import base64 from io import BytesIO import torch import torch.distributed from PIL import Image from transformers import AutoConfig, AutoProcessor, Qwen2_5_VLForConditionalGeneration from olmocr.data.renderpdf import render_pdf_to_base64png from olmocr.prompts.anchor import get_anchor_text from olmocr.prompts.prompts import build_openai_silver_data_prompt @torch.no_grad() def run_inference(model_name: str): config = AutoConfig.from_pretrained(model_name) processor = AutoProcessor.from_pretrained(model_name) # If it doesn't load, change the type:mrope key to "default" # model = Qwen2VLForConditionalGeneration.from_pretrained(model_name, device_map="auto", config=config) model = Qwen2_5_VLForConditionalGeneration.from_pretrained(model_name, device_map="auto", config=config) model.eval() # local_pdf_path = os.path.join(os.path.dirname(__file__), "..", "..", "tests", "gnarly_pdfs", "horribleocr.pdf") local_pdf_path = "/root/brochure.pdf" page = 1 image_base64 = render_pdf_to_base64png(local_pdf_path, page, 1024) anchor_text = get_anchor_text(local_pdf_path, page, pdf_engine="pdfreport") messages = [ { "role": "user", "content": [ {"type": "text", "text": build_openai_silver_data_prompt(anchor_text)}, {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"}}, ], } ] # Preparation for inference text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) main_image = Image.open(BytesIO(base64.b64decode(image_base64))) inputs = processor( text=[text], images=[main_image], padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") output_ids = model.generate(**inputs, temperature=0.8, do_sample=True, max_new_tokens=1500) generated_ids = [output_ids[len(input_ids) :] for input_ids, output_ids in zip(inputs["input_ids"], output_ids)] output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True) print(output_text[0]) def main(): run_inference(model_name="Qwen/Qwen2.5-VL-7B-Instruct") if __name__ == "__main__": main()