arXiv:2407.06611v1 [cs.CV] 9 Jul 2024

CEIA: CLIP-Based Event-Image Alignment for
Open-World Event-Based Understanding

Wenhao Xu, Wenming Weng, Yueyi Zhang, and Zhiwei Xiong

University of Science and Technology of China

Abstract. We present CEIA, an effective framework for open-world
event-based understanding. Currently training a large event-text model
still poses a huge challenge due to the shortage of paired event-text data.
In response to this challenge, CEIA learns to align event and image data
as an alternative instead of directly aligning event and text data. Specif-
ically, we leverage the rich event-image datasets to learn an event em-
bedding space aligned with the image space of CLIP through contrastive
learning. In this way, event and text data are naturally aligned via using
image data as a bridge. Particularly, CEIA offers two distinct advan-
tages. First, it allows us to take full advantage of the existing event-image
datasets to make up the shortage of large-scale event-text datasets. Sec-
ond, leveraging more training data, it also exhibits the flexibility to boost
performance, ensuring scalable capability. In highlighting the versatil-
ity of our framework, we make extensive evaluations through a diverse
range of event-based multi-modal applications, such as object recogni-
tion, event-image retrieval, event-text retrieval, and domain adaptation.
The outcomes demonstrate CEIA’s distinct zero-shot superiority over
existing methods on these applications.
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1 Introduction

Event cameras are sensors that asynchronously measure the intensity changes at
each pixel independently with microsecond temporal resolution . Compared
to conventional frame cameras, event cameras exhibit several exceptional advan-
tages. They have a very high dynamic range, are immune to motion blur, and pro-
vide measurements with a microsecond-level temporal resolution. These inherent
advantages have sparked considerable interest in event cameras, notably for com-
puter vision applications such as autonomous navigation , robotics , and
virtual reality (VR) [2§].

Despite the superiority of event cameras, event-based algorithms are still in
their infancy, facing two major issues: the shortage of large-scale datasets and
the failure of modeling new data distributions in the real world. Consequently, it
is imperative to explore the zero-shot event-based algorithms. Very recently, sev-
eral works have explored how to transfer impressive zero-shot knowledge
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Fig.1: (a) Compared with EventCLIP that directly utilizes the frozen CLIP’s
image encoder, our CEIA learns an event encoder to alleviate the event-image modality
disparity. (b) Comparison of our CEIA and EventCLIP on various datasets and
tasks. For zero-shot recognition and domain adaptation, we report Accl (%), while for
event-image retrieval and event-text retrieval, we report RQ1 (%) .

from CLIP to event-based vision. EventCLIP demonstrated the feasi-
bility of improving event-based zero-shot capability by first transforming events
into frames and then directly utilizing frozen CLIP to extract event features.
However, the image encoder of CLIP is primarily trained on natural images, re-
sulting in a significant domain gap between images and the transformed frames.
Therefore, the performance is severely impeded. To address this shortcoming, in
this paper, we propose CEIA, an effective framework to adapt CLIP to event
data while accommodating a wide range of open-world event-based understand-
ing tasks.

CEIA achieves its goal by learning an individual event encoder through cross-
modal contrastive learning, instead of directly utilizing the frozen image encoder
like EventCLIP. The differences between EventCLIP and CEIA are depicted in
Fig. In particular, we observe that, unlike 3D point clouds [14] or depth maps,
event data have a notable characteristic: they are often accompanied by available
paired image data. This accessibility is largely thanks to the widespread use of
dynamic and active-pixel vision sensors (DAVIS) , which can simultaneously
capture pixel-wise images and event data. Leveraging this advantage, we provide
a novel perspective of training an event encoder using abundant paired event-
image data instead of directly conducting event-text alignment, thus bypassing
the shortage of large-scale paired event-text data. Instead of full finetuning the
event encoder, we introduce a simple yet highly-efficient training strategy based
on the LoRA technique to focus on relating the event and image modalities,
meanwhile preserving the highly-robust zero-shot ability provided by CLIP. In
this way, CEIA can learn an event embedding space aligned with the image
embedding space of frozen CLIP. Notably, the image space is already aligned
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with the text space during pretraining by CLIP. Consequently, event and text
data are also naturally aligned by using image data as a bridge. By this way,
CEIA can not only enhance open-world event-text understanding but also open
the door to more event-based multi-modal understanding tasks |6}29]44l46].

In highlighting the versatility of CEIA, we make extensive evaluations through
a diverse range of multi-modal understanding tasks. CEIA, designed to strike
a unified embedding space for aligning event, image, and text data, can be
smoothly applied to object recognition, event-image retrieval, event-text re-
trieval, and domain adaptation [32}|42]. The experimental outcomes demonstrate
that the state-of-the-art zero-shot performance can be achieved by CEIA over the
existing methods, which further spotlights CEIA’s transferability and versatility.
Additionally, we observe that, leveraging more training data, CEIA also exhibits
the flexibility to yield a significant performance boost, ensuring the scalable ca-
pability. Through these extensive experimental evaluations on four applications,
as shown in Fig. we not only confirm the exceptional functionality of event,
image, and text alignment of CEIA, but also underscore the comprehensive ap-
plication capabilities of CEIA. We believe that CEIA stands as a robust and
effective framework for open-world event-based multi-modal understanding.

In summary, CEIA presents three main contributions: (i) an effective frame-
work to provide a novel perspective of learning to align event and image data as
an alternative, thus bypassing the shortage of event-text datasets. (ii) a simple
yet highly-efficient strategy for training the event encoder with the LoRA tech-
nique, meanwhile preserving the CLIP’s powerful robustness. (iii) state-of-the-art
results on four event-based multi-modal downstream tasks, including zero-shot
and few-shot object recognition, event-text retrieval, event-image retrieval, and
domain adaptation.

2 Related Work

2.1 Transferring CLIP

In the image-based vision, pretrained Visual Language Models like CLIP [37],
ALIGN [19], and Florence [50] demonstrate very impressive zero-shot transfer
and generalization capabilities. Subsequently, a large number of follow-up works
have been proposed to transfer the pretrained CLIP to more downstream tasks.
For example, PointCLIP [51] transforms 3D point clouds into a set of depth
maps for zero-shot 3D object recognition, while DenseCLIP [38] converts the
original image-text matching to pixel-text matching to guide the learning of
dense prediction models. X-CLIP [33| proposes a novel cross-frame attention
mechanism to effectively expand CLIP to the video domain.

Recently, some works have applied Visual Language Models to event-based
vision, demonstrating promising results. Two works closely related to ours are
EventCLIP [45] and E-CLIP [55]. Similar to PointCLIP, EventCLIP first trans-
forms events into 2D frames and then uses frozen CLIP directly for zero-shot
event object recognition. Following EventCLIP, E-CLIP focuses on advancing
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few-shot and standard object recognition. It introduces a novel event encoder
for event temporal modeling and presents a triple contrastive alignment module
to enable efficient knowledge transfer. In contrast, instead of directly utilizing
frozen CLIP, we leverage existing abundant event-image datasets to adapt CLIP
to event-based zero-shot tasks.

2.2 Multi-Modal Learning

With the availability of large-scale multi-modal datasets, an increasing number
of multi-modal foundation models have emerged. Some representative models
are driving multi-modal learning, which has marked a significant advancement
in AT evolution. For example, CLIP [37] demonstrates impressive zero-shot ob-
ject recognition performance, while BLIP-2 [27] exhibits capabilities approach-
ing human-level performance in visual dialog, visual knowledge reasoning, and
personalized image-to-text generation. Furthermore, Stable Diffusion [40] can
generate realistic and accurate images based on given text conditions. Instruct-
Pix2Pix [5] can execute diverse image edits following human-written instructions,
including object replacement, style modification, setting changes, and adjust-
ments to the artistic medium.

These advancements motivate us to explore event-based multi-modal tasks.
In this paper, we study two main directions. One is event-text understanding,
including zero-shot learning and event-text retrieval, while the other is event-
image understanding, involving event-image retrieval and domain adaptation.
Our future work will focus on generalizing CEIA for wider multi-modal tasks,
such as event-assisted video frame interpolation [36}/43//46.49] and event-assisted
motion deblurring [29}/44}53},54].

3 Method

3.1 CLIP Preliminaries

CLIP [37] is a visual-text pre-training method for image and text matching.
Conceptually, CLIP consists of two encoders: an image encoder ®jnqge(-;00)
for extracting visual features and a text encoder @e.¢(+;61) for extracting text
features. During training, CLIP utilizes 400 million training image-text pairs
collected from the internet and employs a contrastive loss to learn a unified
embedding space for accommodating image and text data. Specifically, given
a set of image-text pairs {xim"’ge,xte“}, CLIP is trained to search optimized
parameters 6y and 61 to approach

@image (Ximage; 90) = Qtezt (Xtewt; 01) (1>

Note that we use “=" to denote the alignment in the whole paper. Leveraging the
large-scale image-text dataset, CLIP demonstrates promising zero-shot perfor-
mance for many downstream tasks, ensuring the incorporation of a huge range
of visual concepts.
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Fig. 2: Overview of CEIA, which consists of a learnable event encoder, a frozen image
encoder, and a frozen text encoder. We initialize the event encoder with CLIP’s image
encoder and finetune it using the LoRA technique. We align the event embedding
space and image embedding space through contrastive learning. In highlighting the
versatility of CETA, we make evaluations on four applications: object recognition, event-
image retrieval, event-text retrieval, and domain adaptation.

3.2 The CEIA Framework

In particular, open-world event-based multi-modal understanding still remains
under-explored. Our goal is to transfer the zero-shot capability of CLIP into
the event-based vision. To this end, two challenges need to be addressed. First,
intuitively, one way to achieve open-world event-based understanding is to train
a large event-text model. Nevertheless, it is severely impeded due to the shortage
of large-scale paired event-text data. Second, compared with natural images, the
event data, captured by detecting the intensity changes, is essentially a kind of
spatial-temporal data. Therefore, the big modality disparity makes it difficult to
directly apply the image encoder of CLIP to event data.

In response to these two challenges, CEIA makes two key modifications.

First, CEIA provides a novel perspective of focusing on learning to align event
and image data instead of conducting event-text alignment, thus bypassing the
shortage of large-scale paired event-text data. Second, CEIA learns an individual
event encoder to alleviate the event-image modality disparity instead of directly
utilizing the frozen image encoder like EventCLIP . In the following, we will
formally introduce the method.
Overview. Fig. 2]shows an overview of CEIA, which is composed of a frozen im-
age encoder Pjmage(;60), a frozen text encoder @req(-;61) and a learnable event
encoder @yent (-3 02). Given a triple set of image-event-text pairs {xe"ent, ximage,
x'*t} CEIA learns to search a desirable parameter 5, which meets the following
requirement:

¢event (Xevent; 92) = ¢image (ximage; 90) (2)
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Notably, CLIP has already provided the powerful image-text alignment as shown
in Eq. . Consequently, through combining Eq. and Eq. , we can align
event and text data by regarding ®;mage (x99 6p) as a bridge

@event (Xevent; 92) = @tezt (Xtewt; 01) (3)

Event Encoder. Following existing research [22,/48,[55|, we selected the Vi-
sion Transformer [8], a reliable and widely-used model, as our event encoder.
Leveraging the unified encoder architecture, we propose initializing the event
encoder with CLIP’s image encoder and then finetuning it, instead of training
it from scratch. This initialization transfers spatial prior knowledge from images
to events, accelerating the training process and enhancing the data efficiency of
CEIA. In our experiments, this initialization proved not only beneficial but also
essential. Since the training data is still too limited for cross-modal alignment,
we attempted to train the event encoder from scratch, but failed.

Event Representations. We explored various event representations and de-
termined that the red-blue color map, commonly used for visualizing events, is
the most effective. This choice minimizes the difference between the event repre-
sentation and the natural images used by CLIP, thereby simplifying cross-modal
alignment.

LoRA-Based Finetuning. Intuitively, one simple way to learn an event en-
coder is full finetuning. However, it will destroy the original CLIP’s weights,
which brings the inferior zero-shot capability. Recently, LoRA [18] stands out
as one of the best parameter-efficient transfer learning methods, which has been
widely adopted to finetune many LLMs. Specifically, LoRA [18] shows that the
pretrained models can still learn efficiently even when projected into a smaller
subspace. For each pretrained weight matrix Wy € R?**, we can replace its up-
date with a low-rank decomposition AW = BA, where B € R¥*", A € R"*k,
Note that Wy is frozen, while A and B are trainable. For the original forward
pass h = Wyx, the modified forward pass is:

h=Woz+ AWz = Wor + SBAz (4)
T

where « is a hyperparameter used to adjust the influence of the new parameters.
LoRA-based finetuning provides three key advantages for CEIA: 1) It avoids
catastrophic forgetting, thus preserving CLIP’s strong generalization and zero-
shot capabilities. 2) It prevents overfitting to the limited training data. 3) It
significantly reduces training time and memory costs.

Event-Image Contrastive Learning. The objective of training our event en-
coder @yent(+;62) is to minimize the distance between the frames transformed
from events and images in the same pair, while maximizing the distance of others.
We draw the inspiration from many methods [15}[17}/37./47,/55], which advocates
the utilization of multi-modal contrastive learning. Specifically, given a set of
z:mage
K3
dings: fievent = Popent (ngent; 92) and fiimage _ @image(ximage’ 00) Denoting M,

T 7

N
¢ } , we encode them into normalized embed-
i=1

event-image pairs {x“e"t, X
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and M; are two modalities, the InfoNCE [34] loss can be formulated as

eap(2 - (1) )
ap(2 - (FM2) /r) 4+ 5y pmean(s - (1) 7).

where 7 is a learnable temperature parameter to control the smoothness of the
softmax distribution. Following CLIP [37], we consider every example j # ¢ in
the mini-batch as a negative. Finally, the weights of the event encoder 65 is
optimized by minimizing a symmetric InfoNCE loss

L(M]_, Mg) = —lOg

(5)

Lfina = L(event,image) + L(image, event). (6)

Through event-image contrastive learning, we can align representations of
event, image, and text modalities into the same embedding space. In the follow-
ing, we will elaborate on the details about how to extend CEIA to open-world
event-based multi-modal applications.

3.3 Event-Based Multi-Modal Applications

Object Recognition. Zero-shot object recognition aims to classify objects that
are not included in the training dataset. As shown in Eq. , CEIA has achieved
event-text alignment in an indirect manner. Through this event-text alignment,
CEIA enables zero-shot event-based object recognition. Specifically, we first con-
struct text prompts by inserting the class names of new objects into predefined
templates (e.g., “image of a [CLASS]”). Then, we extract their textual features
Wi by Pieri(+;02). Since each row vector in W encodes class knowledge, W;
can naturally function as the zero-shot event classifier. Meanwhile, we utilize
Pepent(+;01) to extract the event features f£U*" from the input events. Finally,
the predicted probabilities for K classes are computed via the classifier as follows:

logits; = fE° "Wl p; = softmax(logits;). (7)

(2

Similarly, Eq. can be also utilized for few-shot object recognition.

Event-Image/Event-Text Retrieval. Event-image retrieval refers to the task
of searching for the most related image in a large-scale image dataset based on a
given event, or vice versa. For instance, when given an image query szage we
first extract its image feature f”"“ge using Pimage(-; 00). Then, we feed forward

all event examples {xevent} into @eyent(-;02) to obtain {ff”e”t};il. Subse-

quently, we calculate their cosine similarity and retrieve the most related event

xje“e”t with the highest similarity score:

flmagc (fevcnt)T )
HflmageH ervent H

For event-text retrieval, we calculate the similarity score between event features
and text features and select the item with the highest similarity score.

J* argmax ( (8)
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Domain Adaptation. Domain adaptation [9,32./42] aims to transfer tasks from
a labeled source domain (images) to a target domain (events). It can leverage
existing image datasets to train models, thereby overcoming the lack of high-
quality labeled event datasets. Specifically, As depicted in Fig. [2] we conducted
domain adaptation experiments on object recognition. Formally, denote fimaese
and ! as the image feature extracted by Pimage(-;60) and the available label,
respectively. We train a task network T'(-;6,4), whose weights 6, are optimized
by minimizing the commonly-used soft-max cross-entropy loss:

logits = T(f'™9¢; 0,); Limage = CrossEntropy(logits, ). 9)

Subsequently, we directly apply the trained task network T'(-;6,) to the event
domain to generate predictions:

pred = T(f°"; 0,). (10)

As shown in Eq. , CEIA has already aligned event and image data, which
ensures the transferability and applicability of the network T'(-; 84) when applied
for event data.

4 Experiments

4.1 Dataset Preparation

N-ImageNet. N-TmageNet [20] is built by moving an event camera in front of an
LCD monitor which displays images from ImageNet [7]. We leverage the event-
image pairs from N-ImageNet [20] and ImageNet-1K |[7] for training. Similar
to ImageNet-1K, N-ImageNet contains 1.78 million event streams belonging to
1,000 classes. For training, we split N-ImageNet to construct two subset datasets:
the Small dataset includes 129,393 event streams belonging to the first 100 classes
and the Large dataset includes 638,878 belonging to the first 500 classes. We
call the method “X” trained on Small and Large datasets as “X-S” and “X-
L7, respectively. We use the Small and Large datasets to explore the scalable
capability of our approach. We utilize the official splitting to obtain the training
and test datasets.

N-Caltech101. Similar to N-ImageNet [20], N-Caltech101 [35] is built by mov-
ing a 180%x240 resolution ATIS event camera in front of a monitor displaying
still images from Caltech101 [10]. It contains 8,246 samples, each with a dura-
tion of 300 ms, belonging to 101 classes. We adopt the same splitting strategy
as EST [12] to obtain the training and test datasets.

CIFAR10-DVS. Unlike N-Caltech101 [35] and N-ImageNet [20], CIFAR10-
DVS |26] is created through repeating smooth movements of images on an LCD
monitor in front of a DVS camera. This process converts the popular CIFAR-
10 |23] dataset into 10,000 event streams across 10 different classes. We randomly
allocate 4,000 samples for the test set and 6,000 samples for the training set.
ASL-DVS. ASL-DVS [3] is a relatively complex dataset containing the second
largest number of labeled examples. It contains 24 classes corresponding to 24
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letters (A-Y, excluding J) of the American Sign Language. For each letter, 4,200
samples are collected by capturing real-world events. Each sample spans approx-
imately 100 milliseconds. We randomly select 1,000 samples for the test set and
3,200 samples for the training set.
NIN-Prompt/NIN-BLIP2/NIN-BLIP2-retrieval. Considering the short-
age of currently available large-scale event-text datasets, we make the first at-
tempt to build two kinds of event-text datasets based on N-ImageNet for train-
ing, denoted as “NIN-Prompt” and “NIN-BLIP2”. Specifically, for “NIN-Prompt”,
we first create prompts by placing the class names of events into the template
“A point cloud image of [CLASS]”. We then use these prompts as captions for
corresponding events. For “NIN-BLIP2”, we utilize BLIP2 [27] with the frozen
LLM OPT [52] to conduct zero-shot image captioning, generating high-quality
captions for the images from ImageNet. Subsequently, we pair them with events
from N-ImageNet to construct the dataset. Furthermore, we create a test dataset,
named “NIN-BLIP2-retrieval”, for evaluating event-text retrieval. However, the
captions generated from images belonging to the same class are too similar,
which may correspond to multiple events. To mitigate this issue, we selectively
sample only five images from each class to generate captions, constructing a test
set containing 2,500 event-text pairs.

4.2 Implementation Details

We initialize our event encoder with the ViT-L/14 [8] image encoder of CLIP.
The AdamW |31] optimizer and a cosine schedule warm-up learning rate sched-
ule [30] are adopted for training. For LoRA-based finetuning [18], we set the peak
learning rate to 5 x 10~% and the weight decay to 1 x 10~2. For full finetuning,
we set the peak learning rate to 1 x 10~7 and the weight decay to 1 x 107, The
training batch size is set to 128 for all experiments. Additionally, we conduct
prompt engineering and create task-relevant templates for each dataset. Specifi-
cally, we adopt “A point cloud image representing the American Sign Language
letter [CLASS]” for ASL-DVS, “Image of a [CLASS]” for N-Caltech101, and “A
point cloud image of a [CLASS]” for CIFAR10-DVS and N-ImageNet.

4.3 Baselines

We compare CEIA with the current state-of-the-art event-based zero-shot method,
EventCLIP [45]. Additionally, we combine the pre-trained event-based video re-
construction network E2VID [39] with the frozen CLIP to construct another
simple zero-shot method, which is denoted as “E2VID-CLIP”.

Moreover, leveraging our building event-text datasets NIN-Prompt and NIN-
BLIP2, we are able to directly train a CLIP-based event-text alignment model,
called “CETA”. We denote “CETA” trained on such two datasets as “CETA-
Prompt” and “CETA-BLIP2”, respectively.
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Table 1: Quantitative results of zero-shot object recognition.

‘ In-Distribution ‘ Out-of-Distribution
| N-ImageNet [20] | N-Caltech101 35| | CIFAR10-DVS [26] | ASL-DVS |3
‘ Accl Acch ‘ Accl Acch ‘ Accl Acch ‘ Accl  Acch

EventCLIP |45] | 26.72 39.39 69.73 85.93 13.23 56.17 8.72 2597
E2VID-CLIP 13.68 2744 | 82.53  93.62 13.85 55.57 8.43  25.82

Method

CETA-Prompt-S | 29.35 50.73 70.93 86.61 14.24 59.35 8.87  28.23
CETA-BLIP2-S | 33.86 57.53 75.01 88.68 16.27 65.49 7.53  24.88
CEIA-S 37.25 61.60 72.31 86.50 18.40 65.75 12.11 32.62
CEIA-L 43.68 68.78 | 79.20 90.80 22.20 69.07 12.67 31.20

Table 2: Quantitative results of few-shot object recognition. Accl (%) is reported.

Datasets ‘ N-ImageNet |20] ‘ N-Caltech101 |35
Data per Class | 1 2 5 10 20 | 1 2 5 10 20
Sorted Time Surface [1]| 1.24 2.19 4.26 7.53 12.81|27.80 31.99 54.85 65.94 75.47
DiST [20] 1.16 1.75 4.22 7.65 13.07]26.42 28.14 53.48 65.71 73.92
EventCLIP |45] 29.41 31.14 32.56 33.08 36.40|75.82 78.86 83.57 87.42 90.41
CEIA-L 44.77 46.07 49.58 51.40 53.32|84.46 87.16 89.28 90.71 92.14

4.4 Object Recognition

Metrics. We evaluate the performance of object recognition in terms of the
common top-1 accuracy (Accl) and top-5 accuracy (Acch) [16}/41].
Zero-Shot Results. Event-based zero-shot object recognition is a challeng-
ing task because the classes in the test set are unseen to the model during
training. We report the in-distribution and out-of-distribution results in Tab. [I]
The experimental results indicate that our CEIA consistently outperforms the
state-of-the-art baselines across all datasets. For instance, on N-ImageNet and
N-Caltech101, CEIA-L achieves improvements of 16.96% and 9.47% in top-1
accuracy compared with EventCLIP, respectively. These improvements high-
light the effectiveness of our CEIA for open-world event-based understanding.
Although E2VID-CLIP achieves better results than ours on N-Caltech101, its
complex reconstruction network introduces significant inference latency.
Besides, we notice that CETA-BLIP2 achieves better zero-shot results than
CETA-Prompt, which can be attributed to the reason that BLIP2 is able to
generate more accurate captions compared with the simple prompt template.
However, the event-text alignment method CETA-BLIP2 (CETA-Prompt) ex-
hibits inferior results compared with our event-image alignment method CEIA,
highlighting the effectiveness of our event-image alignment strategy compared
with the direct event-text alignment strategy.
Few-Shot Results. We consider a general N-shot setting, i.e., N examples are
randomly sampled from each class for training. We compare our CEIA with the
current state-of-the-art few-shot classifier, EventCLIP [45]. In addition, we also
compare with some representative methods without CLIP, namely, Sorted Time
Surface [1] and DiST [20]. Notice that, we follow the original papers and use
ResNet34 |16]| pre-trained on ImageNet |7]| as their backbone.
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Fig. 3: Qualitative results of event-image retrieval and event-text retrieval.

Table 3: Quantitative results of event-image retrieval.

N-ImageNet [20] | N-Caltech101 [35]

Method | Event query | Imagequery | Eventquery | Image query

| R@l R@5 R@10| R@l R@5 R@10| R@1 R@5 R@10| R@1 R@5 R@10

EventCLIP [45]| 3.61 7.67 10.74|11.33 20.29 25.74| 9.53 24.46 33.54|11.96 23.77 28.47
E2VID-CLIP | 2.49 4.38 5.43 | 5.79 11.40 14.62|23.24 50.02 63.69|35.69 60.32 72.90
CETA-Prompt-S| 2.43 5.73 7.91 |11.91 23.53 29.85| 7.58 23.24 31.76|16.14 38.94 52.21
CETA-BLIP2-S | 4.82 10.08 13.75|15.61 29.08 35.74|10.54 27.13 36.34|19.26 42.83 55.78

CEIA-S 35.24 54.33 61.73|36.62 54.73 62.72]28.19 52.98 64.94|33.63 60.12 71.68
CEIA-L 41.2261.3969.61|44.15 62.86 70.12(32.94 60.56 72.45|39.83 66.36 78.09

As shown in Tab. [2] in the extreme case of 1-shot, the performance of Sorted
Time Surface and DiST drops significantly due to the serious lack of train-
ing data. In contrast, our CEIA can leverage CLIP’s outstanding robustness to
quickly adapt to the new distribution, demonstrating a large margin performance
boost. In terms of Accl, CEIA-L outperforms Sorted Time Surface by 43.53%
and 56.66% in terms of Accl on N-ImageNet and N-Caltech101 with 1-shot, re-
spectively. Compared to EventCLIP, our CEIA-L achieves superior results on all
datasets and all N-shot settings. This indicates that CEIA significantly enhances
the transferability of knowledge from CLIP to event-based vision.

4.5 Event-Image Retrieval

Metrics. We measure the performance of event-image retrieval through com-
puting recall at K (RQK) [25], which is defined as the fraction of queries for
which the correct item is retrieved in the closest K points to the query.
Results. Tab. [3] shows that our CEIA-L consistently outperforms EventCLIP
and E2VID-CLIP under all metrics across both datasets. Specifically, on N-
ImageNet, CETA-L surpasses EventCLIP and E2VID-CLIP by 37.61% and 38.73%
in terms of R@1 for event queries, respectively. The underlying reason is that
the contrastive loss we used is essential for multi-modal retrieval as it directly
learns cross-modal similarity and alleviates the domain disparity of event and
image data. When compared to CETA-Prompt and CETA-BLIP2, CEIA also
holds overwhelming advantages because it directly aligns event-image data. For
instance, CETA-S outperforms CETA-Prompt-S and CETA-BLIP2-S by 32.81%
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Table 4: Quantitative results of event-text retrieval on our built event-text dataset
NIN-BLIP2-retrieval.

Method ‘ Event query Text query
| R@1  R@5 R@10| R@l R@5 Ral10

EventCLIP [45] | 15.27 34.19 4247 | 22.87 4359 53.35

E2VID-CLIP 5.95 1472 1991 | 1211  23.03 27.95
CETA-Prompt-S | 14.67 33.51 4244 | 23.16 44.15 54.51
CETA-BLIP2-S | 22.80 47.03 57.31 | 29.03 52.63 62.55

CEIA-S 24.75 49.27 58.55 | 28.95 52.75 62.27
CEIA-L 29.44 57.44 66.51 | 34.23 59.79 69.47

and 30.42% in terms of RQ1 for event queries on N-ImageNet. Additionally, we
visualize the results of the image query on N-ImageNet in Fig. [3] where the
retrieved events have a very high degree of similarity to the input image query.

4.6 Event-Text Retrieval

Metrics. Similar to the event-image retrieval task, we reuse the recall at K
(R@GK) [25] to evaluate the performance of the event-text retrieval task.
Results. As shown in Tab. [d] we report the results on our built event-text
dataset N-ImageNet-BLIP2. As can be seen, our CEIA-L outperforms Event-
CLIP and E2VID-CLIP by a large margin in both event query and text query.
For example, CEIA-L achieves an 11.36% improvement in terms of RQ1 for text
query compared to EventCLIP. Although CETA-BLIP2-S achieves slightly bet-
ter results than our CEIA-S for text query, it’s an unfair comparison as CETA-
BLIP2-S employs the captions generated by BLIP2 for training, which have the
same distribution as N-ImageNet-BLIP2. In addition, we qualitatively show the
results of CEIA in Fig. |3l Even when the caption describes the relationship of
multiple objects (the 4th row), CEIA is able to accurately retrieve the most
correlated events.

4.7 Domain Adaptation

Setting. We conduct domain adaptation based on object recognition, which
aims to validate the effectiveness of enhancing event-based understanding by
transferring the knowledge of the frame-based vision. Specifically, We first train
a classifier as the task network using labeled data from the image domain, and
then directly transfer it to the event domain.

Results. As observed in Tab. [f] our CEIA-L consistently secures the top po-
sition on both N-ImageNet and N-Caltech101. Specifically, in terms of Accl,
CEIA-L outperforms E2VID-CLIP by 39.30% on N-ImageNet and by 4.05%
on N-Caltech101. Moreover, compared to CETA-Prompt-S and CETA-BLIP2-
S, our CEIA-S also exhibits its superiority, achieving significant increases for
all metrics. These remarkable improvements demonstrate that CEIA effectively
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Table 5: Quantitative results of domain adaptation.

N-ImageNet |20] N-Caltech101 [35]

Method ‘ ‘
‘ Accl Acch ‘ Accl Acch
EventCLIP |45] 21.92 43.24 69.22 80.46
E2VID-CLIP 10.86 23.88 81.12 93.76
CETA-Prompt-S 21.32 38.58 70.83 83.10
CETA-BLIP2-S 27.66 47.40 72.20 84.04
CEIA-S 43.64 70.56 79.38 91.13
CEIA-L 50.16 76.36 85.17 94.89

Table 6: Ablation study on the effects of LoRA on event-text retrieval and domain
adaptation.

Event-text retrieval ‘ Domain adaptation

Method | Event query | Image query | N-ImageNet [20] | N-Caltech101 [35]

| R@1 R@5 R@10| R@1 R@5 R@10| Accl  Acch | Accl  Acch

w/o LoRA | 28.99 55.75 64.95 | 31.23 57.95 67.79 | 48.24  74.02 | 83.82 94.46
w/ LoRA |29.44 57.44 66.51|34.23 59.79 69.47|50.16 76.36 |85.17 94.89

aligns event and image data within the same embedding space. Consequently,
CEIA facilitates a smoother transfer of the task network trained in the image
domain to the event domain, thereby enhancing the performance of domain
adaptation. We believe that these performance gains can be transferred to other
tasks and unlock the virtually unlimited image-based datasets for event-based
vision, which will be our future work.

5 Ablation Study

The Effectiveness of LoRA. We compare two methods of training the event
encoder: full finetuning and LoRA-based finetuning [18]. From Tab. [6] we can
observe that, LoRA-based finetuning consistently outperforms full finetuning
across all metrics for event-text retrieval and domain adaptation tasks. These
results demonstrate that LoRA can effectively preserve CLIP’s strong robustness
and meanwhile avoid overfitting to the training datasets.

LoRA Configuration. In Tab. EI, we evaluate various LoRA [18] configurations
as depicted in Fig. [2] “r” represents the low intrinsic dimension of rank decompo-
sition matrices. “«a” indicates the scaling degree applied to the outputs from the
trainable weights, and “Weight Type” denotes which weight matrices in the event
encoder are finetuned with LoRA. The experimental results demonstrate that
adapting only W, and W, with a very small r has already achieved competitive
performance. Further increasing r or adjusting LoRA with more weights does
not lead to significant improvements. Additionally, we set a as twice r to scale
up the output from trainable weights, thereby further speeding up training.
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Zero-shot object recognition Event-Image retrieval Event-Text retrieval Domain adaptation
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Fig. 4: Comparison of training CEIA with different scale data.

Table 7: Ablation study on LoRA config- Table 8: Ablation study on event rep-

uration on N-ImageNet-S. resentations on N-ImageNet-S.

Rank r 16 32 64 16 16 Representations Accl Acch
LoRA o | 16 32 64 32 32 -

Weight | W, W, W W,  Wa, Wi, ~ DiST 33.34 57.64

Type w, W, w, W, W, W, Time Surface 34.84 58.74

Voxel 30.91 54.24

Accl 36.28 36.80 36.80 37.25 37.33 Gray 35.94 60.31

R-B [45] 37.25 61.60

Data Scalable Capability. As shown in Fig.[d] we can see that CEIA-L, which
is trained on the larger-scale event-image pairs, achieves significantly better per-
formance than CEIA-S across all benchmarks. This indicates that, leveraging
more training data, CEIA can exhibit the flexibility to boost performance, en-
suring its scalable capability. Therefore, larger-scale event-image pretraining is
an exciting direction for future work.

Event Representations. The results in Tab. [§| show the ablation results of
different event representations. Compared with the commonly-used DiST ,
Time Surface [24], Voxel [56], and Gray [45], the red-blue color map (referred
to as R-B) leads to the best recognition accuracy. We speculate that these
worse results may be due to larger differences between these representations and
natural images used by CLIP.

6 Conclusion

In this paper, we propose CEIA, an effective framework to adapt CLIP to event
data. We provide a novel perspective of focusing on learning to align event and
image data as an alternative, thus overcoming the challenge posed by the short-
age of event-text datasets. We thoroughly evaluate CEIA on four applications:
object recognition, event-image retrieval, event-text retrieval, and domain adap-
tation. The state-of-the-art results show that CEIA not only enhances open-
world understanding but also opens the door to more event-based multi-modal
understanding tasks. Furthermore, CEIA’s significant scalability under abundant
event-image pairs also opens up the possibility to introduce the first event-based
Large Vision Model, which will be our future work.
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