Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
OmniMotion_pytorch
Commits
754fbc04
Commit
754fbc04
authored
Jul 16, 2024
by
bailuo
Browse files
init
parent
7aa1ab82
Pipeline
#1374
canceled with stages
Changes
44
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
1706 additions
and
0 deletions
+1706
-0
train.py
train.py
+106
-0
trainer.py
trainer.py
+1068
-0
util.py
util.py
+396
-0
viz.py
viz.py
+136
-0
No files found.
train.py
0 → 100644
View file @
754fbc04
import
os
import
subprocess
import
random
import
datetime
import
shutil
import
numpy
as
np
import
torch
import
torch.utils.data
import
torch.distributed
as
dist
from
config
import
config_parser
from
tensorboardX
import
SummaryWriter
from
loaders.create_training_dataset
import
get_training_dataset
from
trainer
import
BaseTrainer
torch
.
manual_seed
(
1234
)
def
synchronize
():
"""
Helper function to synchronize (barrier) among all processes when
using distributed training
"""
if
not
dist
.
is_available
():
return
if
not
dist
.
is_initialized
():
return
world_size
=
dist
.
get_world_size
()
if
world_size
==
1
:
return
dist
.
barrier
()
def
seed_worker
(
worker_id
):
worker_seed
=
torch
.
initial_seed
()
%
2
**
32
np
.
random
.
seed
(
worker_seed
)
random
.
seed
(
worker_seed
)
def
train
(
args
):
seq_name
=
os
.
path
.
basename
(
args
.
data_dir
.
rstrip
(
'/'
))
out_dir
=
os
.
path
.
join
(
args
.
save_dir
,
'{}_{}'
.
format
(
args
.
expname
,
seq_name
))
os
.
makedirs
(
out_dir
,
exist_ok
=
True
)
print
(
'optimizing for {}...
\n
output is saved in {}'
.
format
(
seq_name
,
out_dir
))
args
.
out_dir
=
out_dir
# save the args and config files
f
=
os
.
path
.
join
(
out_dir
,
'args.txt'
)
with
open
(
f
,
'w'
)
as
file
:
for
arg
in
sorted
(
vars
(
args
)):
if
not
arg
.
startswith
(
'_'
):
attr
=
getattr
(
args
,
arg
)
file
.
write
(
'{} = {}
\n
'
.
format
(
arg
,
attr
))
if
args
.
config
:
f
=
os
.
path
.
join
(
out_dir
,
'config.txt'
)
if
not
os
.
path
.
isfile
(
f
):
shutil
.
copy
(
args
.
config
,
f
)
log_dir
=
'logs/{}_{}'
.
format
(
args
.
expname
,
seq_name
)
writer
=
SummaryWriter
(
log_dir
)
g
=
torch
.
Generator
()
g
.
manual_seed
(
args
.
loader_seed
)
dataset
,
data_sampler
=
get_training_dataset
(
args
,
max_interval
=
args
.
start_interval
)
data_loader
=
torch
.
utils
.
data
.
DataLoader
(
dataset
,
batch_size
=
args
.
num_pairs
,
worker_init_fn
=
seed_worker
,
generator
=
g
,
num_workers
=
args
.
num_workers
,
sampler
=
data_sampler
,
shuffle
=
True
if
data_sampler
is
None
else
False
,
pin_memory
=
True
)
# get trainer
trainer
=
BaseTrainer
(
args
)
start_step
=
trainer
.
step
+
1
step
=
start_step
epoch
=
0
while
step
<
args
.
num_iters
+
start_step
+
1
:
for
batch
in
data_loader
:
trainer
.
train_one_step
(
step
,
batch
)
trainer
.
log
(
writer
,
step
)
step
+=
1
dataset
.
set_max_interval
(
args
.
start_interval
+
step
//
2000
)
if
step
>=
args
.
num_iters
+
start_step
+
1
:
break
epoch
+=
1
if
args
.
distributed
:
data_sampler
.
set_epoch
(
epoch
)
if
__name__
==
'__main__'
:
args
=
config_parser
()
if
args
.
distributed
:
torch
.
cuda
.
set_device
(
args
.
local_rank
)
torch
.
distributed
.
init_process_group
(
backend
=
"nccl"
,
init_method
=
"env://"
)
synchronize
()
train
(
args
)
trainer.py
0 → 100644
View file @
754fbc04
import
glob
import
os
import
pdb
import
time
import
cv2
import
imageio
import
numpy
as
np
import
torch
import
torch.nn
as
nn
import
torch.nn.functional
as
F
import
util
from
criterion
import
masked_mse_loss
,
masked_l1_loss
,
compute_depth_range_loss
,
lossfun_distortion
from
networks.mfn
import
GaborNet
from
networks.nvp_simplified
import
NVPSimplified
from
kornia
import
morphology
as
morph
torch
.
manual_seed
(
1234
)
def
init_weights
(
m
):
# Initializes weights according to the DCGAN paper
if
isinstance
(
m
,
nn
.
Linear
):
nn
.
init
.
kaiming_uniform_
(
m
.
weight
.
data
)
nn
.
init
.
constant_
(
m
.
bias
.
data
,
0
)
def
de_parallel
(
model
):
return
model
.
module
if
hasattr
(
model
,
'module'
)
else
model
class
BaseTrainer
():
def
__init__
(
self
,
args
,
device
=
'cuda'
):
self
.
args
=
args
self
.
device
=
device
self
.
read_data
()
self
.
feature_mlp
=
GaborNet
(
in_size
=
1
,
hidden_size
=
256
,
n_layers
=
2
,
alpha
=
4.5
,
out_size
=
128
).
to
(
device
)
self
.
deform_mlp
=
NVPSimplified
(
n_layers
=
6
,
feature_dims
=
128
,
hidden_size
=
[
256
,
256
,
256
],
proj_dims
=
256
,
code_proj_hidden_size
=
[],
proj_type
=
'fixed_positional_encoding'
,
pe_freq
=
args
.
pe_freq
,
normalization
=
False
,
affine
=
args
.
use_affine
,
device
=
device
).
to
(
device
)
self
.
color_mlp
=
GaborNet
(
in_size
=
3
,
hidden_size
=
512
,
n_layers
=
3
,
alpha
=
3
,
out_size
=
4
).
to
(
device
)
self
.
optimizer
=
torch
.
optim
.
Adam
([
{
'params'
:
self
.
feature_mlp
.
parameters
(),
'lr'
:
args
.
lr_feature
},
{
'params'
:
self
.
deform_mlp
.
parameters
(),
'lr'
:
args
.
lr_deform
},
{
'params'
:
self
.
color_mlp
.
parameters
(),
'lr'
:
args
.
lr_color
},
])
self
.
learnable_params
=
list
(
self
.
feature_mlp
.
parameters
())
+
\
list
(
self
.
deform_mlp
.
parameters
())
+
\
list
(
self
.
color_mlp
.
parameters
())
self
.
scheduler
=
torch
.
optim
.
lr_scheduler
.
StepLR
(
self
.
optimizer
,
step_size
=
args
.
lrate_decay_steps
,
gamma
=
args
.
lrate_decay_factor
)
seq_name
=
os
.
path
.
basename
(
args
.
data_dir
.
rstrip
(
'/'
))
self
.
out_dir
=
os
.
path
.
join
(
args
.
save_dir
,
'{}_{}'
.
format
(
args
.
expname
,
seq_name
))
self
.
step
=
self
.
load_from_ckpt
(
self
.
out_dir
,
load_opt
=
self
.
args
.
load_opt
,
load_scheduler
=
self
.
args
.
load_scheduler
)
self
.
time_steps
=
torch
.
linspace
(
1
,
self
.
num_imgs
,
self
.
num_imgs
,
device
=
self
.
device
)[:,
None
]
/
self
.
num_imgs
if
args
.
distributed
:
self
.
feature_mlp
=
torch
.
nn
.
parallel
.
DistributedDataParallel
(
self
.
feature_mlp
,
device_ids
=
[
args
.
local_rank
],
output_device
=
args
.
local_rank
)
self
.
deform_mlp
=
torch
.
nn
.
parallel
.
DistributedDataParallel
(
self
.
deform_mlp
,
device_ids
=
[
args
.
local_rank
],
output_device
=
args
.
local_rank
)
self
.
color_mlp
=
torch
.
nn
.
parallel
.
DistributedDataParallel
(
self
.
color_mlp
,
device_ids
=
[
args
.
local_rank
],
output_device
=
args
.
local_rank
)
def
read_data
(
self
):
self
.
seq_dir
=
self
.
args
.
data_dir
self
.
seq_name
=
os
.
path
.
basename
(
self
.
seq_dir
.
rstrip
(
'/'
))
self
.
img_dir
=
os
.
path
.
join
(
self
.
seq_dir
,
'color'
)
img_files
=
sorted
(
glob
.
glob
(
os
.
path
.
join
(
self
.
img_dir
,
'*'
)))
self
.
num_imgs
=
min
(
self
.
args
.
num_imgs
,
len
(
img_files
))
self
.
img_files
=
img_files
[:
self
.
num_imgs
]
images
=
np
.
array
([
imageio
.
imread
(
img_file
)
/
255.
for
img_file
in
self
.
img_files
])
self
.
images
=
torch
.
from_numpy
(
images
).
float
()
# [n_imgs, h, w, 3]
self
.
h
,
self
.
w
=
self
.
images
.
shape
[
1
:
3
]
mask_files
=
[
img_file
.
replace
(
'color'
,
'mask'
).
replace
(
'.jpg'
,
'.png'
)
for
img_file
in
self
.
img_files
]
if
os
.
path
.
exists
(
mask_files
[
0
]):
masks
=
np
.
array
([
imageio
.
imread
(
mask_file
)[...,
:
3
].
sum
(
axis
=-
1
)
/
255.
if
imageio
.
imread
(
mask_file
).
ndim
==
3
else
imageio
.
imread
(
mask_file
)
/
255.
for
mask_file
in
mask_files
])
self
.
masks
=
torch
.
from_numpy
(
masks
).
to
(
self
.
device
)
>
0.
# [n_imgs, h, w]
self
.
with_mask
=
True
else
:
self
.
masks
=
torch
.
ones
(
self
.
images
.
shape
[:
-
1
]).
to
(
self
.
device
)
>
0.
self
.
with_mask
=
False
self
.
grid
=
util
.
gen_grid
(
self
.
h
,
self
.
w
,
device
=
self
.
device
,
normalize
=
False
,
homogeneous
=
True
).
float
()
def
project
(
self
,
x
,
return_depth
=
False
):
'''
orthographic projection
:param x: [..., 3]
:param return_depth: if returning depth
:return: pixel_coords in image space [..., 2], depth [..., 1]
'''
pixel_coords
,
depth
=
torch
.
split
(
x
,
dim
=-
1
,
split_size_or_sections
=
[
2
,
1
])
pixel_coords
=
util
.
denormalize_coords
(
pixel_coords
,
self
.
h
,
self
.
w
)
if
return_depth
:
return
pixel_coords
,
depth
else
:
return
pixel_coords
def
unproject
(
self
,
pixels
,
depths
):
'''
orthographic unprojection
:param pixels: [..., 2] pixel coordinates (unnormalized)
:param depths: [..., 1]
:return: 3d locations in normalized space [..., 3]
'''
assert
pixels
.
shape
[
-
1
]
in
[
2
,
3
]
assert
pixels
.
ndim
==
depths
.
ndim
pixels
=
util
.
normalize_coords
(
pixels
[...,
:
2
],
self
.
h
,
self
.
w
)
return
torch
.
cat
([
pixels
,
depths
],
dim
=-
1
)
def
get_in_range_mask
(
self
,
x
,
max_padding
=
0
):
mask
=
(
x
[...,
0
]
>=
-
max_padding
)
*
\
(
x
[...,
0
]
<=
self
.
w
-
1
+
max_padding
)
*
\
(
x
[...,
1
]
>=
-
max_padding
)
*
\
(
x
[...,
1
]
<=
self
.
h
-
1
+
max_padding
)
return
mask
def
sample_3d_pts_for_pixels
(
self
,
pixels
,
return_depth
=
False
,
det
=
True
,
near_depth
=
None
,
far_depth
=
None
):
'''
stratified sampling
sample points on ray for each pixel
:param pixels: [n_imgs, n_pts, 2]
:param return_depth: True or False
:param det: if deterministic
:param near_depth: nearest depth
:param far_depth: farthest depth
:return: sampled 3d locations [n_imgs, n_pts, n_samples, 3]
'''
if
near_depth
is
not
None
and
far_depth
is
not
None
:
assert
pixels
.
shape
[:
-
1
]
==
near_depth
.
shape
[:
-
1
]
==
far_depth
.
shape
[:
-
1
]
depths
=
near_depth
+
\
torch
.
linspace
(
0
,
1.
,
self
.
args
.
num_samples_ray
,
device
=
self
.
device
)[
None
,
None
]
\
*
(
far_depth
-
near_depth
)
else
:
depths
=
torch
.
linspace
(
self
.
args
.
min_depth
,
self
.
args
.
max_depth
,
self
.
args
.
num_samples_ray
,
device
=
self
.
device
)
pixels_shape
=
pixels
.
shape
depths
=
depths
[
None
,
None
,
:].
expand
(
*
pixels_shape
[:
2
],
-
1
)
if
not
det
:
# get intervals between samples
mids
=
.
5
*
(
depths
[...,
1
:]
+
depths
[...,
:
-
1
])
upper
=
torch
.
cat
([
mids
,
depths
[...,
-
1
:]],
dim
=-
1
)
lower
=
torch
.
cat
([
depths
[...,
0
:
1
],
mids
],
dim
=-
1
)
# uniform samples in those intervals
t_rand
=
torch
.
rand_like
(
depths
)
depths
=
lower
+
(
upper
-
lower
)
*
t_rand
# [n_imgs, n_pts, n_samples]
depths
=
depths
[...,
None
]
pixels_expand
=
pixels
.
unsqueeze
(
-
2
).
expand
(
-
1
,
-
1
,
self
.
args
.
num_samples_ray
,
-
1
)
x
=
self
.
unproject
(
pixels_expand
,
depths
)
# [n_imgs, n_pts, n_samples, 3]
if
return_depth
:
return
x
,
depths
else
:
return
x
def
get_prediction_one_way
(
self
,
x
,
id
,
inverse
=
False
):
'''
mapping 3d points from local to canonical or from canonical to local (inverse=True)
:param x: [n_imgs, n_pts, n_samples, 3]
:param id: [n_imgs, ]
:param inverse: True or False
:return: [n_imgs, n_pts, n_samples, 3]
'''
t
=
self
.
time_steps
[
id
]
# [n_imgs, 1]
feature
=
self
.
feature_mlp
(
t
)
# [n_imgs, n_feat]
if
inverse
:
if
self
.
args
.
distributed
:
out
=
self
.
deform_mlp
.
module
.
inverse
(
t
,
feature
,
x
)
else
:
out
=
self
.
deform_mlp
.
inverse
(
t
,
feature
,
x
)
else
:
out
=
self
.
deform_mlp
.
forward
(
t
,
feature
,
x
)
return
out
# [n_imgs, n_pts, n_samples, 3]
def
get_predictions
(
self
,
x1
,
id1
,
id2
,
return_canonical
=
False
):
'''
mapping 3d points from one frame to another frame
:param x1: [n_imgs, n_pts, n_samples, 3]
:param id1: [n_imgs,]
:param id2: [n_imgs,]
:return: [n_imgs, n_pts, n_samples, 3]
'''
x1_canonical
=
self
.
get_prediction_one_way
(
x1
,
id1
)
x2_pred
=
self
.
get_prediction_one_way
(
x1_canonical
,
id2
,
inverse
=
True
)
if
return_canonical
:
return
x2_pred
,
x1_canonical
else
:
return
x2_pred
# [n_imgs, n_pts, n_samples, 3]
def
get_canonical_color_and_density
(
self
,
x_canonical
,
apply_contraction
=
True
):
def
contraction
(
x
):
x_norm
=
x
.
norm
(
dim
=-
1
)
x_out
=
torch
.
zeros_like
(
x
)
x_out
[
x_norm
<=
1
]
=
x
[
x_norm
<=
1
]
x_out
[
x_norm
>
1
]
=
((
2.
-
1.
/
x_norm
[...,
None
])
*
(
x
/
x_norm
[...,
None
]))[
x_norm
>
1
]
return
x_out
if
apply_contraction
:
x_canonical
=
contraction
(
x_canonical
)
out_canonical
=
self
.
color_mlp
(
x_canonical
)
color
=
torch
.
sigmoid
(
out_canonical
[...,
:
3
])
# [n_imgs, n_pts, n_samples, 3]
density
=
F
.
softplus
(
out_canonical
[...,
-
1
]
-
1.
)
return
color
,
density
def
get_blending_weights
(
self
,
x_canonical
):
'''
query the nerf network to color, density and blending weights
:param x_canonical: input canonical 3D locations
:return: dict containing colors, weights, alphas and rendered rgbs
'''
color
,
density
=
self
.
get_canonical_color_and_density
(
x_canonical
)
alpha
=
util
.
sigma2alpha
(
density
)
# [n_imgs, n_pts, n_samples]
# mask out the nearest 20% of samples. This trick may be helpful to avoid one local minimum solution
# where surfaces that are not nearest to the camera are initialized at nearest depth planes
if
self
.
args
.
mask_near
and
self
.
step
<
4000
:
mask
=
torch
.
ones_like
(
alpha
)
mask
[...,
:
int
(
self
.
args
.
num_samples_ray
*
0.2
)]
=
0
alpha
*=
mask
T
=
torch
.
cumprod
(
1.
-
alpha
+
1e-10
,
dim
=-
1
)[...,
:
-
1
]
# [n_imgs, n_pts, n_samples-1]
T
=
torch
.
cat
((
torch
.
ones_like
(
T
[...,
0
:
1
]),
T
),
dim
=-
1
)
# [n_imgs, n_pts, n_samples]
weights
=
alpha
*
T
# [n_imgs, n_pts, n_samples]
rendered_rgbs
=
torch
.
sum
(
weights
.
unsqueeze
(
-
1
)
*
color
,
dim
=-
2
)
# [n_imgs, n_pts, 3]
out
=
{
'colors'
:
color
,
'weights'
:
weights
,
'alphas'
:
alpha
,
'rendered_rgbs'
:
rendered_rgbs
,
}
return
out
def
get_pred_rgbs_for_pixels
(
self
,
ids
,
pixels
,
return_weights
=
False
):
xs_samples
,
pxs_depths_samples
=
self
.
sample_3d_pts_for_pixels
(
pixels
,
return_depth
=
True
)
xs_canonical_samples
=
self
.
get_prediction_one_way
(
xs_samples
,
ids
)
out
=
self
.
get_blending_weights
(
xs_canonical_samples
)
blending_weights
=
out
[
'weights'
]
rendered_rgbs
=
out
[
'rendered_rgbs'
]
if
return_weights
:
return
rendered_rgbs
,
blending_weights
# [n_imgs, n_pts, 3], [n_imgs, n_pts, n_samples]
else
:
return
rendered_rgbs
def
get_pred_depths_for_pixels
(
self
,
ids
,
pixels
):
'''
:param ids: list [n_imgs,]
:param pixels: [n_imgs, n_pts, 2]
:return: pred_depths: [n_imgs, n_pts, 1]
'''
xs_samples
,
pxs_depths_samples
=
self
.
sample_3d_pts_for_pixels
(
pixels
,
return_depth
=
True
)
xs_canonical_samples
=
self
.
get_prediction_one_way
(
xs_samples
,
ids
)
out
=
self
.
get_blending_weights
(
xs_canonical_samples
)
pred_depths
=
torch
.
sum
(
out
[
'weights'
].
unsqueeze
(
-
1
)
*
pxs_depths_samples
,
dim
=-
2
)
return
pred_depths
# [n_imgs, n_pts, 1]
def
get_pred_colors_and_depths_for_pixels
(
self
,
ids
,
pixels
):
'''
:param ids: list [n_imgs,]
:param pixels: [n_imgs, n_pts, 2]
:return: pred_depths: [n_imgs, n_pts, 1]
'''
xs_samples
,
pxs_depths_samples
=
self
.
sample_3d_pts_for_pixels
(
pixels
,
return_depth
=
True
)
xs_canonical_samples
=
self
.
get_prediction_one_way
(
xs_samples
,
ids
)
out
=
self
.
get_blending_weights
(
xs_canonical_samples
)
pred_depths
=
torch
.
sum
(
out
[
'weights'
].
unsqueeze
(
-
1
)
*
pxs_depths_samples
,
dim
=-
2
)
rendered_rgbs
=
out
[
'rendered_rgbs'
]
return
rendered_rgbs
,
pred_depths
# [n_imgs, n_pts, 1]
def
compute_depth_consistency_loss
(
self
,
proj_depths
,
pred_depths
,
visibilities
,
normalize
=
True
):
'''
:param proj_depths: [n_imgs, n_pts, 1]
:param pred_depths: [n_imgs, n_pts, 1]
:param visibilities: [n_imgs, n_pts, 1]
:return: depth loss
'''
if
normalize
:
mse_error
=
torch
.
mean
((
proj_depths
-
pred_depths
)
**
2
*
visibilities
)
/
(
torch
.
mean
(
visibilities
)
+
1e-6
)
else
:
mse_error
=
torch
.
mean
((
proj_depths
-
pred_depths
)
**
2
*
visibilities
)
return
mse_error
def
get_correspondences_for_pixels
(
self
,
ids1
,
px1s
,
ids2
,
return_depth
=
False
,
use_max_loc
=
False
):
'''
get correspondences for pixels in one frame to another frame
:param ids1: [num_imgs]
:param px1s: [num_imgs, num_pts, 2]
:param ids2: [num_imgs]
:param return_depth: if returning the depth of the mapped point in the target frame
:param use_max_loc: if using only the sample with the maximum blending weight to
compute the corresponding location rather than doing over composition.
set to True leads to better results on occlusion boundaries,
by default it is set to True for inference.
:return: px2s_pred: [num_imgs, num_pts, 2], and optionally depth: [num_imgs, num_pts, 1]
'''
# [n_pair, n_pts, n_samples, 3]
x1s_samples
=
self
.
sample_3d_pts_for_pixels
(
px1s
)
x2s_proj_samples
,
xs_canonical_samples
=
self
.
get_predictions
(
x1s_samples
,
ids1
,
ids2
,
return_canonical
=
True
)
out
=
self
.
get_blending_weights
(
xs_canonical_samples
)
# [n_imgs, n_pts, n_samples]
if
use_max_loc
:
blending_weights
=
out
[
'weights'
]
indices
=
torch
.
max
(
blending_weights
,
dim
=-
1
,
keepdim
=
True
)[
1
]
x2s_pred
=
torch
.
gather
(
x2s_proj_samples
,
2
,
indices
[...,
None
].
repeat
(
1
,
1
,
1
,
3
)).
squeeze
(
-
2
)
return
self
.
project
(
x2s_pred
,
return_depth
=
return_depth
)
else
:
x2s_pred
=
torch
.
sum
(
out
[
'weights'
].
unsqueeze
(
-
1
)
*
x2s_proj_samples
,
dim
=-
2
)
return
self
.
project
(
x2s_pred
,
return_depth
=
return_depth
)
def
get_correspondences_and_occlusion_masks_for_pixels
(
self
,
ids1
,
px1s
,
ids2
,
return_depth
=
False
,
use_max_loc
=
False
):
px2s_pred
,
depth_proj
=
self
.
get_correspondences_for_pixels
(
ids1
,
px1s
,
ids2
,
return_depth
=
True
,
use_max_loc
=
use_max_loc
)
px2s_pred_samples
,
px2s_pred_depths_samples
=
self
.
sample_3d_pts_for_pixels
(
px2s_pred
,
return_depth
=
True
)
xs_canonical_samples
=
self
.
get_prediction_one_way
(
px2s_pred_samples
,
ids2
)
out
=
self
.
get_blending_weights
(
xs_canonical_samples
)
weights
=
out
[
'weights'
]
eps
=
1.1
*
(
self
.
args
.
max_depth
-
self
.
args
.
min_depth
)
/
self
.
args
.
num_samples_ray
mask_zero
=
px2s_pred_depths_samples
.
squeeze
(
-
1
)
>=
(
depth_proj
.
expand
(
-
1
,
-
1
,
self
.
args
.
num_samples_ray
)
-
eps
)
weights
[
mask_zero
]
=
0.
occlusion_score
=
weights
.
sum
(
dim
=-
1
,
keepdim
=
True
)
if
return_depth
:
return
px2s_pred
,
occlusion_score
,
depth_proj
else
:
return
px2s_pred
,
occlusion_score
def
compute_scene_flow_smoothness_loss
(
self
,
ids
,
xs
):
mask_valid
=
(
ids
>=
1
)
*
(
ids
<
self
.
num_imgs
-
1
)
ids
=
ids
[
mask_valid
]
if
len
(
ids
)
==
0
:
return
torch
.
tensor
(
0.
)
xs
=
xs
[
mask_valid
]
ids_prev
=
ids
-
1
ids_after
=
ids
+
1
xs_prev_after
=
self
.
get_predictions
(
torch
.
cat
([
xs
,
xs
],
dim
=
0
),
np
.
concatenate
([
ids
,
ids
]),
np
.
concatenate
([
ids_prev
,
ids_after
]))
xs_prev
,
xs_after
=
torch
.
split
(
xs_prev_after
,
split_size_or_sections
=
len
(
xs
),
dim
=
0
)
scene_flow_prev
=
xs
-
xs_prev
scene_flow_after
=
xs_after
-
xs
loss
=
masked_l1_loss
(
scene_flow_prev
,
scene_flow_after
)
return
loss
def
canonical_sphere_loss
(
self
,
xs_canonical_samples
,
radius
=
1.
):
''' encourage mapped locations to be within a (unit) sphere '''
xs_canonical_norm
=
(
xs_canonical_samples
**
2
).
sum
(
dim
=-
1
)
if
(
xs_canonical_norm
>=
1.
).
any
():
canonical_unit_sphere_loss
=
((
xs_canonical_norm
[
xs_canonical_norm
>=
radius
]
-
1
)
**
2
).
mean
()
else
:
canonical_unit_sphere_loss
=
torch
.
tensor
(
0.
)
return
canonical_unit_sphere_loss
def
gradient_loss
(
self
,
pred
,
gt
,
weight
=
None
):
'''
coordinate
:param pred: [n_imgs, n_pts, 2] or [n_pts, 2]
:param gt:
:return:
'''
pred_grad
=
pred
[...,
1
:,
:]
-
pred
[...,
:
-
1
,
:]
gt_grad
=
gt
[...,
1
:,
:]
-
gt
[...,
:
-
1
,
:]
if
weight
is
not
None
:
weight_grad
=
weight
[...,
1
:,
:]
*
weight
[...,
:
-
1
,
:]
else
:
weight_grad
=
None
loss
=
masked_l1_loss
(
pred_grad
,
gt_grad
,
weight_grad
)
return
loss
def
compute_all_losses
(
self
,
batch
,
w_rgb
=
1
,
w_depth_range
=
10
,
w_distortion
=
1.
,
w_scene_flow_smooth
=
10.
,
w_canonical_unit_sphere
=
0.
,
w_flow_grad
=
0.01
,
write_logs
=
True
,
return_data
=
False
,
log_prefix
=
'loss'
,
):
depth_min_th
=
self
.
args
.
min_depth
depth_max_th
=
self
.
args
.
max_depth
max_padding
=
self
.
args
.
max_padding
ids1
=
batch
[
'ids1'
].
numpy
()
ids2
=
batch
[
'ids2'
].
numpy
()
px1s
=
batch
[
'pts1'
].
to
(
self
.
device
)
px2s
=
batch
[
'pts2'
].
to
(
self
.
device
)
gt_rgb1
=
batch
[
'gt_rgb1'
].
to
(
self
.
device
)
weights
=
batch
[
'weights'
].
to
(
self
.
device
)
num_pts
=
px1s
.
shape
[
1
]
# [n_pair, n_pts, n_samples, 3]
x1s_samples
,
px1s_depths_samples
=
self
.
sample_3d_pts_for_pixels
(
px1s
,
return_depth
=
True
,
det
=
False
)
x2s_proj_samples
,
x1s_canonical_samples
=
self
.
get_predictions
(
x1s_samples
,
ids1
,
ids2
,
return_canonical
=
True
)
out
=
self
.
get_blending_weights
(
x1s_canonical_samples
)
blending_weights1
=
out
[
'weights'
]
alphas1
=
out
[
'alphas'
]
pred_rgb1
=
out
[
'rendered_rgbs'
]
mask
=
(
x2s_proj_samples
[...,
-
1
]
>=
depth_min_th
)
*
(
x2s_proj_samples
[...,
-
1
]
<=
depth_max_th
)
blending_weights1
=
blending_weights1
*
mask
.
float
()
x2s_pred
=
torch
.
sum
(
blending_weights1
.
unsqueeze
(
-
1
)
*
x2s_proj_samples
,
dim
=-
2
)
# [n_imgs, n_pts, n_samples, 2]
px2s_proj_samples
,
px2s_proj_depth_samples
=
self
.
project
(
x2s_proj_samples
,
return_depth
=
True
)
px2s_proj
,
px2s_proj_depths
=
self
.
project
(
x2s_pred
,
return_depth
=
True
)
mask
=
self
.
get_in_range_mask
(
px2s_proj
,
max_padding
)
rgb_mask
=
self
.
get_in_range_mask
(
px1s
)
if
mask
.
sum
()
>
0
:
loss_rgb
=
F
.
mse_loss
(
pred_rgb1
[
rgb_mask
],
gt_rgb1
[
rgb_mask
])
loss_rgb_grad
=
self
.
gradient_loss
(
pred_rgb1
[
rgb_mask
],
gt_rgb1
[
rgb_mask
])
optical_flow_loss
=
masked_l1_loss
(
px2s_proj
[
mask
],
px2s
[
mask
],
weights
[
mask
],
normalize
=
False
)
optical_flow_grad_loss
=
self
.
gradient_loss
(
px2s_proj
[
mask
],
px2s
[
mask
],
weights
[
mask
])
else
:
loss_rgb
=
loss_rgb_grad
=
optical_flow_loss
=
optical_flow_grad_loss
=
torch
.
tensor
(
0.
)
# mapped depth should be within the predefined range
depth_range_loss
=
compute_depth_range_loss
(
px2s_proj_depth_samples
,
depth_min_th
,
depth_max_th
)
# distortion loss to remove floaters
t
=
torch
.
cat
([
px1s_depths_samples
[...,
0
],
px1s_depths_samples
[...,
0
][...,
-
1
:]],
dim
=-
1
)
distortion_loss
=
lossfun_distortion
(
t
,
blending_weights1
)
# scene flow smoothness
# only apply to 25% of points to reduce cost
scene_flow_smoothness_loss
=
self
.
compute_scene_flow_smoothness_loss
(
ids1
,
x1s_samples
[:,
:
int
(
num_pts
/
4
)])
# loss for mapped points to stay within canonical sphere
canonical_unit_sphere_loss
=
self
.
canonical_sphere_loss
(
x1s_canonical_samples
)
loss
=
optical_flow_loss
+
\
w_rgb
*
(
loss_rgb
+
loss_rgb_grad
)
+
\
w_depth_range
*
depth_range_loss
+
\
w_distortion
*
distortion_loss
+
\
w_scene_flow_smooth
*
scene_flow_smoothness_loss
+
\
w_canonical_unit_sphere
*
canonical_unit_sphere_loss
+
\
w_flow_grad
*
optical_flow_grad_loss
if
write_logs
:
self
.
scalars_to_log
[
'{}/Loss'
.
format
(
log_prefix
)]
=
loss
.
item
()
self
.
scalars_to_log
[
'{}/loss_flow'
.
format
(
log_prefix
)]
=
optical_flow_loss
.
item
()
self
.
scalars_to_log
[
'{}/loss_rgb'
.
format
(
log_prefix
)]
=
loss_rgb
.
item
()
self
.
scalars_to_log
[
'{}/loss_depth_range'
.
format
(
log_prefix
)]
=
depth_range_loss
.
item
()
self
.
scalars_to_log
[
'{}/loss_distortion'
.
format
(
log_prefix
)]
=
distortion_loss
.
item
()
self
.
scalars_to_log
[
'{}/loss_scene_flow_smoothness'
.
format
(
log_prefix
)]
=
scene_flow_smoothness_loss
.
item
()
self
.
scalars_to_log
[
'{}/loss_canonical_unit_sphere'
.
format
(
log_prefix
)]
=
canonical_unit_sphere_loss
.
item
()
self
.
scalars_to_log
[
'{}/loss_flow_gradient'
.
format
(
log_prefix
)]
=
optical_flow_grad_loss
.
item
()
data
=
{
'ids1'
:
ids1
,
'ids2'
:
ids2
,
'x1s'
:
x1s_samples
,
'x2s_pred'
:
x2s_pred
,
'xs_canonical'
:
x1s_canonical_samples
,
'mask'
:
mask
,
'px2s_proj'
:
px2s_proj
,
'px2s_proj_depths'
:
px2s_proj_depths
,
'blending_weights'
:
blending_weights1
,
'alphas'
:
alphas1
,
't'
:
t
}
if
return_data
:
return
loss
,
data
else
:
return
loss
def
weight_scheduler
(
self
,
step
,
start_step
,
w
,
min_weight
,
max_weight
):
if
step
<=
start_step
:
weight
=
0.0
else
:
weight
=
w
*
(
step
-
start_step
)
weight
=
np
.
clip
(
weight
,
a_min
=
min_weight
,
a_max
=
max_weight
)
return
weight
def
train_one_step
(
self
,
step
,
batch
):
self
.
step
=
step
start
=
time
.
time
()
self
.
scalars_to_log
=
{}
self
.
optimizer
.
zero_grad
()
w_rgb
=
self
.
weight_scheduler
(
step
,
0
,
1.
/
5000
,
0
,
10
)
w_flow_grad
=
self
.
weight_scheduler
(
step
,
0
,
1.
/
500000
,
0
,
0.1
)
w_distortion
=
self
.
weight_scheduler
(
step
,
40000
,
1.
/
2000
,
0
,
10
)
w_scene_flow_smooth
=
20.
loss
,
flow_data
=
self
.
compute_all_losses
(
batch
,
w_rgb
=
w_rgb
,
w_scene_flow_smooth
=
w_scene_flow_smooth
,
w_distortion
=
w_distortion
,
w_flow_grad
=
w_flow_grad
,
return_data
=
True
)
if
torch
.
isnan
(
loss
):
pdb
.
set_trace
()
loss
.
backward
()
is_break
=
False
for
p
in
self
.
deform_mlp
.
parameters
():
if
torch
.
isnan
(
p
.
data
).
any
()
or
torch
.
isnan
(
p
.
grad
).
any
():
is_break
=
True
for
p
in
self
.
feature_mlp
.
parameters
():
if
torch
.
isnan
(
p
.
data
).
any
()
or
torch
.
isnan
(
p
.
grad
).
any
():
is_break
=
True
for
p
in
self
.
color_mlp
.
parameters
():
if
torch
.
isnan
(
p
.
data
).
any
()
or
torch
.
isnan
(
p
.
grad
).
any
():
is_break
=
True
if
is_break
:
pdb
.
set_trace
()
if
self
.
args
.
grad_clip
>
0
:
for
param
in
self
.
learnable_params
:
grad_norm
=
torch
.
nn
.
utils
.
clip_grad_norm_
(
param
,
self
.
args
.
grad_clip
)
if
grad_norm
>
self
.
args
.
grad_clip
:
print
(
"Warning! Clip gradient from {} to {}"
.
format
(
grad_norm
,
self
.
args
.
grad_clip
))
self
.
optimizer
.
step
()
self
.
scheduler
.
step
()
self
.
scalars_to_log
[
'lr'
]
=
self
.
optimizer
.
param_groups
[
0
][
'lr'
]
self
.
scalars_to_log
[
'time'
]
=
time
.
time
()
-
start
self
.
ids1
=
flow_data
[
'ids1'
]
self
.
ids2
=
flow_data
[
'ids2'
]
def
sample_pts_within_mask
(
self
,
mask
,
num_pts
,
return_normed
=
False
,
seed
=
None
,
use_mask
=
False
,
reverse_mask
=
False
,
regular
=
False
,
interval
=
10
):
rng
=
np
.
random
.
RandomState
(
seed
)
if
seed
is
not
None
else
np
.
random
if
use_mask
:
if
reverse_mask
:
mask
=
~
mask
kernel
=
torch
.
ones
(
7
,
7
,
device
=
self
.
device
)
mask
=
morph
.
erosion
(
mask
.
float
()[
None
,
None
],
kernel
).
bool
().
squeeze
()
# Erosion
else
:
mask
=
torch
.
ones_like
(
self
.
grid
[...,
0
],
dtype
=
torch
.
bool
)
if
regular
:
coords
=
self
.
grid
[::
interval
,
::
interval
,
:
2
][
mask
[::
interval
,
::
interval
]]
else
:
coords_valid
=
self
.
grid
[
mask
][...,
:
2
]
rand_inds
=
rng
.
choice
(
len
(
coords_valid
),
num_pts
,
replace
=
(
num_pts
>
len
(
coords_valid
)))
coords
=
coords_valid
[
rand_inds
]
coords_normed
=
util
.
normalize_coords
(
coords
,
self
.
h
,
self
.
w
)
if
return_normed
:
return
coords
,
coords_normed
else
:
return
coords
# [num_pts, 2]
def
generate_uniform_3d_samples
(
self
,
num_pts
,
radius
=
2
):
num_pts
=
int
(
num_pts
)
pts
=
2.
*
torch
.
rand
(
num_pts
*
2
,
3
,
device
=
self
.
device
)
-
1.
# [-1, 1]^3
pts_norm
=
torch
.
norm
(
pts
,
dim
=-
1
)
pts
=
pts
[
pts_norm
<
1.
]
rand_ids
=
np
.
random
.
choice
(
len
(
pts
),
num_pts
,
replace
=
len
(
pts
)
<
num_pts
)
pts
=
pts
[
rand_ids
]
pts
*=
radius
return
pts
def
get_canonical_uvw_from_frames
(
self
,
num_pts_per_frame
=
10000
):
uvws
=
[]
for
i
in
range
(
self
.
num_imgs
):
pixels_normed
=
2
*
torch
.
rand
(
num_pts_per_frame
,
2
,
device
=
self
.
device
)
-
1.
pixels
=
util
.
denormalize_coords
(
pixels_normed
,
self
.
h
,
self
.
w
)[
None
]
pixel_samples
=
self
.
sample_3d_pts_for_pixels
(
pixels
,
det
=
False
)
with
torch
.
no_grad
():
uvw
=
self
.
get_prediction_one_way
(
pixel_samples
,
[
i
])[
0
]
uvws
.
append
(
uvw
.
reshape
(
-
1
,
3
))
uvws
=
torch
.
cat
(
uvws
,
dim
=
0
)
return
uvws
def
save_canonical_rgba_volume
(
self
,
num_pts
,
sample_points_from_frames
=
False
):
save_dir
=
os
.
path
.
join
(
self
.
out_dir
,
'pcd'
)
os
.
makedirs
(
save_dir
,
exist_ok
=
True
)
chunk_size
=
self
.
args
.
chunk_size
if
sample_points_from_frames
:
num_pts_per_frame
=
num_pts
//
(
self
.
args
.
num_imgs
*
self
.
args
.
num_samples_ray
)
uvw
=
self
.
get_canonical_uvw_from_frames
(
num_pts_per_frame
)
suffix
=
'_frames'
apply_contraction
=
True
else
:
uvw
=
self
.
generate_uniform_3d_samples
(
num_pts
,
radius
=
1
)
suffix
=
''
apply_contraction
=
False
uvw_np
=
uvw
.
cpu
().
numpy
()
rgbas
=
[]
for
chunk
in
torch
.
split
(
uvw
,
chunk_size
,
dim
=
0
):
with
torch
.
no_grad
():
color
,
density
=
self
.
get_canonical_color_and_density
(
chunk
,
apply_contraction
=
apply_contraction
)
alpha
=
util
.
sigma2alpha
(
density
)
rgba
=
torch
.
cat
([
color
,
alpha
[...,
None
]],
dim
=-
1
)
rgbas
.
append
(
rgba
.
cpu
().
numpy
())
rgbas
=
np
.
concatenate
(
rgbas
,
axis
=
0
)
out
=
np
.
ascontiguousarray
(
np
.
concatenate
([
uvw_np
,
rgbas
],
axis
=-
1
))
np
.
save
(
os
.
path
.
join
(
save_dir
,
'{:06d}{}.npy'
.
format
(
self
.
step
,
suffix
)),
out
)
def
vis_pairwise_correspondences
(
self
,
ids
=
None
,
num_pts
=
200
,
use_mask
=
False
,
use_max_loc
=
True
,
reverse_mask
=
False
,
regular
=
True
,
interval
=
20
):
if
ids
is
not
None
:
id1
,
id2
=
ids
else
:
id1
=
self
.
ids1
[
0
]
id2
=
self
.
ids2
[
0
]
px1s
=
self
.
sample_pts_within_mask
(
self
.
masks
[
id1
],
num_pts
,
seed
=
1234
,
use_mask
=
use_mask
,
reverse_mask
=
reverse_mask
,
regular
=
regular
,
interval
=
interval
)
num_pts
=
len
(
px1s
)
with
torch
.
no_grad
():
px2s_pred
,
occlusion_score
=
\
self
.
get_correspondences_and_occlusion_masks_for_pixels
([
id1
],
px1s
[
None
],
[
id2
],
use_max_loc
=
use_max_loc
)
px2s_pred
=
px2s_pred
[
0
]
mask
=
occlusion_score
>
self
.
args
.
occlusion_th
kp1
=
px1s
.
detach
().
cpu
().
numpy
()
kp2
=
px2s_pred
.
detach
().
cpu
().
numpy
()
img1
=
self
.
images
[
id1
].
cpu
().
numpy
()
img2
=
self
.
images
[
id2
].
cpu
().
numpy
()
mask
=
mask
[
0
].
squeeze
(
-
1
).
cpu
().
numpy
()
out
=
util
.
drawMatches
(
img1
,
img2
,
kp1
,
kp2
,
num_vis
=
num_pts
,
mask
=
mask
)
out
=
cv2
.
putText
(
out
,
str
(
id2
-
id1
),
org
=
(
30
,
50
),
fontScale
=
1
,
color
=
(
255
,
255
,
255
),
fontFace
=
cv2
.
FONT_HERSHEY_SIMPLEX
,
thickness
=
2
)
out
=
util
.
uint82float
(
out
)
return
out
def
plot_correspondences_for_pixels
(
self
,
query_kpt
,
query_id
,
num_pts
=
200
,
vis_occlusion
=
False
,
occlusion_th
=
0.95
,
use_max_loc
=
False
,
radius
=
2
,
return_kpts
=
False
):
frames
=
[]
kpts
=
[]
with
torch
.
no_grad
():
img_query
=
self
.
images
[
query_id
].
cpu
().
numpy
()
for
id
in
range
(
0
,
self
.
num_imgs
):
if
vis_occlusion
:
if
id
==
query_id
:
kp_i
=
query_kpt
occlusion_score
=
torch
.
zeros_like
(
query_kpt
[...,
:
1
])
else
:
kp_i
,
occlusion_score
=
\
self
.
get_correspondences_and_occlusion_masks_for_pixels
([
query_id
],
query_kpt
[
None
],
[
id
],
use_max_loc
=
use_max_loc
)
kp_i
=
kp_i
[
0
]
occlusion_score
=
occlusion_score
[
0
]
mask
=
occlusion_score
>
occlusion_th
kp_i
=
torch
.
cat
([
kp_i
,
mask
.
float
()],
dim
=-
1
)
mask
=
mask
.
squeeze
(
-
1
).
cpu
().
numpy
()
else
:
if
id
==
query_id
:
kp_i
=
query_kpt
else
:
kp_i
=
self
.
get_correspondences_for_pixels
([
query_id
],
query_kpt
[
None
],
[
id
],
use_max_loc
=
use_max_loc
)[
0
]
mask
=
None
img_i
=
self
.
images
[
id
].
cpu
().
numpy
()
out
=
util
.
drawMatches
(
img_query
,
img_i
,
query_kpt
.
cpu
().
numpy
(),
kp_i
.
cpu
().
numpy
(),
num_vis
=
num_pts
,
mask
=
mask
,
radius
=
radius
)
frames
.
append
(
out
)
kpts
.
append
(
kp_i
)
kpts
=
torch
.
stack
(
kpts
,
dim
=
0
)
if
return_kpts
:
return
frames
,
kpts
return
frames
def
eval_video_correspondences
(
self
,
query_id
,
pts
=
None
,
num_pts
=
200
,
seed
=
1234
,
use_mask
=
False
,
mask
=
None
,
reverse_mask
=
False
,
vis_occlusion
=
False
,
occlusion_th
=
0.99
,
use_max_loc
=
False
,
regular
=
True
,
interval
=
10
,
radius
=
2
,
return_kpts
=
False
):
with
torch
.
no_grad
():
if
mask
is
not
None
:
mask
=
torch
.
from_numpy
(
mask
).
bool
().
to
(
self
.
device
)
else
:
mask
=
self
.
masks
[
query_id
]
if
pts
is
None
:
x_0
=
self
.
sample_pts_within_mask
(
mask
,
num_pts
,
seed
=
seed
,
use_mask
=
use_mask
,
reverse_mask
=
reverse_mask
,
regular
=
regular
,
interval
=
interval
)
num_pts
=
1e7
if
regular
else
num_pts
else
:
x_0
=
torch
.
from_numpy
(
pts
).
float
().
to
(
self
.
device
)
return
self
.
plot_correspondences_for_pixels
(
x_0
,
query_id
,
num_pts
=
num_pts
,
vis_occlusion
=
vis_occlusion
,
occlusion_th
=
occlusion_th
,
use_max_loc
=
use_max_loc
,
radius
=
radius
,
return_kpts
=
return_kpts
)
def
get_pred_depth_maps
(
self
,
ids
,
chunk_size
=
40000
):
grid
=
self
.
grid
[...,
:
2
].
reshape
(
-
1
,
2
)
pred_depths
=
[]
for
id
in
ids
:
depth_map
=
[]
for
coords
in
torch
.
split
(
grid
,
split_size_or_sections
=
chunk_size
,
dim
=
0
):
depths_chunk
=
self
.
get_pred_depths_for_pixels
([
id
],
coords
[
None
])[
0
]
depths_chunk
=
torch
.
nan_to_num
(
depths_chunk
)
depth_map
.
append
(
depths_chunk
)
depth_map
=
torch
.
cat
(
depth_map
,
dim
=
0
).
reshape
(
self
.
h
,
self
.
w
)
pred_depths
.
append
(
depth_map
)
pred_depths
=
torch
.
stack
(
pred_depths
,
dim
=
0
)
return
pred_depths
# [n, h, w]
def
get_pred_imgs
(
self
,
ids
,
chunk_size
=
40000
,
return_weights_stats
=
False
):
grid
=
self
.
grid
[...,
:
2
].
reshape
(
-
1
,
2
)
pred_rgbs
=
[]
weights_stats
=
[]
for
id
in
ids
:
rgb
=
[]
weights_stat
=
[]
for
coords
in
torch
.
split
(
grid
,
split_size_or_sections
=
chunk_size
,
dim
=
0
):
if
return_weights_stats
:
rgbs_chunk
,
weights_stats_chunk
=
self
.
get_pred_rgbs_for_pixels
([
id
],
coords
[
None
],
return_weights
=
return_weights_stats
)
weights_sum
=
weights_stats_chunk
[
0
].
sum
(
dim
=-
1
)
weights_max
=
weights_stats_chunk
[
0
].
max
(
dim
=-
1
)[
0
]
weights_stats_chunk
=
torch
.
stack
([
weights_sum
,
weights_max
],
dim
=-
1
)
weights_stat
.
append
(
weights_stats_chunk
)
else
:
rgbs_chunk
=
self
.
get_pred_rgbs_for_pixels
([
id
],
coords
[
None
])
rgb
.
append
(
rgbs_chunk
[
0
])
img
=
torch
.
cat
(
rgb
,
dim
=
0
).
reshape
(
self
.
h
,
self
.
w
,
3
)
pred_rgbs
.
append
(
img
)
if
return_weights_stats
:
weights_stats
.
append
(
torch
.
cat
(
weights_stat
,
dim
=
0
).
reshape
(
self
.
h
,
self
.
w
,
2
))
pred_rgbs
=
torch
.
stack
(
pred_rgbs
,
dim
=
0
)
if
return_weights_stats
:
weights_stats
=
torch
.
stack
(
weights_stats
,
dim
=
0
)
# [n, h, w, 2]
return
pred_rgbs
,
weights_stats
return
pred_rgbs
# [n, h, w, 3]
def
get_pred_color_and_depth_maps
(
self
,
ids
,
chunk_size
=
40000
):
grid
=
self
.
grid
[...,
:
2
].
reshape
(
-
1
,
2
)
pred_rgbs
=
[]
pred_depths
=
[]
for
id
in
ids
:
rgb
=
[]
depth_map
=
[]
for
coords
in
torch
.
split
(
grid
,
split_size_or_sections
=
chunk_size
,
dim
=
0
):
rgbs_chunk
=
self
.
get_pred_rgbs_for_pixels
([
id
],
coords
[
None
])
rgb
.
append
(
rgbs_chunk
[
0
])
depths_chunk
=
self
.
get_pred_depths_for_pixels
([
id
],
coords
[
None
])
depths_chunk
=
torch
.
nan_to_num
(
depths_chunk
)
depth_map
.
append
(
depths_chunk
[
0
])
img
=
torch
.
cat
(
rgb
,
dim
=
0
).
reshape
(
self
.
h
,
self
.
w
,
3
)
pred_rgbs
.
append
(
img
)
depth_map
=
torch
.
cat
(
depth_map
,
dim
=
0
).
reshape
(
self
.
h
,
self
.
w
)
pred_depths
.
append
(
depth_map
)
pred_rgbs
=
torch
.
stack
(
pred_rgbs
,
dim
=
0
)
pred_depths
=
torch
.
stack
(
pred_depths
,
dim
=
0
)
return
pred_rgbs
,
pred_depths
# [n, h, w, 3/1]
def
get_pred_flows
(
self
,
ids1
,
ids2
,
chunk_size
=
40000
,
use_max_loc
=
False
,
return_original
=
False
):
grid
=
self
.
grid
[...,
:
2
].
reshape
(
-
1
,
2
)
flows
=
[]
for
id1
,
id2
in
zip
(
ids1
,
ids2
):
flow_map
=
[]
for
coords
in
torch
.
split
(
grid
,
split_size_or_sections
=
chunk_size
,
dim
=
0
):
with
torch
.
no_grad
():
flows_chunk
=
self
.
get_correspondences_for_pixels
([
id1
],
coords
[
None
],
[
id2
],
use_max_loc
=
use_max_loc
)[
0
]
flow_map
.
append
(
flows_chunk
)
flow_map
=
torch
.
cat
(
flow_map
,
dim
=
0
).
reshape
(
self
.
h
,
self
.
w
,
2
)
flow_map
=
(
flow_map
-
self
.
grid
[...,
:
2
]).
cpu
().
numpy
()
flows
.
append
(
flow_map
)
flows
=
np
.
stack
(
flows
,
axis
=
0
)
flow_imgs
=
util
.
flow_to_image
(
flows
)
if
return_original
:
return
flow_imgs
,
flows
else
:
return
flow_imgs
# [n, h, w, 3], numpy arra
def
get_pred_flows_and_occlusions
(
self
,
ids1
,
ids2
,
chunk_size
=
40000
,
return_original
=
False
):
grid
=
self
.
grid
[...,
:
2
].
reshape
(
-
1
,
2
)
flows
=
[]
for
id1
,
id2
in
zip
(
ids1
,
ids2
):
flow_map
=
[]
for
coords
in
torch
.
split
(
grid
,
split_size_or_sections
=
chunk_size
,
dim
=
0
):
with
torch
.
no_grad
():
flows_chunk
,
occlusion_chunk
=
self
.
get_correspondences_and_occlusion_masks_for_pixels
([
id1
],
coords
[
None
],
[
id2
])
flows_chunk
=
torch
.
cat
([
flows_chunk
[
0
],
occlusion_chunk
[
0
].
float
()],
dim
=-
1
)
flow_map
.
append
(
flows_chunk
)
flow_map
=
torch
.
cat
(
flow_map
,
dim
=
0
).
reshape
(
self
.
h
,
self
.
w
,
3
)
flow_map
[...,
:
2
]
-=
self
.
grid
[...,
:
2
]
flow_map
=
flow_map
.
cpu
().
numpy
()
flows
.
append
(
flow_map
)
flows
=
np
.
stack
(
flows
,
axis
=
0
)
flow_imgs
=
util
.
flow_to_image
(
flows
[...,
:
2
])
if
return_original
:
return
flow_imgs
,
flows
else
:
return
flow_imgs
# [n, h, w, 3], numpy arra
def
render_color_and_depth_videos
(
self
,
start_id
,
end_id
,
chunk_size
=
40000
,
colorize
=
True
):
depths_np
=
[]
colors_np
=
[]
for
id
in
range
(
start_id
,
end_id
):
with
torch
.
no_grad
():
color
,
depth
=
self
.
get_pred_color_and_depth_maps
([
id
],
chunk_size
=
chunk_size
)
colors_np
.
append
(
color
.
cpu
().
numpy
())
depths_np
.
append
(
depth
.
cpu
().
numpy
())
colors_np
=
np
.
concatenate
(
colors_np
,
axis
=
0
)
depths_np
=
np
.
concatenate
(
depths_np
,
axis
=
0
)
depths_vis_min
,
depths_vis_max
=
depths_np
.
min
(),
depths_np
.
max
()
depths_vis
=
(
depths_np
-
depths_vis_min
)
/
(
depths_vis_max
-
depths_vis_min
)
if
colorize
:
depths_vis_color
=
[]
for
depth_vis
in
depths_vis
:
depth_vis_color
=
util
.
colorize_np
(
depth_vis
,
range
=
(
0
,
1
))
depths_vis_color
.
append
(
depth_vis_color
)
depths_vis_color
=
np
.
stack
(
depths_vis_color
,
axis
=
0
)
else
:
depths_vis_color
=
depths_vis
colors_np
=
(
255
*
colors_np
).
astype
(
np
.
uint8
)
depths_vis_color
=
(
255
*
depths_vis_color
).
astype
(
np
.
uint8
)
return
colors_np
,
depths_vis_color
def
log
(
self
,
writer
,
step
):
if
self
.
args
.
local_rank
==
0
:
if
step
%
self
.
args
.
i_print
==
0
:
logstr
=
'{}_{} | step: {} |'
.
format
(
self
.
args
.
expname
,
self
.
seq_name
,
step
)
for
k
in
self
.
scalars_to_log
.
keys
():
logstr
+=
' {}: {:.6f}'
.
format
(
k
,
self
.
scalars_to_log
[
k
])
if
k
!=
'time'
:
writer
.
add_scalar
(
k
,
self
.
scalars_to_log
[
k
],
step
)
print
(
logstr
)
if
step
%
self
.
args
.
i_img
==
0
:
# flow
flows
=
self
.
get_pred_flows
(
self
.
ids1
[
0
:
1
],
self
.
ids2
[
0
:
1
],
chunk_size
=
self
.
args
.
chunk_size
)[
0
]
writer
.
add_image
(
'flow'
,
flows
,
step
,
dataformats
=
'HWC'
)
# correspondences
out_trained
=
self
.
vis_pairwise_correspondences
()
out_fix_10
=
self
.
vis_pairwise_correspondences
(
ids
=
(
0
,
min
(
self
.
num_imgs
//
10
,
10
)))
out_fix_half
=
self
.
vis_pairwise_correspondences
(
ids
=
(
0
,
self
.
num_imgs
//
2
))
out_fix_full
=
self
.
vis_pairwise_correspondences
(
ids
=
(
0
,
self
.
num_imgs
-
1
))
writer
.
add_image
(
'correspondence/trained'
,
out_trained
,
step
,
dataformats
=
'HWC'
)
writer
.
add_image
(
'correspondence/fix_10'
,
out_fix_10
,
step
,
dataformats
=
'HWC'
)
writer
.
add_image
(
'correspondence/fix_half'
,
out_fix_half
,
step
,
dataformats
=
'HWC'
)
writer
.
add_image
(
'correspondence/fix_whole'
,
out_fix_full
,
step
,
dataformats
=
'HWC'
)
# write predicted depths
ids
=
np
.
concatenate
([
self
.
ids1
[
0
:
1
],
self
.
ids2
[
0
:
1
]])
with
torch
.
no_grad
():
pred_depths
=
self
.
get_pred_depth_maps
(
ids
,
chunk_size
=
self
.
args
.
chunk_size
).
cpu
()
# [n, h, w]
pred_imgs
,
weights_stats
=
self
.
get_pred_imgs
(
ids
,
return_weights_stats
=
True
,
chunk_size
=
self
.
args
.
chunk_size
)
# [n, h, w, 3/2]
pred_imgs
=
pred_imgs
.
cpu
()
weights_stats
=
weights_stats
.
cpu
()
# write depth maps
pred_depths_cat
=
pred_depths
.
permute
(
1
,
0
,
2
).
reshape
(
self
.
h
,
-
1
)
min_depth
=
pred_depths_cat
.
min
().
item
()
max_depth
=
pred_depths_cat
.
max
().
item
()
pred_depths_vis
=
util
.
colorize
(
pred_depths_cat
,
range
=
(
min_depth
,
max_depth
),
append_cbar
=
True
)
pred_depths_vis
=
F
.
interpolate
(
pred_depths_vis
.
permute
(
2
,
0
,
1
)[
None
],
scale_factor
=
0.5
,
mode
=
'area'
)
writer
.
add_image
(
'depth'
,
pred_depths_vis
,
step
,
dataformats
=
'NCHW'
)
# write gt and predicted rgbs
gt_imgs
=
self
.
images
[
ids
].
cpu
()
imgs_vis
=
torch
.
cat
([
gt_imgs
,
pred_imgs
],
dim
=
1
)
imgs_vis
=
F
.
interpolate
(
imgs_vis
.
permute
(
0
,
3
,
1
,
2
),
scale_factor
=
0.5
,
mode
=
'area'
)
writer
.
add_images
(
'images'
,
imgs_vis
,
step
,
dataformats
=
'NCHW'
)
# write weight statistics, first row: sum, second row: max
weights_stats
=
weights_stats
.
permute
(
3
,
1
,
0
,
2
).
reshape
(
len
(
ids
)
*
self
.
h
,
-
1
)
weights_stats_vis
=
util
.
colorize
(
weights_stats
,
range
=
(
0
,
1
),
append_cbar
=
True
)
weights_stats_vis
=
F
.
interpolate
(
weights_stats_vis
.
permute
(
2
,
0
,
1
)[
None
],
scale_factor
=
0.5
,
mode
=
'area'
)
writer
.
add_image
(
'weight_stats'
,
weights_stats_vis
,
step
,
dataformats
=
'NCHW'
)
if
step
%
self
.
args
.
i_weight
==
0
and
step
>
0
:
# save checkpoints
os
.
makedirs
(
self
.
out_dir
,
exist_ok
=
True
)
print
(
'Saving checkpoints at {} to {}...'
.
format
(
step
,
self
.
out_dir
))
fpath
=
os
.
path
.
join
(
self
.
out_dir
,
'model_{:06d}.pth'
.
format
(
step
))
self
.
save_model
(
fpath
)
vis_dir
=
os
.
path
.
join
(
self
.
out_dir
,
'vis'
)
os
.
makedirs
(
vis_dir
,
exist_ok
=
True
)
print
(
'saving visualizations to {}...'
.
format
(
vis_dir
))
if
self
.
with_mask
:
video_correspondences
=
self
.
eval_video_correspondences
(
0
,
use_mask
=
True
,
vis_occlusion
=
self
.
args
.
vis_occlusion
,
use_max_loc
=
self
.
args
.
use_max_loc
,
occlusion_th
=
self
.
args
.
occlusion_th
)
imageio
.
mimwrite
(
os
.
path
.
join
(
vis_dir
,
'{}_corr_foreground_{:06d}.mp4'
.
format
(
self
.
seq_name
,
step
)),
video_correspondences
,
quality
=
8
,
fps
=
10
)
video_correspondences
=
self
.
eval_video_correspondences
(
0
,
use_mask
=
True
,
reverse_mask
=
True
,
vis_occlusion
=
self
.
args
.
vis_occlusion
,
use_max_loc
=
self
.
args
.
use_max_loc
,
occlusion_th
=
self
.
args
.
occlusion_th
)
imageio
.
mimwrite
(
os
.
path
.
join
(
vis_dir
,
'{}_corr_background_{:06d}.mp4'
.
format
(
self
.
seq_name
,
step
)),
video_correspondences
,
quality
=
8
,
fps
=
10
)
else
:
video_correspondences
=
self
.
eval_video_correspondences
(
0
,
vis_occlusion
=
self
.
args
.
vis_occlusion
,
use_max_loc
=
self
.
args
.
use_max_loc
,
occlusion_th
=
self
.
args
.
occlusion_th
)
imageio
.
mimwrite
(
os
.
path
.
join
(
vis_dir
,
'{}_corr_{:06d}.mp4'
.
format
(
self
.
seq_name
,
step
)),
video_correspondences
,
quality
=
8
,
fps
=
10
)
color_frames
,
depth_frames
=
self
.
render_color_and_depth_videos
(
0
,
self
.
num_imgs
,
chunk_size
=
self
.
args
.
chunk_size
)
imageio
.
mimwrite
(
os
.
path
.
join
(
vis_dir
,
'{}_depth_{:06d}.mp4'
.
format
(
self
.
seq_name
,
step
)),
depth_frames
,
quality
=
8
,
fps
=
10
)
imageio
.
mimwrite
(
os
.
path
.
join
(
vis_dir
,
'{}_color_{:06d}.mp4'
.
format
(
self
.
seq_name
,
step
)),
color_frames
,
quality
=
8
,
fps
=
10
)
ids1
=
np
.
arange
(
self
.
num_imgs
)
ids2
=
ids1
+
1
ids2
[
-
1
]
-=
2
pred_optical_flows_vis
,
pred_optical_flows
=
self
.
get_pred_flows
(
ids1
,
ids2
,
use_max_loc
=
self
.
args
.
use_max_loc
,
chunk_size
=
self
.
args
.
chunk_size
,
return_original
=
True
)
imageio
.
mimwrite
(
os
.
path
.
join
(
vis_dir
,
'{}_flow_{:06d}.mp4'
.
format
(
self
.
seq_name
,
step
)),
pred_optical_flows_vis
[:
-
1
],
quality
=
8
,
fps
=
10
)
if
self
.
args
.
use_error_map
and
(
step
%
self
.
args
.
i_cache
==
0
)
and
(
step
>
0
):
flow_save_dir
=
os
.
path
.
join
(
self
.
out_dir
,
'flow'
)
os
.
makedirs
(
flow_save_dir
,
exist_ok
=
True
)
flow_errors
=
[]
for
i
,
(
id1
,
id2
)
in
enumerate
(
zip
(
ids1
,
ids2
)):
save_path
=
os
.
path
.
join
(
flow_save_dir
,
'{}_{}.npy'
.
format
(
os
.
path
.
basename
(
self
.
img_files
[
id1
]),
os
.
path
.
basename
(
self
.
img_files
[
id2
])))
np
.
save
(
save_path
,
pred_optical_flows
[
i
])
gt_flow
=
np
.
load
(
os
.
path
.
join
(
self
.
seq_dir
,
'raft_exhaustive'
,
'{}_{}.npy'
.
format
(
os
.
path
.
basename
(
self
.
img_files
[
id1
]),
os
.
path
.
basename
(
self
.
img_files
[
id2
]))
))
flow_error
=
np
.
linalg
.
norm
(
gt_flow
-
pred_optical_flows
[
i
],
axis
=-
1
).
mean
()
flow_errors
.
append
(
flow_error
)
flow_errors
=
np
.
array
(
flow_errors
)
np
.
savetxt
(
os
.
path
.
join
(
self
.
out_dir
,
'flow_error.txt'
),
flow_errors
)
def
save_model
(
self
,
filename
):
to_save
=
{
'optimizer'
:
self
.
optimizer
.
state_dict
(),
'scheduler'
:
self
.
scheduler
.
state_dict
(),
'deform_mlp'
:
de_parallel
(
self
.
deform_mlp
).
state_dict
(),
'feature_mlp'
:
de_parallel
(
self
.
feature_mlp
).
state_dict
(),
'color_mlp'
:
de_parallel
(
self
.
color_mlp
).
state_dict
(),
'num_imgs'
:
self
.
num_imgs
}
torch
.
save
(
to_save
,
filename
)
def
load_model
(
self
,
filename
,
load_opt
=
True
,
load_scheduler
=
True
):
if
self
.
args
.
distributed
:
to_load
=
torch
.
load
(
filename
,
map_location
=
'cuda:{}'
.
format
(
self
.
args
.
local_rank
))
else
:
to_load
=
torch
.
load
(
filename
)
if
load_opt
:
self
.
optimizer
.
load_state_dict
(
to_load
[
'optimizer'
])
if
load_scheduler
:
self
.
scheduler
.
load_state_dict
(
to_load
[
'scheduler'
])
self
.
deform_mlp
.
load_state_dict
(
to_load
[
'deform_mlp'
])
self
.
feature_mlp
.
load_state_dict
(
to_load
[
'feature_mlp'
])
self
.
color_mlp
.
load_state_dict
(
to_load
[
'color_mlp'
])
self
.
num_imgs
=
to_load
[
'num_imgs'
]
def
load_from_ckpt
(
self
,
out_folder
,
load_opt
=
True
,
load_scheduler
=
True
,
force_latest_ckpt
=
False
):
'''
load model from existing checkpoints and return the current step
:param out_folder: the directory that stores ckpts
:return: the current starting step
'''
# all existing ckpts
ckpts
=
[]
if
os
.
path
.
exists
(
out_folder
):
ckpts
=
[
os
.
path
.
join
(
out_folder
,
f
)
for
f
in
sorted
(
os
.
listdir
(
out_folder
))
if
f
.
endswith
(
'.pth'
)]
if
self
.
args
.
ckpt_path
is
not
None
and
not
force_latest_ckpt
:
if
os
.
path
.
isfile
(
self
.
args
.
ckpt_path
):
# load the specified ckpt
ckpts
=
[
self
.
args
.
ckpt_path
]
if
len
(
ckpts
)
>
0
and
not
self
.
args
.
no_reload
:
fpath
=
ckpts
[
-
1
]
self
.
load_model
(
fpath
,
load_opt
,
load_scheduler
)
step
=
int
(
fpath
[
-
10
:
-
4
])
print
(
'Reloading from {}, starting at step={}'
.
format
(
fpath
,
step
))
else
:
print
(
'No ckpts found, from scratch...'
)
step
=
0
return
step
util.py
0 → 100644
View file @
754fbc04
import
numpy
as
np
import
os
,
sys
,
time
import
imageio
import
cv2
import
shutil
from
datetime
import
datetime
import
matplotlib.pyplot
as
plt
import
torch
import
torch.nn.functional
as
F
import
socket
import
contextlib
from
matplotlib
import
cm
from
matplotlib.backends.backend_agg
import
FigureCanvasAgg
from
matplotlib.figure
import
Figure
import
matplotlib
as
mpl
import
subprocess
TINY_NUMBER
=
1e-6
# float32 only has 7 decimal digits precision
torch
.
manual_seed
(
1234
)
np
.
random
.
seed
(
0
)
sigma2alpha
=
lambda
sigma
:
1.
-
torch
.
exp
(
-
sigma
)
def
float2uint8
(
x
):
return
(
255.
*
x
).
astype
(
np
.
uint8
)
def
uint82float
(
img
):
return
np
.
ascontiguousarray
(
img
)
/
255.
def
skew
(
x
):
if
'torch'
in
str
(
x
.
dtype
):
return
torch
.
tensor
([[
0
,
-
x
[
2
],
x
[
1
]],
[
x
[
2
],
0
,
-
x
[
0
]],
[
-
x
[
1
],
x
[
0
],
0
]],
device
=
x
.
device
)
else
:
return
np
.
array
([[
0
,
-
x
[
2
],
x
[
1
]],
[
x
[
2
],
0
,
-
x
[
0
]],
[
-
x
[
1
],
x
[
0
],
0
]])
def
img2mse
(
x
,
y
,
mask
=
None
):
'''
:param x: img 1, [(...), 3]
:param y: img 2, [(...), 3]
:param mask: optional, [(...)]
:return: mse score
'''
if
mask
is
None
:
return
torch
.
mean
((
x
-
y
)
*
(
x
-
y
))
else
:
return
torch
.
sum
((
x
-
y
)
*
(
x
-
y
)
*
mask
.
unsqueeze
(
-
1
))
/
(
torch
.
sum
(
mask
)
*
x
.
shape
[
-
1
]
+
TINY_NUMBER
)
def
homogenize
(
coord
):
coord
=
torch
.
cat
((
coord
,
torch
.
ones_like
(
coord
[...,
[
0
]])),
-
1
)
return
coord
def
normalize_coords
(
coords
,
h
,
w
,
no_shift
=
False
):
assert
coords
.
shape
[
-
1
]
==
2
if
no_shift
:
return
coords
/
torch
.
tensor
([
w
-
1.
,
h
-
1.
],
device
=
coords
.
device
)
*
2
else
:
return
coords
/
torch
.
tensor
([
w
-
1.
,
h
-
1.
],
device
=
coords
.
device
)
*
2
-
1.
def
denormalize_coords
(
coords
,
h
,
w
,
no_shift
=
False
):
assert
coords
.
shape
[
-
1
]
==
2
if
no_shift
:
return
coords
*
torch
.
tensor
([
w
-
1.
,
h
-
1.
],
device
=
coords
.
device
)
/
2.
else
:
return
(
coords
+
1.
)
*
torch
.
tensor
([
w
-
1.
,
h
-
1.
],
device
=
coords
.
device
)
/
2.
def
gen_grid
(
h
,
w
,
device
,
normalize
=
False
,
homogeneous
=
False
):
if
normalize
:
lin_y
=
torch
.
linspace
(
-
1.
,
1.
,
steps
=
h
,
device
=
device
)
lin_x
=
torch
.
linspace
(
-
1.
,
1.
,
steps
=
w
,
device
=
device
)
else
:
lin_y
=
torch
.
arange
(
0
,
h
,
device
=
device
)
lin_x
=
torch
.
arange
(
0
,
w
,
device
=
device
)
grid_y
,
grid_x
=
torch
.
meshgrid
((
lin_y
,
lin_x
))
grid
=
torch
.
stack
((
grid_x
,
grid_y
),
-
1
)
if
homogeneous
:
grid
=
torch
.
cat
([
grid
,
torch
.
ones_like
(
grid
[...,
:
1
])],
dim
=-
1
)
return
grid
# [h, w, 2 or 3]
def
gen_grid_np
(
h
,
w
,
normalize
=
False
,
homogeneous
=
False
):
if
normalize
:
lin_y
=
np
.
linspace
(
-
1.
,
1.
,
num
=
h
)
lin_x
=
np
.
linspace
(
-
1.
,
1.
,
num
=
w
)
else
:
lin_y
=
np
.
arange
(
0
,
h
)
lin_x
=
np
.
arange
(
0
,
w
)
grid_x
,
grid_y
=
np
.
meshgrid
(
lin_x
,
lin_y
)
grid
=
np
.
stack
((
grid_x
,
grid_y
),
-
1
)
if
homogeneous
:
grid
=
np
.
concatenate
([
grid
,
np
.
ones_like
(
grid
[...,
:
1
])],
axis
=-
1
)
return
grid
# [h, w, 2 or 3]
def
save_current_code
(
outdir
):
now
=
datetime
.
now
()
# current date and time
date_time
=
now
.
strftime
(
"%m_%d-%H:%M:%S"
)
src_dir
=
'.'
dst_dir
=
os
.
path
.
join
(
outdir
,
'code'
,
'{}'
.
format
(
date_time
))
shutil
.
copytree
(
src_dir
,
dst_dir
,
ignore
=
shutil
.
ignore_patterns
(
'data*'
,
'OLD*'
,
'logs*'
,
'out*'
,
'runs*'
,
'*.png'
,
'*.mp4'
,
'*__pycache__*'
,
'*.git*'
,
'*.idea*'
,
'*.zip'
,
'*.jpg'
))
def
drawMatches
(
img1
,
img2
,
kp1
,
kp2
,
num_vis
=
200
,
idx_vis
=
None
,
radius
=
2
,
mask
=
None
):
num_pts
=
len
(
kp1
)
if
idx_vis
is
None
:
if
num_vis
<
num_pts
:
idx_vis
=
np
.
random
.
choice
(
num_pts
,
num_vis
,
replace
=
False
)
else
:
idx_vis
=
np
.
arange
(
num_pts
)
kp1_vis
=
kp1
[
idx_vis
]
kp2_vis
=
kp2
[
idx_vis
]
h1
,
w1
=
img1
.
shape
[:
2
]
h2
,
w2
=
img2
.
shape
[:
2
]
img1
=
float2uint8
(
img1
)
img2
=
float2uint8
(
img2
)
center
=
np
.
median
(
kp1
,
axis
=
0
)
set_max
=
range
(
128
)
colors
=
{
m
:
i
for
i
,
m
in
enumerate
(
set_max
)}
colors
=
{
m
:
(
255
*
np
.
array
(
plt
.
cm
.
hsv
(
i
/
float
(
len
(
colors
))))[:
3
][::
-
1
]).
astype
(
np
.
int32
)
for
m
,
i
in
colors
.
items
()}
if
mask
is
not
None
:
ind
=
np
.
argsort
(
mask
)[::
-
1
]
kp1_vis
=
kp1_vis
[
ind
]
kp2_vis
=
kp2_vis
[
ind
]
mask
=
mask
[
ind
]
for
i
,
(
pt1
,
pt2
)
in
enumerate
(
zip
(
kp1_vis
,
kp2_vis
)):
# random_color = tuple(np.random.randint(low=0, high=255, size=(3,)).tolist())
coord_angle
=
np
.
arctan2
(
pt1
[
1
]
-
center
[
1
],
pt1
[
0
]
-
center
[
0
])
corr_color
=
np
.
int32
(
64
*
coord_angle
/
np
.
pi
)
%
128
color
=
tuple
(
colors
[
corr_color
].
tolist
())
if
(
pt1
[
0
]
<=
w1
-
1
)
and
(
pt1
[
0
]
>=
0
)
and
(
pt1
[
1
]
<=
h1
-
1
)
and
(
pt1
[
1
]
>=
0
):
img1
=
cv2
.
circle
(
img1
,
(
int
(
pt1
[
0
]),
int
(
pt1
[
1
])),
radius
,
color
,
-
1
,
cv2
.
LINE_AA
)
if
(
pt2
[
0
]
<=
w2
-
1
)
and
(
pt2
[
0
]
>=
0
)
and
(
pt2
[
1
]
<=
h2
-
1
)
and
(
pt2
[
1
]
>=
0
):
if
mask
is
not
None
and
mask
[
i
]:
img2
=
cv2
.
drawMarker
(
img2
,
(
int
(
pt2
[
0
]),
int
(
pt2
[
1
])),
color
,
markerType
=
cv2
.
MARKER_CROSS
,
markerSize
=
int
(
5
*
radius
),
thickness
=
int
(
radius
/
2
),
line_type
=
cv2
.
LINE_AA
)
else
:
img2
=
cv2
.
circle
(
img2
,
(
int
(
pt2
[
0
]),
int
(
pt2
[
1
])),
radius
,
color
,
-
1
,
cv2
.
LINE_AA
)
out
=
np
.
concatenate
([
img1
,
img2
],
axis
=
1
)
return
out
def
get_vertical_colorbar
(
h
,
vmin
,
vmax
,
cmap_name
=
'jet'
,
label
=
None
,
cbar_precision
=
2
):
'''
:param w: pixels
:param h: pixels
:param vmin: min value
:param vmax: max value
:param cmap_name:
:param label
:return:
'''
fig
=
Figure
(
figsize
=
(
2
,
8
),
dpi
=
100
)
fig
.
subplots_adjust
(
right
=
1.5
)
canvas
=
FigureCanvasAgg
(
fig
)
# Do some plotting.
ax
=
fig
.
add_subplot
(
111
)
cmap
=
cm
.
get_cmap
(
cmap_name
)
norm
=
mpl
.
colors
.
Normalize
(
vmin
=
vmin
,
vmax
=
vmax
)
tick_cnt
=
6
tick_loc
=
np
.
linspace
(
vmin
,
vmax
,
tick_cnt
)
cb1
=
mpl
.
colorbar
.
ColorbarBase
(
ax
,
cmap
=
cmap
,
norm
=
norm
,
ticks
=
tick_loc
,
orientation
=
'vertical'
)
tick_label
=
[
str
(
np
.
round
(
x
,
cbar_precision
))
for
x
in
tick_loc
]
if
cbar_precision
==
0
:
tick_label
=
[
x
[:
-
2
]
for
x
in
tick_label
]
cb1
.
set_ticklabels
(
tick_label
)
cb1
.
ax
.
tick_params
(
labelsize
=
18
,
rotation
=
0
)
if
label
is
not
None
:
cb1
.
set_label
(
label
)
fig
.
tight_layout
()
canvas
.
draw
()
s
,
(
width
,
height
)
=
canvas
.
print_to_buffer
()
im
=
np
.
frombuffer
(
s
,
np
.
uint8
).
reshape
((
height
,
width
,
4
))
im
=
im
[:,
:,
:
3
].
astype
(
np
.
float32
)
/
255.
if
h
!=
im
.
shape
[
0
]:
w
=
int
(
im
.
shape
[
1
]
/
im
.
shape
[
0
]
*
h
)
im
=
cv2
.
resize
(
im
,
(
w
,
h
),
interpolation
=
cv2
.
INTER_AREA
)
return
im
def
colorize_np
(
x
,
cmap_name
=
'jet'
,
mask
=
None
,
range
=
None
,
append_cbar
=
False
,
cbar_in_image
=
False
,
cbar_precision
=
2
):
'''
turn a grayscale image into a color image
:param x: input grayscale, [H, W]
:param cmap_name: the colorization method
:param mask: the mask image, [H, W]
:param range: the range for scaling, automatic if None, [min, max]
:param append_cbar: if append the color bar
:param cbar_in_image: put the color bar inside the image to keep the output image the same size as the input image
:return: colorized image, [H, W]
'''
if
range
is
not
None
:
vmin
,
vmax
=
range
elif
mask
is
not
None
:
# vmin, vmax = np.percentile(x[mask], (2, 100))
vmin
=
np
.
min
(
x
[
mask
][
np
.
nonzero
(
x
[
mask
])])
vmax
=
np
.
max
(
x
[
mask
])
# vmin = vmin - np.abs(vmin) * 0.01
x
[
np
.
logical_not
(
mask
)]
=
vmin
# print(vmin, vmax)
else
:
vmin
,
vmax
=
np
.
percentile
(
x
,
(
1
,
100
))
vmax
+=
TINY_NUMBER
x
=
np
.
clip
(
x
,
vmin
,
vmax
)
x
=
(
x
-
vmin
)
/
(
vmax
-
vmin
)
# x = np.clip(x, 0., 1.)
cmap
=
cm
.
get_cmap
(
cmap_name
)
x_new
=
cmap
(
x
)[:,
:,
:
3
]
if
mask
is
not
None
:
mask
=
np
.
float32
(
mask
[:,
:,
np
.
newaxis
])
x_new
=
x_new
*
mask
+
np
.
ones_like
(
x_new
)
*
(
1.
-
mask
)
cbar
=
get_vertical_colorbar
(
h
=
x
.
shape
[
0
],
vmin
=
vmin
,
vmax
=
vmax
,
cmap_name
=
cmap_name
,
cbar_precision
=
cbar_precision
)
if
append_cbar
:
if
cbar_in_image
:
x_new
[:,
-
cbar
.
shape
[
1
]:,
:]
=
cbar
else
:
x_new
=
np
.
concatenate
((
x_new
,
np
.
zeros_like
(
x_new
[:,
:
5
,
:]),
cbar
),
axis
=
1
)
return
x_new
else
:
return
x_new
# tensor
def
colorize
(
x
,
cmap_name
=
'jet'
,
mask
=
None
,
range
=
None
,
append_cbar
=
False
,
cbar_in_image
=
False
):
device
=
x
.
device
x
=
x
.
cpu
().
numpy
()
if
mask
is
not
None
:
mask
=
mask
.
cpu
().
numpy
()
>
0.99
x
=
colorize_np
(
x
,
cmap_name
,
mask
,
range
,
append_cbar
,
cbar_in_image
)
x
=
torch
.
from_numpy
(
x
).
to
(
device
)
return
x
def
make_colorwheel
():
"""
Generates a color wheel for optical flow visualization as presented in:
Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007)
URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf
Code follows the original C++ source code of Daniel Scharstein.
Code follows the the Matlab source code of Deqing Sun.
Returns:
np.ndarray: Color wheel
"""
RY
=
15
YG
=
6
GC
=
4
CB
=
11
BM
=
13
MR
=
6
ncols
=
RY
+
YG
+
GC
+
CB
+
BM
+
MR
colorwheel
=
np
.
zeros
((
ncols
,
3
))
col
=
0
# RY
colorwheel
[
0
:
RY
,
0
]
=
255
colorwheel
[
0
:
RY
,
1
]
=
np
.
floor
(
255
*
np
.
arange
(
0
,
RY
)
/
RY
)
col
=
col
+
RY
# YG
colorwheel
[
col
:
col
+
YG
,
0
]
=
255
-
np
.
floor
(
255
*
np
.
arange
(
0
,
YG
)
/
YG
)
colorwheel
[
col
:
col
+
YG
,
1
]
=
255
col
=
col
+
YG
# GC
colorwheel
[
col
:
col
+
GC
,
1
]
=
255
colorwheel
[
col
:
col
+
GC
,
2
]
=
np
.
floor
(
255
*
np
.
arange
(
0
,
GC
)
/
GC
)
col
=
col
+
GC
# CB
colorwheel
[
col
:
col
+
CB
,
1
]
=
255
-
np
.
floor
(
255
*
np
.
arange
(
CB
)
/
CB
)
colorwheel
[
col
:
col
+
CB
,
2
]
=
255
col
=
col
+
CB
# BM
colorwheel
[
col
:
col
+
BM
,
2
]
=
255
colorwheel
[
col
:
col
+
BM
,
0
]
=
np
.
floor
(
255
*
np
.
arange
(
0
,
BM
)
/
BM
)
col
=
col
+
BM
# MR
colorwheel
[
col
:
col
+
MR
,
2
]
=
255
-
np
.
floor
(
255
*
np
.
arange
(
MR
)
/
MR
)
colorwheel
[
col
:
col
+
MR
,
0
]
=
255
return
colorwheel
def
flow_uv_to_colors
(
u
,
v
,
convert_to_bgr
=
False
):
"""
Applies the flow color wheel to (possibly clipped) flow components u and v.
According to the C++ source code of Daniel Scharstein
According to the Matlab source code of Deqing Sun
Args:
u (np.ndarray): Input horizontal flow of shape [H,W]
v (np.ndarray): Input vertical flow of shape [H,W]
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.
Returns:
np.ndarray: Flow visualization image of shape [H,W,3]
"""
flow_image
=
np
.
zeros
((
u
.
shape
[
0
],
u
.
shape
[
1
],
3
),
np
.
uint8
)
colorwheel
=
make_colorwheel
()
# shape [55x3]
ncols
=
colorwheel
.
shape
[
0
]
rad
=
np
.
sqrt
(
np
.
square
(
u
)
+
np
.
square
(
v
))
a
=
np
.
arctan2
(
-
v
,
-
u
)
/
np
.
pi
fk
=
(
a
+
1
)
/
2
*
(
ncols
-
1
)
k0
=
np
.
floor
(
fk
).
astype
(
np
.
int32
)
k1
=
k0
+
1
k1
[
k1
==
ncols
]
=
0
f
=
fk
-
k0
for
i
in
range
(
colorwheel
.
shape
[
1
]):
tmp
=
colorwheel
[:,
i
]
col0
=
tmp
[
k0
]
/
255.0
col1
=
tmp
[
k1
]
/
255.0
col
=
(
1
-
f
)
*
col0
+
f
*
col1
idx
=
(
rad
<=
1
)
col
[
idx
]
=
1
-
rad
[
idx
]
*
(
1
-
col
[
idx
])
col
[
~
idx
]
=
col
[
~
idx
]
*
0.75
# out of range
# Note the 2-i => BGR instead of RGB
ch_idx
=
2
-
i
if
convert_to_bgr
else
i
flow_image
[:,
:,
ch_idx
]
=
np
.
floor
(
255
*
col
)
return
flow_image
def
flow_to_image
(
flow_uv
,
clip_flow
=
None
,
convert_to_bgr
=
False
):
"""
Expects a two dimensional flow image of shape.
Args:
flow_uv (np.ndarray): Flow UV image of shape [H,W,2]
clip_flow (float, optional): Clip maximum of flow values. Defaults to None.
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.
Returns:
np.ndarray: Flow visualization image of shape [H,W,3]
"""
assert
flow_uv
.
ndim
==
3
or
flow_uv
.
ndim
==
4
,
'input flow must have three or four dimensions'
assert
flow_uv
.
shape
[
-
1
]
==
2
,
'input flow must have shape [..., H,W,2]'
if
clip_flow
is
not
None
:
flow_uv
=
np
.
clip
(
flow_uv
,
0
,
clip_flow
)
u
=
flow_uv
[...,
0
]
v
=
flow_uv
[...,
1
]
rad
=
np
.
sqrt
(
np
.
square
(
u
)
+
np
.
square
(
v
))
rad_max
=
np
.
max
(
rad
)
epsilon
=
1e-5
u
=
u
/
(
rad_max
+
epsilon
)
v
=
v
/
(
rad_max
+
epsilon
)
if
flow_uv
.
ndim
==
4
:
return
np
.
stack
([
flow_uv_to_colors
(
u_
,
v_
,
convert_to_bgr
)
for
(
u_
,
v_
)
in
zip
(
u
,
v
)],
axis
=
0
)
else
:
return
flow_uv_to_colors
(
u
,
v
,
convert_to_bgr
)
viz.py
0 → 100644
View file @
754fbc04
import
os
import
imageio
import
glob
import
torch
import
numpy
as
np
import
util
import
subprocess
from
config
import
config_parser
from
trainer
import
BaseTrainer
import
colorsys
from
matplotlib
import
cm
import
cv2
color_map
=
cm
.
get_cmap
(
"jet"
)
def
vis_trail
(
scene_dir
,
kpts_foreground
,
kpts_background
,
save_path
):
"""
This function calculates the median motion of the background, which is subsequently
subtracted from the foreground motion. This subtraction process "stabilizes" the camera and
improves the interpretability of the foreground motion trails.
"""
img_dir
=
os
.
path
.
join
(
scene_dir
,
"color"
)
img_files
=
sorted
(
list
(
glob
.
glob
(
os
.
path
.
join
(
img_dir
,
"*"
))))
images
=
np
.
array
([
imageio
.
imread
(
img_file
)
for
img_file
in
img_files
])
kpts_foreground
=
kpts_foreground
[:,
::
1
]
# can adjust kpts sampling rate here
num_imgs
,
num_pts
=
kpts_foreground
.
shape
[:
2
]
frames
=
[]
for
i
in
range
(
num_imgs
):
kpts
=
kpts_foreground
-
np
.
median
(
kpts_background
-
kpts_background
[
i
],
axis
=
1
,
keepdims
=
True
)
img_curr
=
images
[
i
]
for
t
in
range
(
i
):
img1
=
img_curr
.
copy
()
# changing opacity
alpha
=
max
(
1
-
0.9
*
((
i
-
t
)
/
((
i
+
1
)
*
.
99
)),
0.1
)
for
j
in
range
(
num_pts
):
color
=
np
.
array
(
color_map
(
j
/
max
(
1
,
float
(
num_pts
-
1
)))[:
3
])
*
255
color_alpha
=
1
hsv
=
colorsys
.
rgb_to_hsv
(
color
[
0
],
color
[
1
],
color
[
2
])
color
=
colorsys
.
hsv_to_rgb
(
hsv
[
0
],
hsv
[
1
]
*
color_alpha
,
hsv
[
2
])
pt1
=
kpts
[
t
,
j
]
pt2
=
kpts
[
t
+
1
,
j
]
p1
=
(
int
(
round
(
pt1
[
0
])),
int
(
round
(
pt1
[
1
])))
p2
=
(
int
(
round
(
pt2
[
0
])),
int
(
round
(
pt2
[
1
])))
cv2
.
line
(
img1
,
p1
,
p2
,
color
,
thickness
=
1
,
lineType
=
16
)
img_curr
=
cv2
.
addWeighted
(
img1
,
alpha
,
img_curr
,
1
-
alpha
,
0
)
for
j
in
range
(
num_pts
):
color
=
np
.
array
(
color_map
(
j
/
max
(
1
,
float
(
num_pts
-
1
)))[:
3
])
*
255
pt1
=
kpts
[
i
,
j
]
p1
=
(
int
(
round
(
pt1
[
0
])),
int
(
round
(
pt1
[
1
])))
cv2
.
circle
(
img_curr
,
p1
,
2
,
color
,
-
1
,
lineType
=
16
)
frames
.
append
(
img_curr
)
imageio
.
mimwrite
(
save_path
,
frames
,
quality
=
8
,
fps
=
10
)
if
__name__
==
'__main__'
:
args
=
config_parser
()
seq_name
=
os
.
path
.
basename
(
args
.
data_dir
.
rstrip
(
'/'
))
trainer
=
BaseTrainer
(
args
)
num_imgs
=
trainer
.
num_imgs
vis_dir
=
os
.
path
.
join
(
args
.
save_dir
,
'{}_{}'
.
format
(
args
.
expname
,
seq_name
),
'vis'
)
print
(
'output will be saved in {}'
.
format
(
vis_dir
))
os
.
makedirs
(
vis_dir
,
exist_ok
=
True
)
query_id
=
args
.
query_frame_id
radius
=
3
# the point radius for point correspondence visualization
mask
=
None
if
os
.
path
.
exists
(
args
.
foreground_mask_path
):
h
,
w
=
trainer
.
h
,
trainer
.
w
mask
=
imageio
.
imread
(
args
.
foreground_mask_path
)[...,
-
1
]
# rgba image, take the alpha channel
mask
=
cv2
.
resize
(
mask
,
dsize
=
(
w
,
h
))
==
255
# for DAVIS video sequences which come with segmentation masks
# or when a foreground mask for the query frame is provided
if
trainer
.
with_mask
or
mask
is
not
None
:
# foreground
frames
,
kpts_forground
=
trainer
.
eval_video_correspondences
(
query_id
,
use_mask
=
True
,
mask
=
mask
,
vis_occlusion
=
args
.
vis_occlusion
,
occlusion_th
=
args
.
occlusion_th
,
use_max_loc
=
args
.
use_max_loc
,
radius
=
radius
,
return_kpts
=
True
)
imageio
.
mimwrite
(
os
.
path
.
join
(
vis_dir
,
'{}_{:06d}_foreground_{}.mp4'
.
format
(
seq_name
,
trainer
.
step
,
query_id
)),
frames
,
quality
=
8
,
fps
=
10
)
kpts_forground
=
kpts_forground
.
cpu
().
numpy
()
# background
frames
,
kpts_background
=
trainer
.
eval_video_correspondences
(
query_id
,
use_mask
=
True
,
reverse_mask
=
True
,
mask
=
mask
,
vis_occlusion
=
args
.
vis_occlusion
,
occlusion_th
=
args
.
occlusion_th
,
use_max_loc
=
args
.
use_max_loc
,
radius
=
radius
,
return_kpts
=
True
)
kpts_background
=
kpts_background
.
cpu
().
numpy
()
imageio
.
mimwrite
(
os
.
path
.
join
(
vis_dir
,
'{}_{:06d}_background_{}.mp4'
.
format
(
seq_name
,
trainer
.
step
,
query_id
)),
frames
,
quality
=
8
,
fps
=
10
)
# visualize trails
vis_trail
(
args
.
data_dir
,
kpts_forground
,
kpts_background
,
os
.
path
.
join
(
vis_dir
,
'{}_{:06d}_{}_trails.mp4'
.
format
(
seq_name
,
trainer
.
step
,
query_id
)))
else
:
frames
=
trainer
.
eval_video_correspondences
(
query_id
,
vis_occlusion
=
args
.
vis_occlusion
,
occlusion_th
=
args
.
occlusion_th
,
use_max_loc
=
args
.
use_max_loc
,
radius
=
radius
)
imageio
.
mimwrite
(
os
.
path
.
join
(
vis_dir
,
'{}_{:06d}_{}.mp4'
.
format
(
seq_name
,
trainer
.
step
,
query_id
)),
frames
,
quality
=
8
,
fps
=
10
)
Prev
1
2
3
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment