Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
OmniMotion_pytorch
Commits
754fbc04
Commit
754fbc04
authored
Jul 16, 2024
by
bailuo
Browse files
init
parent
7aa1ab82
Pipeline
#1374
canceled with stages
Changes
44
Pipelines
1
Expand all
Show whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
1706 additions
and
0 deletions
+1706
-0
train.py
train.py
+106
-0
trainer.py
trainer.py
+1068
-0
util.py
util.py
+396
-0
viz.py
viz.py
+136
-0
No files found.
train.py
0 → 100644
View file @
754fbc04
import
os
import
subprocess
import
random
import
datetime
import
shutil
import
numpy
as
np
import
torch
import
torch.utils.data
import
torch.distributed
as
dist
from
config
import
config_parser
from
tensorboardX
import
SummaryWriter
from
loaders.create_training_dataset
import
get_training_dataset
from
trainer
import
BaseTrainer
torch
.
manual_seed
(
1234
)
def
synchronize
():
"""
Helper function to synchronize (barrier) among all processes when
using distributed training
"""
if
not
dist
.
is_available
():
return
if
not
dist
.
is_initialized
():
return
world_size
=
dist
.
get_world_size
()
if
world_size
==
1
:
return
dist
.
barrier
()
def
seed_worker
(
worker_id
):
worker_seed
=
torch
.
initial_seed
()
%
2
**
32
np
.
random
.
seed
(
worker_seed
)
random
.
seed
(
worker_seed
)
def
train
(
args
):
seq_name
=
os
.
path
.
basename
(
args
.
data_dir
.
rstrip
(
'/'
))
out_dir
=
os
.
path
.
join
(
args
.
save_dir
,
'{}_{}'
.
format
(
args
.
expname
,
seq_name
))
os
.
makedirs
(
out_dir
,
exist_ok
=
True
)
print
(
'optimizing for {}...
\n
output is saved in {}'
.
format
(
seq_name
,
out_dir
))
args
.
out_dir
=
out_dir
# save the args and config files
f
=
os
.
path
.
join
(
out_dir
,
'args.txt'
)
with
open
(
f
,
'w'
)
as
file
:
for
arg
in
sorted
(
vars
(
args
)):
if
not
arg
.
startswith
(
'_'
):
attr
=
getattr
(
args
,
arg
)
file
.
write
(
'{} = {}
\n
'
.
format
(
arg
,
attr
))
if
args
.
config
:
f
=
os
.
path
.
join
(
out_dir
,
'config.txt'
)
if
not
os
.
path
.
isfile
(
f
):
shutil
.
copy
(
args
.
config
,
f
)
log_dir
=
'logs/{}_{}'
.
format
(
args
.
expname
,
seq_name
)
writer
=
SummaryWriter
(
log_dir
)
g
=
torch
.
Generator
()
g
.
manual_seed
(
args
.
loader_seed
)
dataset
,
data_sampler
=
get_training_dataset
(
args
,
max_interval
=
args
.
start_interval
)
data_loader
=
torch
.
utils
.
data
.
DataLoader
(
dataset
,
batch_size
=
args
.
num_pairs
,
worker_init_fn
=
seed_worker
,
generator
=
g
,
num_workers
=
args
.
num_workers
,
sampler
=
data_sampler
,
shuffle
=
True
if
data_sampler
is
None
else
False
,
pin_memory
=
True
)
# get trainer
trainer
=
BaseTrainer
(
args
)
start_step
=
trainer
.
step
+
1
step
=
start_step
epoch
=
0
while
step
<
args
.
num_iters
+
start_step
+
1
:
for
batch
in
data_loader
:
trainer
.
train_one_step
(
step
,
batch
)
trainer
.
log
(
writer
,
step
)
step
+=
1
dataset
.
set_max_interval
(
args
.
start_interval
+
step
//
2000
)
if
step
>=
args
.
num_iters
+
start_step
+
1
:
break
epoch
+=
1
if
args
.
distributed
:
data_sampler
.
set_epoch
(
epoch
)
if
__name__
==
'__main__'
:
args
=
config_parser
()
if
args
.
distributed
:
torch
.
cuda
.
set_device
(
args
.
local_rank
)
torch
.
distributed
.
init_process_group
(
backend
=
"nccl"
,
init_method
=
"env://"
)
synchronize
()
train
(
args
)
trainer.py
0 → 100644
View file @
754fbc04
This diff is collapsed.
Click to expand it.
util.py
0 → 100644
View file @
754fbc04
import
numpy
as
np
import
os
,
sys
,
time
import
imageio
import
cv2
import
shutil
from
datetime
import
datetime
import
matplotlib.pyplot
as
plt
import
torch
import
torch.nn.functional
as
F
import
socket
import
contextlib
from
matplotlib
import
cm
from
matplotlib.backends.backend_agg
import
FigureCanvasAgg
from
matplotlib.figure
import
Figure
import
matplotlib
as
mpl
import
subprocess
TINY_NUMBER
=
1e-6
# float32 only has 7 decimal digits precision
torch
.
manual_seed
(
1234
)
np
.
random
.
seed
(
0
)
sigma2alpha
=
lambda
sigma
:
1.
-
torch
.
exp
(
-
sigma
)
def
float2uint8
(
x
):
return
(
255.
*
x
).
astype
(
np
.
uint8
)
def
uint82float
(
img
):
return
np
.
ascontiguousarray
(
img
)
/
255.
def
skew
(
x
):
if
'torch'
in
str
(
x
.
dtype
):
return
torch
.
tensor
([[
0
,
-
x
[
2
],
x
[
1
]],
[
x
[
2
],
0
,
-
x
[
0
]],
[
-
x
[
1
],
x
[
0
],
0
]],
device
=
x
.
device
)
else
:
return
np
.
array
([[
0
,
-
x
[
2
],
x
[
1
]],
[
x
[
2
],
0
,
-
x
[
0
]],
[
-
x
[
1
],
x
[
0
],
0
]])
def
img2mse
(
x
,
y
,
mask
=
None
):
'''
:param x: img 1, [(...), 3]
:param y: img 2, [(...), 3]
:param mask: optional, [(...)]
:return: mse score
'''
if
mask
is
None
:
return
torch
.
mean
((
x
-
y
)
*
(
x
-
y
))
else
:
return
torch
.
sum
((
x
-
y
)
*
(
x
-
y
)
*
mask
.
unsqueeze
(
-
1
))
/
(
torch
.
sum
(
mask
)
*
x
.
shape
[
-
1
]
+
TINY_NUMBER
)
def
homogenize
(
coord
):
coord
=
torch
.
cat
((
coord
,
torch
.
ones_like
(
coord
[...,
[
0
]])),
-
1
)
return
coord
def
normalize_coords
(
coords
,
h
,
w
,
no_shift
=
False
):
assert
coords
.
shape
[
-
1
]
==
2
if
no_shift
:
return
coords
/
torch
.
tensor
([
w
-
1.
,
h
-
1.
],
device
=
coords
.
device
)
*
2
else
:
return
coords
/
torch
.
tensor
([
w
-
1.
,
h
-
1.
],
device
=
coords
.
device
)
*
2
-
1.
def
denormalize_coords
(
coords
,
h
,
w
,
no_shift
=
False
):
assert
coords
.
shape
[
-
1
]
==
2
if
no_shift
:
return
coords
*
torch
.
tensor
([
w
-
1.
,
h
-
1.
],
device
=
coords
.
device
)
/
2.
else
:
return
(
coords
+
1.
)
*
torch
.
tensor
([
w
-
1.
,
h
-
1.
],
device
=
coords
.
device
)
/
2.
def
gen_grid
(
h
,
w
,
device
,
normalize
=
False
,
homogeneous
=
False
):
if
normalize
:
lin_y
=
torch
.
linspace
(
-
1.
,
1.
,
steps
=
h
,
device
=
device
)
lin_x
=
torch
.
linspace
(
-
1.
,
1.
,
steps
=
w
,
device
=
device
)
else
:
lin_y
=
torch
.
arange
(
0
,
h
,
device
=
device
)
lin_x
=
torch
.
arange
(
0
,
w
,
device
=
device
)
grid_y
,
grid_x
=
torch
.
meshgrid
((
lin_y
,
lin_x
))
grid
=
torch
.
stack
((
grid_x
,
grid_y
),
-
1
)
if
homogeneous
:
grid
=
torch
.
cat
([
grid
,
torch
.
ones_like
(
grid
[...,
:
1
])],
dim
=-
1
)
return
grid
# [h, w, 2 or 3]
def
gen_grid_np
(
h
,
w
,
normalize
=
False
,
homogeneous
=
False
):
if
normalize
:
lin_y
=
np
.
linspace
(
-
1.
,
1.
,
num
=
h
)
lin_x
=
np
.
linspace
(
-
1.
,
1.
,
num
=
w
)
else
:
lin_y
=
np
.
arange
(
0
,
h
)
lin_x
=
np
.
arange
(
0
,
w
)
grid_x
,
grid_y
=
np
.
meshgrid
(
lin_x
,
lin_y
)
grid
=
np
.
stack
((
grid_x
,
grid_y
),
-
1
)
if
homogeneous
:
grid
=
np
.
concatenate
([
grid
,
np
.
ones_like
(
grid
[...,
:
1
])],
axis
=-
1
)
return
grid
# [h, w, 2 or 3]
def
save_current_code
(
outdir
):
now
=
datetime
.
now
()
# current date and time
date_time
=
now
.
strftime
(
"%m_%d-%H:%M:%S"
)
src_dir
=
'.'
dst_dir
=
os
.
path
.
join
(
outdir
,
'code'
,
'{}'
.
format
(
date_time
))
shutil
.
copytree
(
src_dir
,
dst_dir
,
ignore
=
shutil
.
ignore_patterns
(
'data*'
,
'OLD*'
,
'logs*'
,
'out*'
,
'runs*'
,
'*.png'
,
'*.mp4'
,
'*__pycache__*'
,
'*.git*'
,
'*.idea*'
,
'*.zip'
,
'*.jpg'
))
def
drawMatches
(
img1
,
img2
,
kp1
,
kp2
,
num_vis
=
200
,
idx_vis
=
None
,
radius
=
2
,
mask
=
None
):
num_pts
=
len
(
kp1
)
if
idx_vis
is
None
:
if
num_vis
<
num_pts
:
idx_vis
=
np
.
random
.
choice
(
num_pts
,
num_vis
,
replace
=
False
)
else
:
idx_vis
=
np
.
arange
(
num_pts
)
kp1_vis
=
kp1
[
idx_vis
]
kp2_vis
=
kp2
[
idx_vis
]
h1
,
w1
=
img1
.
shape
[:
2
]
h2
,
w2
=
img2
.
shape
[:
2
]
img1
=
float2uint8
(
img1
)
img2
=
float2uint8
(
img2
)
center
=
np
.
median
(
kp1
,
axis
=
0
)
set_max
=
range
(
128
)
colors
=
{
m
:
i
for
i
,
m
in
enumerate
(
set_max
)}
colors
=
{
m
:
(
255
*
np
.
array
(
plt
.
cm
.
hsv
(
i
/
float
(
len
(
colors
))))[:
3
][::
-
1
]).
astype
(
np
.
int32
)
for
m
,
i
in
colors
.
items
()}
if
mask
is
not
None
:
ind
=
np
.
argsort
(
mask
)[::
-
1
]
kp1_vis
=
kp1_vis
[
ind
]
kp2_vis
=
kp2_vis
[
ind
]
mask
=
mask
[
ind
]
for
i
,
(
pt1
,
pt2
)
in
enumerate
(
zip
(
kp1_vis
,
kp2_vis
)):
# random_color = tuple(np.random.randint(low=0, high=255, size=(3,)).tolist())
coord_angle
=
np
.
arctan2
(
pt1
[
1
]
-
center
[
1
],
pt1
[
0
]
-
center
[
0
])
corr_color
=
np
.
int32
(
64
*
coord_angle
/
np
.
pi
)
%
128
color
=
tuple
(
colors
[
corr_color
].
tolist
())
if
(
pt1
[
0
]
<=
w1
-
1
)
and
(
pt1
[
0
]
>=
0
)
and
(
pt1
[
1
]
<=
h1
-
1
)
and
(
pt1
[
1
]
>=
0
):
img1
=
cv2
.
circle
(
img1
,
(
int
(
pt1
[
0
]),
int
(
pt1
[
1
])),
radius
,
color
,
-
1
,
cv2
.
LINE_AA
)
if
(
pt2
[
0
]
<=
w2
-
1
)
and
(
pt2
[
0
]
>=
0
)
and
(
pt2
[
1
]
<=
h2
-
1
)
and
(
pt2
[
1
]
>=
0
):
if
mask
is
not
None
and
mask
[
i
]:
img2
=
cv2
.
drawMarker
(
img2
,
(
int
(
pt2
[
0
]),
int
(
pt2
[
1
])),
color
,
markerType
=
cv2
.
MARKER_CROSS
,
markerSize
=
int
(
5
*
radius
),
thickness
=
int
(
radius
/
2
),
line_type
=
cv2
.
LINE_AA
)
else
:
img2
=
cv2
.
circle
(
img2
,
(
int
(
pt2
[
0
]),
int
(
pt2
[
1
])),
radius
,
color
,
-
1
,
cv2
.
LINE_AA
)
out
=
np
.
concatenate
([
img1
,
img2
],
axis
=
1
)
return
out
def
get_vertical_colorbar
(
h
,
vmin
,
vmax
,
cmap_name
=
'jet'
,
label
=
None
,
cbar_precision
=
2
):
'''
:param w: pixels
:param h: pixels
:param vmin: min value
:param vmax: max value
:param cmap_name:
:param label
:return:
'''
fig
=
Figure
(
figsize
=
(
2
,
8
),
dpi
=
100
)
fig
.
subplots_adjust
(
right
=
1.5
)
canvas
=
FigureCanvasAgg
(
fig
)
# Do some plotting.
ax
=
fig
.
add_subplot
(
111
)
cmap
=
cm
.
get_cmap
(
cmap_name
)
norm
=
mpl
.
colors
.
Normalize
(
vmin
=
vmin
,
vmax
=
vmax
)
tick_cnt
=
6
tick_loc
=
np
.
linspace
(
vmin
,
vmax
,
tick_cnt
)
cb1
=
mpl
.
colorbar
.
ColorbarBase
(
ax
,
cmap
=
cmap
,
norm
=
norm
,
ticks
=
tick_loc
,
orientation
=
'vertical'
)
tick_label
=
[
str
(
np
.
round
(
x
,
cbar_precision
))
for
x
in
tick_loc
]
if
cbar_precision
==
0
:
tick_label
=
[
x
[:
-
2
]
for
x
in
tick_label
]
cb1
.
set_ticklabels
(
tick_label
)
cb1
.
ax
.
tick_params
(
labelsize
=
18
,
rotation
=
0
)
if
label
is
not
None
:
cb1
.
set_label
(
label
)
fig
.
tight_layout
()
canvas
.
draw
()
s
,
(
width
,
height
)
=
canvas
.
print_to_buffer
()
im
=
np
.
frombuffer
(
s
,
np
.
uint8
).
reshape
((
height
,
width
,
4
))
im
=
im
[:,
:,
:
3
].
astype
(
np
.
float32
)
/
255.
if
h
!=
im
.
shape
[
0
]:
w
=
int
(
im
.
shape
[
1
]
/
im
.
shape
[
0
]
*
h
)
im
=
cv2
.
resize
(
im
,
(
w
,
h
),
interpolation
=
cv2
.
INTER_AREA
)
return
im
def
colorize_np
(
x
,
cmap_name
=
'jet'
,
mask
=
None
,
range
=
None
,
append_cbar
=
False
,
cbar_in_image
=
False
,
cbar_precision
=
2
):
'''
turn a grayscale image into a color image
:param x: input grayscale, [H, W]
:param cmap_name: the colorization method
:param mask: the mask image, [H, W]
:param range: the range for scaling, automatic if None, [min, max]
:param append_cbar: if append the color bar
:param cbar_in_image: put the color bar inside the image to keep the output image the same size as the input image
:return: colorized image, [H, W]
'''
if
range
is
not
None
:
vmin
,
vmax
=
range
elif
mask
is
not
None
:
# vmin, vmax = np.percentile(x[mask], (2, 100))
vmin
=
np
.
min
(
x
[
mask
][
np
.
nonzero
(
x
[
mask
])])
vmax
=
np
.
max
(
x
[
mask
])
# vmin = vmin - np.abs(vmin) * 0.01
x
[
np
.
logical_not
(
mask
)]
=
vmin
# print(vmin, vmax)
else
:
vmin
,
vmax
=
np
.
percentile
(
x
,
(
1
,
100
))
vmax
+=
TINY_NUMBER
x
=
np
.
clip
(
x
,
vmin
,
vmax
)
x
=
(
x
-
vmin
)
/
(
vmax
-
vmin
)
# x = np.clip(x, 0., 1.)
cmap
=
cm
.
get_cmap
(
cmap_name
)
x_new
=
cmap
(
x
)[:,
:,
:
3
]
if
mask
is
not
None
:
mask
=
np
.
float32
(
mask
[:,
:,
np
.
newaxis
])
x_new
=
x_new
*
mask
+
np
.
ones_like
(
x_new
)
*
(
1.
-
mask
)
cbar
=
get_vertical_colorbar
(
h
=
x
.
shape
[
0
],
vmin
=
vmin
,
vmax
=
vmax
,
cmap_name
=
cmap_name
,
cbar_precision
=
cbar_precision
)
if
append_cbar
:
if
cbar_in_image
:
x_new
[:,
-
cbar
.
shape
[
1
]:,
:]
=
cbar
else
:
x_new
=
np
.
concatenate
((
x_new
,
np
.
zeros_like
(
x_new
[:,
:
5
,
:]),
cbar
),
axis
=
1
)
return
x_new
else
:
return
x_new
# tensor
def
colorize
(
x
,
cmap_name
=
'jet'
,
mask
=
None
,
range
=
None
,
append_cbar
=
False
,
cbar_in_image
=
False
):
device
=
x
.
device
x
=
x
.
cpu
().
numpy
()
if
mask
is
not
None
:
mask
=
mask
.
cpu
().
numpy
()
>
0.99
x
=
colorize_np
(
x
,
cmap_name
,
mask
,
range
,
append_cbar
,
cbar_in_image
)
x
=
torch
.
from_numpy
(
x
).
to
(
device
)
return
x
def
make_colorwheel
():
"""
Generates a color wheel for optical flow visualization as presented in:
Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007)
URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf
Code follows the original C++ source code of Daniel Scharstein.
Code follows the the Matlab source code of Deqing Sun.
Returns:
np.ndarray: Color wheel
"""
RY
=
15
YG
=
6
GC
=
4
CB
=
11
BM
=
13
MR
=
6
ncols
=
RY
+
YG
+
GC
+
CB
+
BM
+
MR
colorwheel
=
np
.
zeros
((
ncols
,
3
))
col
=
0
# RY
colorwheel
[
0
:
RY
,
0
]
=
255
colorwheel
[
0
:
RY
,
1
]
=
np
.
floor
(
255
*
np
.
arange
(
0
,
RY
)
/
RY
)
col
=
col
+
RY
# YG
colorwheel
[
col
:
col
+
YG
,
0
]
=
255
-
np
.
floor
(
255
*
np
.
arange
(
0
,
YG
)
/
YG
)
colorwheel
[
col
:
col
+
YG
,
1
]
=
255
col
=
col
+
YG
# GC
colorwheel
[
col
:
col
+
GC
,
1
]
=
255
colorwheel
[
col
:
col
+
GC
,
2
]
=
np
.
floor
(
255
*
np
.
arange
(
0
,
GC
)
/
GC
)
col
=
col
+
GC
# CB
colorwheel
[
col
:
col
+
CB
,
1
]
=
255
-
np
.
floor
(
255
*
np
.
arange
(
CB
)
/
CB
)
colorwheel
[
col
:
col
+
CB
,
2
]
=
255
col
=
col
+
CB
# BM
colorwheel
[
col
:
col
+
BM
,
2
]
=
255
colorwheel
[
col
:
col
+
BM
,
0
]
=
np
.
floor
(
255
*
np
.
arange
(
0
,
BM
)
/
BM
)
col
=
col
+
BM
# MR
colorwheel
[
col
:
col
+
MR
,
2
]
=
255
-
np
.
floor
(
255
*
np
.
arange
(
MR
)
/
MR
)
colorwheel
[
col
:
col
+
MR
,
0
]
=
255
return
colorwheel
def
flow_uv_to_colors
(
u
,
v
,
convert_to_bgr
=
False
):
"""
Applies the flow color wheel to (possibly clipped) flow components u and v.
According to the C++ source code of Daniel Scharstein
According to the Matlab source code of Deqing Sun
Args:
u (np.ndarray): Input horizontal flow of shape [H,W]
v (np.ndarray): Input vertical flow of shape [H,W]
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.
Returns:
np.ndarray: Flow visualization image of shape [H,W,3]
"""
flow_image
=
np
.
zeros
((
u
.
shape
[
0
],
u
.
shape
[
1
],
3
),
np
.
uint8
)
colorwheel
=
make_colorwheel
()
# shape [55x3]
ncols
=
colorwheel
.
shape
[
0
]
rad
=
np
.
sqrt
(
np
.
square
(
u
)
+
np
.
square
(
v
))
a
=
np
.
arctan2
(
-
v
,
-
u
)
/
np
.
pi
fk
=
(
a
+
1
)
/
2
*
(
ncols
-
1
)
k0
=
np
.
floor
(
fk
).
astype
(
np
.
int32
)
k1
=
k0
+
1
k1
[
k1
==
ncols
]
=
0
f
=
fk
-
k0
for
i
in
range
(
colorwheel
.
shape
[
1
]):
tmp
=
colorwheel
[:,
i
]
col0
=
tmp
[
k0
]
/
255.0
col1
=
tmp
[
k1
]
/
255.0
col
=
(
1
-
f
)
*
col0
+
f
*
col1
idx
=
(
rad
<=
1
)
col
[
idx
]
=
1
-
rad
[
idx
]
*
(
1
-
col
[
idx
])
col
[
~
idx
]
=
col
[
~
idx
]
*
0.75
# out of range
# Note the 2-i => BGR instead of RGB
ch_idx
=
2
-
i
if
convert_to_bgr
else
i
flow_image
[:,
:,
ch_idx
]
=
np
.
floor
(
255
*
col
)
return
flow_image
def
flow_to_image
(
flow_uv
,
clip_flow
=
None
,
convert_to_bgr
=
False
):
"""
Expects a two dimensional flow image of shape.
Args:
flow_uv (np.ndarray): Flow UV image of shape [H,W,2]
clip_flow (float, optional): Clip maximum of flow values. Defaults to None.
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.
Returns:
np.ndarray: Flow visualization image of shape [H,W,3]
"""
assert
flow_uv
.
ndim
==
3
or
flow_uv
.
ndim
==
4
,
'input flow must have three or four dimensions'
assert
flow_uv
.
shape
[
-
1
]
==
2
,
'input flow must have shape [..., H,W,2]'
if
clip_flow
is
not
None
:
flow_uv
=
np
.
clip
(
flow_uv
,
0
,
clip_flow
)
u
=
flow_uv
[...,
0
]
v
=
flow_uv
[...,
1
]
rad
=
np
.
sqrt
(
np
.
square
(
u
)
+
np
.
square
(
v
))
rad_max
=
np
.
max
(
rad
)
epsilon
=
1e-5
u
=
u
/
(
rad_max
+
epsilon
)
v
=
v
/
(
rad_max
+
epsilon
)
if
flow_uv
.
ndim
==
4
:
return
np
.
stack
([
flow_uv_to_colors
(
u_
,
v_
,
convert_to_bgr
)
for
(
u_
,
v_
)
in
zip
(
u
,
v
)],
axis
=
0
)
else
:
return
flow_uv_to_colors
(
u
,
v
,
convert_to_bgr
)
viz.py
0 → 100644
View file @
754fbc04
import
os
import
imageio
import
glob
import
torch
import
numpy
as
np
import
util
import
subprocess
from
config
import
config_parser
from
trainer
import
BaseTrainer
import
colorsys
from
matplotlib
import
cm
import
cv2
color_map
=
cm
.
get_cmap
(
"jet"
)
def
vis_trail
(
scene_dir
,
kpts_foreground
,
kpts_background
,
save_path
):
"""
This function calculates the median motion of the background, which is subsequently
subtracted from the foreground motion. This subtraction process "stabilizes" the camera and
improves the interpretability of the foreground motion trails.
"""
img_dir
=
os
.
path
.
join
(
scene_dir
,
"color"
)
img_files
=
sorted
(
list
(
glob
.
glob
(
os
.
path
.
join
(
img_dir
,
"*"
))))
images
=
np
.
array
([
imageio
.
imread
(
img_file
)
for
img_file
in
img_files
])
kpts_foreground
=
kpts_foreground
[:,
::
1
]
# can adjust kpts sampling rate here
num_imgs
,
num_pts
=
kpts_foreground
.
shape
[:
2
]
frames
=
[]
for
i
in
range
(
num_imgs
):
kpts
=
kpts_foreground
-
np
.
median
(
kpts_background
-
kpts_background
[
i
],
axis
=
1
,
keepdims
=
True
)
img_curr
=
images
[
i
]
for
t
in
range
(
i
):
img1
=
img_curr
.
copy
()
# changing opacity
alpha
=
max
(
1
-
0.9
*
((
i
-
t
)
/
((
i
+
1
)
*
.
99
)),
0.1
)
for
j
in
range
(
num_pts
):
color
=
np
.
array
(
color_map
(
j
/
max
(
1
,
float
(
num_pts
-
1
)))[:
3
])
*
255
color_alpha
=
1
hsv
=
colorsys
.
rgb_to_hsv
(
color
[
0
],
color
[
1
],
color
[
2
])
color
=
colorsys
.
hsv_to_rgb
(
hsv
[
0
],
hsv
[
1
]
*
color_alpha
,
hsv
[
2
])
pt1
=
kpts
[
t
,
j
]
pt2
=
kpts
[
t
+
1
,
j
]
p1
=
(
int
(
round
(
pt1
[
0
])),
int
(
round
(
pt1
[
1
])))
p2
=
(
int
(
round
(
pt2
[
0
])),
int
(
round
(
pt2
[
1
])))
cv2
.
line
(
img1
,
p1
,
p2
,
color
,
thickness
=
1
,
lineType
=
16
)
img_curr
=
cv2
.
addWeighted
(
img1
,
alpha
,
img_curr
,
1
-
alpha
,
0
)
for
j
in
range
(
num_pts
):
color
=
np
.
array
(
color_map
(
j
/
max
(
1
,
float
(
num_pts
-
1
)))[:
3
])
*
255
pt1
=
kpts
[
i
,
j
]
p1
=
(
int
(
round
(
pt1
[
0
])),
int
(
round
(
pt1
[
1
])))
cv2
.
circle
(
img_curr
,
p1
,
2
,
color
,
-
1
,
lineType
=
16
)
frames
.
append
(
img_curr
)
imageio
.
mimwrite
(
save_path
,
frames
,
quality
=
8
,
fps
=
10
)
if
__name__
==
'__main__'
:
args
=
config_parser
()
seq_name
=
os
.
path
.
basename
(
args
.
data_dir
.
rstrip
(
'/'
))
trainer
=
BaseTrainer
(
args
)
num_imgs
=
trainer
.
num_imgs
vis_dir
=
os
.
path
.
join
(
args
.
save_dir
,
'{}_{}'
.
format
(
args
.
expname
,
seq_name
),
'vis'
)
print
(
'output will be saved in {}'
.
format
(
vis_dir
))
os
.
makedirs
(
vis_dir
,
exist_ok
=
True
)
query_id
=
args
.
query_frame_id
radius
=
3
# the point radius for point correspondence visualization
mask
=
None
if
os
.
path
.
exists
(
args
.
foreground_mask_path
):
h
,
w
=
trainer
.
h
,
trainer
.
w
mask
=
imageio
.
imread
(
args
.
foreground_mask_path
)[...,
-
1
]
# rgba image, take the alpha channel
mask
=
cv2
.
resize
(
mask
,
dsize
=
(
w
,
h
))
==
255
# for DAVIS video sequences which come with segmentation masks
# or when a foreground mask for the query frame is provided
if
trainer
.
with_mask
or
mask
is
not
None
:
# foreground
frames
,
kpts_forground
=
trainer
.
eval_video_correspondences
(
query_id
,
use_mask
=
True
,
mask
=
mask
,
vis_occlusion
=
args
.
vis_occlusion
,
occlusion_th
=
args
.
occlusion_th
,
use_max_loc
=
args
.
use_max_loc
,
radius
=
radius
,
return_kpts
=
True
)
imageio
.
mimwrite
(
os
.
path
.
join
(
vis_dir
,
'{}_{:06d}_foreground_{}.mp4'
.
format
(
seq_name
,
trainer
.
step
,
query_id
)),
frames
,
quality
=
8
,
fps
=
10
)
kpts_forground
=
kpts_forground
.
cpu
().
numpy
()
# background
frames
,
kpts_background
=
trainer
.
eval_video_correspondences
(
query_id
,
use_mask
=
True
,
reverse_mask
=
True
,
mask
=
mask
,
vis_occlusion
=
args
.
vis_occlusion
,
occlusion_th
=
args
.
occlusion_th
,
use_max_loc
=
args
.
use_max_loc
,
radius
=
radius
,
return_kpts
=
True
)
kpts_background
=
kpts_background
.
cpu
().
numpy
()
imageio
.
mimwrite
(
os
.
path
.
join
(
vis_dir
,
'{}_{:06d}_background_{}.mp4'
.
format
(
seq_name
,
trainer
.
step
,
query_id
)),
frames
,
quality
=
8
,
fps
=
10
)
# visualize trails
vis_trail
(
args
.
data_dir
,
kpts_forground
,
kpts_background
,
os
.
path
.
join
(
vis_dir
,
'{}_{:06d}_{}_trails.mp4'
.
format
(
seq_name
,
trainer
.
step
,
query_id
)))
else
:
frames
=
trainer
.
eval_video_correspondences
(
query_id
,
vis_occlusion
=
args
.
vis_occlusion
,
occlusion_th
=
args
.
occlusion_th
,
use_max_loc
=
args
.
use_max_loc
,
radius
=
radius
)
imageio
.
mimwrite
(
os
.
path
.
join
(
vis_dir
,
'{}_{:06d}_{}.mp4'
.
format
(
seq_name
,
trainer
.
step
,
query_id
)),
frames
,
quality
=
8
,
fps
=
10
)
Prev
1
2
3
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment