 0.151 0.295 0.255 0.492
PaddleOCR [10] 0.418 0.325 0.237 0.664 0.232 0.646 0.263 0.700 0.069 0.431 0.236 0.648
TextIn 0.358 0.180 0.362 0.840 0.368 0.869 0.362 0.822 0.098 0.567 0.337 0.751
Ocean-OCR [63] 0.145 0.106 0.774 0.885 0.780 0.912 0.782 0.862 0.532 0.736 0.772 0.885

MinerU2.5 [2] 0.238 0.356 0.558 0.619 0.547 0.623 0.574 0.622 0.344 0.489 0.553 0.601
PaddleOCR-VL 0.118 0.034 0.750 0.957 0.748 0.959 0.753 0.957 0.551 0.856 0.787 0.936

Table 7 | Comparison of performance on English(EN) and Chinese(ZH) OCR for handwritten
recognition on Ocean-OCR-Bench. Results are reported by Ocean-OCR [63] unless MinerU2.5

and Ours.

4.2.2. Table Recognition.

For table recognition, we utilize two benchmarks to validate the effectiveness of PaddleOCR-
VL-0.9B based on TEDS [41] and Edit Distance.

OmniDocBench-Table-block: To evaluate the table recognition performance of PaddleOCR-
VL, we crop 512 tables from OmniDocBench v1.5 datasets.

As shown in Table 8, our PaddleOCR-VL leads in the OmniDocBench-Table-block benchmark,
surpassing all competitors. It achieves a top overall TEDS of 0.9195, reflecting high accuracy
in capturing table structure and content. Its structural TEDS of 0.9543 highlights its ability to
parse complex structures, while the lowest Overall Edit Distance of 0.0561 indicates minimal
recognition errors. These results confirm PaddleOCR-VL’s superior performance and establish
it as the benchmark for accurate table recognition.

Methods Overall TEDS↑ Structural TEDS↑ Overall Edit Dist↓

MinerU2-VLM [14] 0.9002 0.9369 0.0734
Seed1.6 0.9079 0.9489 0.0652
dots.ocr [52] 0.8194 0.8442 0.1508
MinerU2.5 [2] 0.9005 0.9539 0.0693
PaddleOCR-VL 0.9195 0.9543 0.0561

Table 8 | Comparison of OmniDocBench-Table-block Performance
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In-house-Table: Our self-built evaluation set contains diverse array of table images with
comprehensive annotations and type classifications. It includes 20 different table types such
as Chinese, English, mixed Chinese-English, and tables with various characteristics like full,
partial, or no borders. The collection also covers tables with formulas, dense data, book/manual
formats, lists, academic papers, merged cells, as well as low-quality, watermarked, registration
forms, statistical forms, research reports, financial reports, images, invoices, and handwritten
tables, among others.

Table 9 provides a comparison of different methods on the In-house-Table task, highlighting
their performance across various metrics. We achieves the highest scores in Overall TEDS
(0.8699), Structural TEDS (0.9066), Overall Edit Distance (0.9066) and Structural Edit Distance
(0.9339). These results underscore PaddleOCR-VL’s effectiveness and reliability in table recogni-
tion tasks.

Methods Overall TEDS↑ Structural TEDS↑ Overall Edit Dist↑ Structural Edit Dist↑

MinerU2-VLM [14] 0.8286 0.8730 0.8757 0.9088
MonkeyOCR [1] 0.7396 0.7824 0.8174 0.8537
Nanonets-OCR-s [51] 0.7824 0.8190 0.8377 0.8692
OCRFlux-3B [49] 0.7741 0.8071 0.8238 0.8617
Qwen2.5-VL-3B [24] 0.7398 0.7765 0.8132 0.8701
Qwen2.5-VL-7B [24] 0.7549 0.7926 0.8251 0.8819
Qwen2.5-VL-72B [24] 0.7762 0.8361 0.843 0.8987
dots.ocr [52] 0.7547 0.7914 0.8047 0.8361
MinerU2.5 [2] 0.8469 0.8955 0.8896 0.9239
PaddleOCR-VL 0.8699 0.9066 0.9066 0.9339

Table 9 | Comparison of In-house-Table Performance

4.2.3. Formula Recognition.

For formula recognition, we validate the effectiveness our model based on the Character De-
tection Matching (CDM) [64] metric on OmniDocBench-Formula-block and In-house-Formula
datasets.

OmniDocBench-Formula-block Using the formula bounding boxes from OmniDocBench v1.5,
1050 formula sub-images were cropped. This step was taken to minimize the influence of layout
detection on formula recognition. As shown in Table 10, the model achieved state-of-the-art
CDM score of 0.9453.

Methods Overall CDM ↑ EN CDM ↑ ZH CDM ↑

dots.ocr [52] 0.4641 0.4868 0.4414
MinerU2-VLM [14] 0.8286 0.9616 0.6956
MonkeyOCR-pro-1.2B [1] 0.8531 0.9642 0.7419
MonkeyOCR-3B [1] 0.8621 0.9718 0.7524
Qwen2.5-VL-72B [24] 0.8747 0.9574 0.7920
MinerU2.5 [2] 0.9187 0.9751 0.8623
PaddleOCR-VL 0.9453 0.9677 0.9228

Table 10 | Comparison of OmniDocBench v1.5 Formula-block Performance. Due to dots.ocr [52]
easily recognizing cropped formulas as images, the score is relatively low.

In-house-Formula: The self-constructed formula evaluation set contains 34,816 samples, cov-
ering common formula recognition scenarios such as academic papers, mathematics books, and
primary and secondary school exam papers. Among them, there are 498 Chinese formulas and
34,318 English formulas. As shown in Table 11, our model obtains the best performance of
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0.9882 CDM score on the In-house-Formula dataset. These results collectively demonstrate the
powerful recognition capability of PaddleOCR-VL in real-world complex formula scenarios.

Methods Overall CDM ↑ EN CDM ↑ ZH CDM ↑

dots.ocr [52] 0.6737 0.8066 0.5408
MinerU2-VLM [14] 0.9237 0.9764 0.8709
MonkeyOCR-pro-1.2B [1] 0.9537 0.9656 0.9417
MonkeyOCR-3B [1] 0.9566 0.9761 0.9371
Qwen2.5-VL-72B [24] 0.9412 0.9519 0.9304
MinerU2.5 [2] 0.9770 0.9832 0.9708
PaddleOCR-VL 0.9882 0.9914 0.9849

Table 11 | Comparison of In-house-Formula Performance. Due to dots.ocr [52] easily
recognizing cropped formulas as images, the score is relatively low.

4.2.4. Chart Recognition.

For chart recognition, considering the limitations in dataset size, the imbalanced distribution
of chart categories, and the poor annotation quality of publicly available test sets, we only
utilize a in-house benchmark to validate the effectiveness of PaddleOCR-VL-0.9B based on
the RMS-F1 [42] score metric. As shown in Table 12, the proposed PaddleOCR-VL not only
outperforms expert OCR VLMs but also surpasses some 72B-level multimodal language models.

In-house-Chart: This in-house chart recognition evaluation set comprises 1,801 samples, all
of which have underwent a rigorous manual review to ensure annotation correctness. The
evaluation set is broadly categorized into 11 chart categories, including bar-line hybrid, pie,
100% stacked bar, area, bar, bubble, histogram, line, scatterplot, stacked area, and stacked bar. Of
these samples, 851 are in English and 950 are in Chinese. Prior to evaluation, both the predicted
data table and the ground truth data table are normalized to a uniform markdown format to
eliminate expression ambiguities.

Methods RMS-F1 ↑
Overall EN ZH

TinyChart [65] 0.2159 0.4726 0.0876
GOT [21] 0.3160 0.1100 0.4190
OneChart [66] 0.3716 0.1384 0.4882
Qwen2.5-VL-3B [24] 0.5942 0.5619 0.6103
Qwen2.5-VL-7B [24] 0.6821 0.5876 0.7293
Qwen2.5-VL-72B [24] 0.7300 0.6972 0.7464
PP-StructureV3 [10] 0.8060 0.7963 0.8109
PaddleOCR-VL 0.8440 0.8222 0.8549

Table 12 | Comparison of In-house-Chart Performance

4.3. Inference Performance

To improve the inference performance of PaddleOCR-VL, we introduce multi-threading asyn-
chronous execution into the inference workflow. The process is divided into three main
stages—data loading (e.g., rendering PDF pages as images), layout model processing, and
VLM inference—each running in a separate thread. Data is transferred between adjacent stages
via queues, enabling concurrent execution for higher efficiency. In particular, for VLM infer-
ence, batch processing is only triggered when either the number of items in the queue reaches
a predefined threshold or the waiting time for queued data exceeds a specified limit. This
design allows blocks across different pages to be aggregated and processed together, thereby
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maximizing parallelism, especially when handling large volumes of files. We further deploy
PaddleOCR-VL-0.9B on high-throughput inference and serving engines [67, 68, 69], tuning
parameters like max-num-batched-tokens and gpu-memory-utilization to balance inference
throughput with GPU memory consumption.

We measured the end-to-end inference speed and GPU usage on the OmniDocBench v1.0
dataset, processing PDF files in batches of 512 on a single NVIDIA A100 GPU. By "end-to-end",
we mean that the inference time was measured from providing the PDF file path as input to the
complete generation of the Markdown text. For MonkeyOCR, dots.ocr, and MinerU, inference
was run with the vLLM backend and the default configuration (including the KV cache settings).
The generated Markdown text was tokenized with the "cl100k_base" tokenizer to compute
the number of output tokens. For dots.ocr specifically, 200 threads were used for concurrent
page processing, and the Base64-encoded image content in the produced Markdown text was
replaced with a dummy path (UUID-based, prefixed with "images/" and suffixed with ".png")
to ensure a reasonable token count.

Table 13 provides a comprehensive comparison of inference efficiency across different meth-
ods. The proposed PaddleOCR-VL demonstrates clear and consistent advantages in both
processing speed and memory efficiency. When deployed with the vLLM backend, it achieves
15.8% higher page throughput and 14.2% higher token throughput than the leading baseline,
MinerU2.5, establishing itself as the most efficient solution overall. In addition, PaddleOCR-VL
achieves notable memory savings, using roughly 40% less GPU memory than dots.ocr while
sustaining significantly faster processing. These results collectively confirm that PaddleOCR-VL
attains state-of-the-art inference efficiency through a balanced optimization of speed and mem-
ory usage, making it highly suitable for real-world, high-throughput document understanding
scenarios.

Methods Total Time (s)↓ Pages/s↑ Tokens/s↑ Avg. VRAM Usage (GB)↓

MonkeyOCR-pro-1.2B† [1] 1456.4 0.6730 1120.3 75.5
dots.ocr† [52] 2784.6 0.3522 532.9 78.5
MinerU2.5† [2] 927.3 1.0574 1647.9 41.9
PaddleOCR-VL† 800.9 1.2241 1881.2 43.7
PaddleOCR-VL‡ 917.6 1.0684 1641.5 49.8

Table 13 | End-to-End Inference Performance Comparison. † denotes the vLLM backend, and ‡

denotes the SGLang backend.

5. Conclusion

This report introduces PaddleOCR-VL, an advanced and efficient model for document parsing
that excels at both element-level and page-level recognition. Its core componets, PaddleOCR-VL-
0.9B, built with a NaViT-style visual encoder and ERNIE-4.5-0.3B language model, it accurately
recognizes complex elements such as text, tables, formulas, and charts in over 100 languages.
PaddleOCR-VL achieves fast inference and low resource consumption, making it practical for
real-world deployment. It outperforms existing pipeline solutions on many benchmarks and
effectively handles challenging content including handwriting and historical documents, as
well as converting chart visuals into structured data. Its broad multilingual support and strong
performance have the potential to advance the application and development of multimodal
document processing technologies, bringing innovation to automated analysis and information
retrieval. This will significantly enhance the performance and stability of RAG systems, making
information extraction from complex documents more efficient, thereby providing more reliable
data support for future AI applications.
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Appendix

A. Training Dataset Details

This two-stage approach offers unique advantages in terms of data collection, as obtaining
isolated element imagesalong with their annotations is more feasible than collecting complete
document pages containing different elements. In the following sections, we will elaborate on
the construction of multimodal model training data for text, tables, formulas, and charts.

A.1. Text

We have curated a large-scale dataset comprising 20 Million High-Quality Image-Text Pairs.
As shown in Figure A1, the dataset generation follows a rigorous multi-stage pipeline which
primarily involves:

Figure A1 | The construction method and characteristics of the text training data for
PaddleOCR-VL-0.9B.

1. Automatic Data Annotation: We design an automatic annotation pipeline that integrates
lightweight document-structure models with large multimodal language models. Specif-
ically, PP-StructureV3 is employed as an expert model to perform layout analysis and
text recognition, generating pseudo labels that are converted into prompts for multi-
modal models such as ERNIE-4.5-VL and Qwen2.5-VL to refine. Finally, the refined labels
are aggregated and randomly merged at multiple granularities to produce 20 million
high-quality image–text training samples.

2. High-quality OCR Data Synthesis: During data distillation, low label quality in challeng-
ing scenarios like messy handwriting and dense blurry text was addressed by expanding
the dataset through synthetic generation. Utilizing diverse CSS styles, over 200 fonts, and
various corpora, we rendered a large amount of images, thereby enhancing the model’s
capabilities in these difficult scenarios.

Ultimately, the data is meticulously annotated at three distinct hierarchical levels: text lines,
text blocks, and text pages. With extensive language coverage of 109 languages, including
major global ones like Chinese, English, French, and Hindi. It includes diverse scenes including
Academic Papers, Newspapers, Handwritten texts, Ancient books, Id cards, tickets, seals, etc.
Additionally, the dataset addresses compatibility with a variety of writing systems and text
styles, covering Printing, Handwriting, Scanned text, Artistic Fonts, etc.
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A.2. Table

As shown in Figure A2, we constructed a large-scale dataset of over 5 million high-quality
image-table pairs. Our dataset construction employs three key strategies: automatic data
annotation, potential annotation mining, and high-quality data synthesis. For coding efficiency,
we adopt OTSL [28] as the model’s target format instead of conventional HTML. The main
dataset construction process is as follows:

Figure A2 | The construction method and characteristics of the table training data for
PaddleOCR-VL-0.9B.

1. Automatic Data Annotation: To enhance the performance of PaddleOCR-VL in table
recognition, we built a large-scale, diverse dataset covering various languages, border
styles, and table types. Tables are first located using PP-StructureV3 [10]. For unlabeled
images, we employed a multi-stage annotation pipeline: ERNIE-4.5-VL [5] first generates
pseudo-labels, which are then validated by a ERNIE-4.5-VL-28B-A3B [5] as discriminative
model. Rejected annotations are refined using DianJin-OCR-R1 [70] (for tools, we use
ERNIE-4.5-VL and PP-StructureV3 [10]). Finally, all annotations undergo rigorous rule-
based verification, including n-gram analysis and HTML validation, to ensure only high-
quality samples are used for training.

2. Potential Annotation Mining:
For public data with potential annotations (e.g., from arXiv), we extract tables and their
corresponding official-supported HTML source code. We then employ a mechanism
combining regular expression matching with contextual and sequential alignment to
construct accurate table-HTML pairs. The extracted HTML subsequently undergoes
rule-based filtering, yielding high-quality data samples ready for model training.

3. High-quality Table Synthesis:
To overcome data imbalance and high annotation costs, we introduce an innovative high-
quality table synthesis tool which constitutes the cornerstone of our table data collection
pipeline. This tool enables both randomized synthesis for comprehensive data supplement
and targeted synthesis to enhance recognition of specific table categories. Specifically, we
first leverage LLMs to gather a diverse and extensive corpus.Then, our tool generates
table training pairs through randomized configurations of structures, fonts, CSS styles,
and textual content, while also supporting customized synthesis by specifying particular
parameters to accurately simulate specialized table types. With a synthesis speed of 10, 000
samples per hour, our tool has produced over 5, 500, 000 training instances, substantially
enhancing our model’s generalization capability and comprehensive performance in table
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recognition.

Through the aforementioned data construction strategies, we build a comprehensive table
dataset encompassing diverse table categories and recognition scenarios, thereby providing
robust support for training our model in the table recognition task.

A.3. Formula

As shown in Figure A3, this dataset was developed using a range of strategies, including source
code rendering, automatic data annotation, targeted synthesis of long-tail data, and public data
collection. It encompasses a variety of formula scenarios, such as educational supplementary
materials, test papers for primary and secondary schools, mathematical papers, PowerPoint
courseware, university theses, financial research reports, and handwritten mathematical notes.
The dataset features four types of formulas: Simple Printed Expressions, Complex Printed
Expressions, Screen-Captured Expressions, and Handwritten Expressions, available in both
Chinese and English. The main process for constructing the dataset is as follows:

Figure A3 | The construction method and characteristics of the formula training data for
PaddleOCR-VL-0.9B.

1. Source Code Rendering: To enhance the model’s adaptability to a wide variety of unusual
formula structures, a large amount of paper source code was scraped from arXiv, and
LaTeX code for the formulas was extracted using regular expressions. Then, MinHash
was used to remove duplicate and highly similar formula source codes, and KaTeX was
employed to normalize the formula source codes, thereby reducing their ambiguity. Finally,
the formulas were re-rendered into images using a formula rendering engine.

2. Automatic Data Annotation: For real-world formula data from exam papers, educational
materials, and handwritten notes, the process begins with the use of the layout analysis
method PP-StructureV3 [10] to identify the bounding boxes for formulas. Based on
these bounding boxes, formula regions are cropped from the images. Subsequently,
large multimodal language models, such as ERNIE-4.5-VL-28B-A3B [5], are employed to
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generate the LaTeX source code for these formulas. Given the rarity of Chinese formulas
in real-world scenarios—where approximately 1 out of 100 formulas contains Chinese
characters—PP-OCRv5 [10] is utilized to recognize characters within the cropped regions,
enabling targeted optimization when Chinese characters are detected. Due to the complex
and diverse nature of real-world formulas, recognition errors may occur with existing large
models. To address this, a LaTeX rendering engine is used to filter the formulas generated
by these models. Specifically, image-formula pairs that cannot be successfully rendered
by xelatex are discarded. For those that render successfully, a more in-depth screening is
conducted by comparing metrics such as the aspect ratio between the recognized image
and the rendered image.

3. Targeted Synthesis of Long-tail Data: For certain long-tail formula structures, such as
elementary school vertical calculations, formulas with strikethroughs, and handwritten
formulas with explanatory arrows, existing multimodal large models struggle to accurately
recognize them due to data distribution issues. To address this, LaTeX code is synthetically
generated based on rules and inverse rendering is performed using a LaTeX rendering
engine, thereby constructing image-formula matching pairs for these long-tail scenarios.

4. Public Data Collection: In order to enable the model to learn high-quality formula repre-
sentations, a substantial amount of data has been collected from existing public datasets,
including UniMER-1M [30] and MathWriting [31]. Specifically, UniMER-1M is oriented
towards real document scenarios and has gathered 1 million formula data from arXiv,
Pix2tex [71], CROHME [72, 73, 74], and HME100K [75]. On the other hand, MathWriting
is currently the largest handwritten mathematical formula dataset, comprising 230,000
real handwritten formula samples and 400,000 synthetic handwritten formula samples.

A.4. Chart

We constructed a large-scale, bilingual (Chinese and English) dataset of over 0.8 million high-
quality image-chart pairs. Our dataset construction employs four key strategies: public data
collection and cleaning, automatic data annotation, data synthesis, and targeted long-tail data
augmentation. The dataset covers a wide array of chart types from diverse sources, including
academic papers, financial reports, and web pages. The main dataset construction process is as
follows:

Figure A4 | The construction method and characteristics of the chart training data for
PaddleOCR-VL-0.9B.
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1. Public Data Collection and Cleaning: We collected a large number of samples from public
datasets, including ChartQA [32], PlotQA [33], Chart2Text [34], DVQA [35], Unichart [36],
Beagle [37], ChartINFO [38], visText [39], and ExcelChart [40]. However, the raw datasets
suffered from poor annotation quality and extremely imbalanced data distributions. Thus,
a meticulous data cleaning and filtering pipeline was implemented to remove noisy sam-
ples and ensure balanced clustering, resulting in a high-quality dataset of 220k samples.

2. Automatic Data Annotation: To annotate our large collection of unlabeled public and
in-house data, we developed a two-stage annotation pipeline based on the Vision Large
Language Model ERNIE-4.5-VL [5]. In the first stage, the model extracts tick labels from
the x- and y-axes; in the second, random permutations of these labels are used to query
corresponding data points, framing annotation as a data retrieval task. A final consistency
check ensures that only verified annotations are included in the training set, guaranteeing
high reliability.

3. Data Synthesis: To capture diverse visual styles and enhance model generalization, we
designed a three-stage data synthesis pipeline. It begins with a large collection of base data
tables, followed by an LLM Persona [76] strategy using ERNIE-X1 [5], which diversifies
table content and generates persona-specific rendering code. This enables control over
chart aesthetics such as color, font, and layout. Leveraging a billion distinct personas, the
pipeline produces highly varied data structures and visual styles, substantially improving
PaddleOCR-VL’s generalization across real-world charts. For rendering, we employ
matplotlib and seaborn.

4. Targeted Long-tail Data Augmentation: To improve generalization on real-world long-
tail samples, we designed a data augmentation pipeline based on seed charts. It first
selects long-tail samples by their distinctive visual features, then uses ERNIE-4.5-VL [5] to
replicate their rendering code. ERNIE-X1 [5], guided by a specific persona [76], further
diversifies the code by altering data tables and visual styles. Executing the modified code
produces new augmented charts with corresponding data tables.

Through the four data construction strategies mentioned above, the final chart dataset covers
a wide range of application scenarios and a rich variety of chart styles, providing strong support
for the training of chart models.
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B. Supported Languages

PaddleOCR-VL supports a total of 109 languages. Table 6 in the main text shows the text line
recognition accuracy for different languages. Table A1 lists the correspondence between each
language category and the specific supported languages.

Language Category Specific Languages

Chinese Chinese

English English

Korean Korean

Japanese Japanese

Thai Thai

Greek Greek

Tamil Tamil

Telugu Telugu

Arabic Arabic, Persian, Uyghur, Urdu, Pashto, Kurdish, Sindhi, Balochi

Latin

French, German, Afrikaans, Italian, Spanish, Bosnian, Portuguese,
Czech, Welsh, Danish, Estonian, Irish, Croatian, Uzbek, Hungarian,
Serbian (Latin), Indonesian, Occitan, Icelandic, Lithuanian, Maori,

Malay, Dutch, Norwegian, Polish, Slovak, Slovenian, Albanian,
Swedish, Swahili, Tagalog, Turkish, Latin, Azerbaijani, Kurdish,
Latvian, Maltese, Pali, Romanian, Vietnamese, Finnish, Basque,

Galician, Luxembourgish, Romansh, Catalan, Quechua

Cyrillic

Russian, Belarusian, Ukrainian, Serbian (Cyrillic), Bulgarian,
Mongolian, Abkhazian, Adyghe, Kabardian, Avar, Dargin, Ingush,

Chechen, Lak, Lezgin, Tabasaran, Kazakh, Kyrgyz, Tajik, Macedonian,
Tatar, Chuvash, Bashkir, Malian, Moldovan, Udmurt, Komi, Ossetian,

Buryat, Kalmyk, Tuvan, Sakha, Karakalpak

Devanagari
Hindi, Marathi, Nepali, Bihari, Maithili, Angika, Bhojpuri, Magahi,

Santali, Newari, Konkani, Sanskrit, Haryanvi

Table A1 | Supported Languages
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C. Inference Performance on Different Hardware Configurations

We measured the inference performance of PaddleOCR-VL on different hardware configurations,
as summarized in Table A2. As observed, PaddleOCR-VL demonstrates stable and efficient
inference performance across a wide range of hardware and backend configurations, showing
that the system can flexibly adapt to diverse computing environments. Moreover, we are
currently integrating the FastDeploy backend, which is expected to further enhance inference
efficiency in future releases.

Hardware Backend Total Time (s)↓ Pages/s↑ Tokens/s↑ Avg. VRAM Usage (GB)↓

A100
vLLM 800.9 1.2241 1881.2 43.7

SGLang 917.6 1.0684 1641.5 49.8

A10
vLLM 1238.0 0.7921 1217.2 14.1

SGLang 1429.9 0.6858 1055.8 20.0

RTX 3060
vLLM 2749.1 0.3568 548.2 11.9

SGLang 2792.4 0.3513 540.8 11.8

RTX 5070 vLLM 1292.9 0.7584 1165.5 8.9

RTX 4090D
vLLM 845.3 1.1597 1781.8 16.7

SGLang 951.8 1.0303 1586.1 21.8

Table A2 | End-to-End Inference Performance
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D. Real-world Samples

This appendix showcases the parsing and recognition capabilities of our proposed algorithm
across a variety of challenging scenarios.

Section D.1 demonstrates the overall document parsing capability of PaddleOCR-VL. Figures
A5-A8 are examples of parsing different types of documents in Markdown format.

Figures A9-A11 in section D.2 illustrate the superior ability of PaddleOCR-VL to process
pages featuring intricate or challenging layouts.

Figures A12 and A13 in section D.3 demonstrate that PaddleOCR-VL maintains excellent
reading order when faced with complex layouts, such as those found in various reports, text-
books, newspapers, magazines, and even vertical documents.

Section D.4 highlights the robust text recognition performance of PaddleOCR-VL in challeng-
ing cases, including multilingual text, handwriting text, and vertical text, which are presented
in Figures A14-A22.

The model’s table recognition abilities are demonstrated in section D.5. Figures A23 and A24
showcase its robust handling of a wide array of table formats, including tables from academic
papers, tables from financial reports, tables with watermark, tables with image, tables with
formulas and photograph of tables.

Figures in section D.6 detail the formula recognition performance. Figure A25 demonstrates
the ability to handle various types of english formulas including complex printed expressions,
handwritten expressions screen-captured expressions and vertical formula, while Figure A26
focuses on the ability to handle formulas that contain Chinese characters.

In section D.7, PaddleOCR-VL demonstrates impressive chart recognition capabilities, a
feature currently lacking in many expert OCR VLMs like MinerU2.5 [14], dots.ocr [52] or
MonkeyOCR [1]. Figures A27-A29 showcase our ability to parse various chart types, including
pie charts, bar charts, line charts, bar-line hybrid charts and heatmap.
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D.1. Comprehensive Document Parsing

Figure A5 | The Layout and Markdown Output for Book, Textbook and Academic Paper.
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Figure A6 | The Layout and Markdown Output for Research Report(with chart recognition
enabled), Financial Report, Slides and Exam Paper.
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Figure A7 | The Layout and Markdown Output for Notes, Vertical Book and Ancient Book.
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Figure A8 | The Layout and Markdown Output for Certificate, Newspaper and Magazine.
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D.2. Layout Detection

Figure A9 | The Layout Detection results for various types of documents.
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Figure A10 | The Layout Detection results for various types of documents.
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Figure A11 | The Layout Detection results for various types of documents.
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D.3. Reading Order

Figure A12 | The Reading Order results for various types of documents.
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Figure A13 | The Reading Order results for various types of documents.
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D.4. Text Recognition

D.4.1. Multilingual Text Recognition

Figure A14 | The markdown output for French and Hindi documents.
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Figure A15 | The markdown output for Croatian and Spanish documents.
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Figure A16 | The markdown output for English and Arabic documents.
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Figure A17 | The markdown output for German and Chinese documents.
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Figure A18 | The markdown output for Russian and Japanese documents.
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Figure A19 | The markdown output for Thai and Korean documents.
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D.4.2. Handwriting Text Recognition

Figure A20 | The markdown output for Mixed Printed Handwritten Text and Handwritten
Formula documents.
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Figure A21 | The markdown output for Handwriting Chinese and Handwriting English
documents.
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D.4.3. Vertical Text Recognition

Figure A22 | The markdown output for various types of vertical documents.
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D.5. Table Recognition

Figure A23 | The markdown output for various types of Tables.
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Figure A24 | The markdown output for various types of Tables.
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D.6. Formula Recognition

Figure A25 | The markdown output for various types of Formulas.
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Figure A26 | The markdown output for various types of Formulas.
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D.7. Chart Recognition

Figure A27 | The markdown output for various types of Charts.
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Figure A28 | The markdown output for various types of Charts.
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Figure A29 | The markdown output for various types of Charts.
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E. Compare with Others

PaddleOCR-VL showcases superior performance in scenarios involving PDF pages with complex
layout, consistently outperforming existing state-of-the-art (SOTA) models. This is evident from
Figures A30 and A31, which highlight its exceptional capability in handling pages with intricate
layouts and unique elements, surpassing other solutions.

Moreover, the model demonstrates exceptionally high recognition accuracy in several do-
mains, including Multilingual Text Recognition, Handwriting Text Recognition, and Vertical
Text Recognition. Figures A32- A37 illustrate how PaddleOCR-VL outperforms competitors
such as MinerU2.5 [2] and MonkeyOCR [1], which tend to misidentify languages like Russian
and Hindi as English, overlook some handwritten characters, and struggle with vertical text
recognition.

In dealing with complex tables, PaddleOCR-VL’s parsing accuracy stands out, as evidenced
by Figures A38 and A39. This is a domain where other models frequently encounter difficulties.

Additionally, Figure A40 demonstrates PaddleOCR-VL’s proficiency in accurately parsing
complex formulas. In contrast, other SOTA models often produce incorrect or flawed outputs
when faced with challenging mathematical notations.

Finally, as depicted in Figures A41 and A42, PaddleOCR-VL also excels in Chart Recognition.
It outperforms multi-modal large language models like Qwen2.5VL-72B [24] and GPT-4o by
accurately reconstructing the structure and content of charts.
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E.1. Layout Detection

Figure A30 | Compare with others in Layout Detection.
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Figure A31 | Compare with others in Layout Detection.
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E.2. Text Recognition

E.2.1. Multilingual Text Recognition

Figure A32 | Compare with others in Multilingual Text Recognition.
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Figure A33 | Compare with others in Multilingual Text Recognition.
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Figure A34 | Compare with others in Multilingual Text Recognition.

63



E.2.2. Handwriting Text Recognition

Figure A35 | Compare with others in Handwriting Text Recognition.

64



Figure A36 | Compare with others in Handwriting Text Recognition.
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E.2.3. Vertical Text Recognition

Figure A37 | Compare with others in Vertical Text Recognition.
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E.3. Table Recognition

Figure A38 | Compare with others in Table Recognition.
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Figure A39 | Compare with others in Table Recognition.
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E.4. Formula Recognition

Figure A40 | Compare with others in Formula Recognition.
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E.5. Chart Recognition

Figure A41 | Compare with others in Chart Recognition.
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Figure A42 | Compare with others in Chart Recognition.
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