# AUTOGENERATED! DO NOT EDIT! File to edit: ../../nbs/models.nbeatsx.ipynb. # %% auto 0 __all__ = ['NBEATSx'] # %% ../../nbs/models.nbeatsx.ipynb 6 from typing import Tuple, Optional import numpy as np import torch import torch.nn as nn from ..losses.pytorch import MAE from ..common._base_windows import BaseWindows # %% ../../nbs/models.nbeatsx.ipynb 8 class IdentityBasis(nn.Module): def __init__(self, backcast_size: int, forecast_size: int, out_features: int = 1): super().__init__() self.out_features = out_features self.forecast_size = forecast_size self.backcast_size = backcast_size def forward(self, theta: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: backcast = theta[:, : self.backcast_size] forecast = theta[:, self.backcast_size :] forecast = forecast.reshape(len(forecast), -1, self.out_features) return backcast, forecast class TrendBasis(nn.Module): def __init__( self, degree_of_polynomial: int, backcast_size: int, forecast_size: int, out_features: int = 1, ): super().__init__() self.out_features = out_features polynomial_size = degree_of_polynomial + 1 self.backcast_basis = nn.Parameter( torch.tensor( np.concatenate( [ np.power( np.arange(backcast_size, dtype=float) / backcast_size, i )[None, :] for i in range(polynomial_size) ] ), dtype=torch.float32, ), requires_grad=False, ) self.forecast_basis = nn.Parameter( torch.tensor( np.concatenate( [ np.power( np.arange(forecast_size, dtype=float) / forecast_size, i )[None, :] for i in range(polynomial_size) ] ), dtype=torch.float32, ), requires_grad=False, ) def forward(self, theta: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: polynomial_size = self.forecast_basis.shape[0] # [polynomial_size, L+H] backcast_theta = theta[:, :polynomial_size] forecast_theta = theta[:, polynomial_size:] forecast_theta = forecast_theta.reshape( len(forecast_theta), polynomial_size, -1 ) backcast = torch.einsum("bp,pt->bt", backcast_theta, self.backcast_basis) forecast = torch.einsum("bpq,pt->btq", forecast_theta, self.forecast_basis) return backcast, forecast class ExogenousBasis(nn.Module): # Reference: https://github.com/cchallu/nbeatsx def __init__(self, forecast_size: int): super().__init__() self.forecast_size = forecast_size def forward( self, theta: torch.Tensor, futr_exog: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: backcast_basis = futr_exog[:, : -self.forecast_size, :].permute(0, 2, 1) forecast_basis = futr_exog[:, -self.forecast_size :, :].permute(0, 2, 1) cut_point = forecast_basis.shape[1] backcast_theta = theta[:, cut_point:] forecast_theta = theta[:, :cut_point].reshape(len(theta), cut_point, -1) backcast = torch.einsum("bp,bpt->bt", backcast_theta, backcast_basis) forecast = torch.einsum("bpq,bpt->btq", forecast_theta, forecast_basis) return backcast, forecast class SeasonalityBasis(nn.Module): def __init__( self, harmonics: int, backcast_size: int, forecast_size: int, out_features: int = 1, ): super().__init__() self.out_features = out_features frequency = np.append( np.zeros(1, dtype=float), np.arange(harmonics, harmonics / 2 * forecast_size, dtype=float) / harmonics, )[None, :] backcast_grid = ( -2 * np.pi * (np.arange(backcast_size, dtype=float)[:, None] / forecast_size) * frequency ) forecast_grid = ( 2 * np.pi * (np.arange(forecast_size, dtype=float)[:, None] / forecast_size) * frequency ) backcast_cos_template = torch.tensor( np.transpose(np.cos(backcast_grid)), dtype=torch.float32 ) backcast_sin_template = torch.tensor( np.transpose(np.sin(backcast_grid)), dtype=torch.float32 ) backcast_template = torch.cat( [backcast_cos_template, backcast_sin_template], dim=0 ) forecast_cos_template = torch.tensor( np.transpose(np.cos(forecast_grid)), dtype=torch.float32 ) forecast_sin_template = torch.tensor( np.transpose(np.sin(forecast_grid)), dtype=torch.float32 ) forecast_template = torch.cat( [forecast_cos_template, forecast_sin_template], dim=0 ) self.backcast_basis = nn.Parameter(backcast_template, requires_grad=False) self.forecast_basis = nn.Parameter(forecast_template, requires_grad=False) def forward(self, theta: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: harmonic_size = self.forecast_basis.shape[0] # [harmonic_size, L+H] backcast_theta = theta[:, :harmonic_size] forecast_theta = theta[:, harmonic_size:] forecast_theta = forecast_theta.reshape(len(forecast_theta), harmonic_size, -1) backcast = torch.einsum("bp,pt->bt", backcast_theta, self.backcast_basis) forecast = torch.einsum("bpq,pt->btq", forecast_theta, self.forecast_basis) return backcast, forecast # %% ../../nbs/models.nbeatsx.ipynb 9 ACTIVATIONS = ["ReLU", "Softplus", "Tanh", "SELU", "LeakyReLU", "PReLU", "Sigmoid"] class NBEATSBlock(nn.Module): """ N-BEATS block which takes a basis function as an argument. """ def __init__( self, input_size: int, h: int, futr_input_size: int, hist_input_size: int, stat_input_size: int, n_theta: int, mlp_units: list, basis: nn.Module, dropout_prob: float, activation: str, ): """ """ super().__init__() self.dropout_prob = dropout_prob self.futr_input_size = futr_input_size self.hist_input_size = hist_input_size self.stat_input_size = stat_input_size assert activation in ACTIVATIONS, f"{activation} is not in {ACTIVATIONS}" activ = getattr(nn, activation)() # Input vector for the block is # y_lags (input_size) + historical exogenous (hist_input_size*input_size) + # future exogenous (futr_input_size*input_size) + static exogenous (stat_input_size) # [ Y_[t-L:t], X_[t-L:t], F_[t-L:t+H], S ] input_size = ( input_size + hist_input_size * input_size + futr_input_size * (input_size + h) + stat_input_size ) hidden_layers = [ nn.Linear(in_features=input_size, out_features=mlp_units[0][0]) ] for layer in mlp_units: hidden_layers.append(nn.Linear(in_features=layer[0], out_features=layer[1])) hidden_layers.append(activ) if self.dropout_prob > 0: hidden_layers.append(nn.Dropout(p=self.dropout_prob)) output_layer = [nn.Linear(in_features=mlp_units[-1][1], out_features=n_theta)] layers = hidden_layers + output_layer self.layers = nn.Sequential(*layers) self.basis = basis def forward( self, insample_y: torch.Tensor, futr_exog: torch.Tensor, hist_exog: torch.Tensor, stat_exog: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor]: # Flatten MLP inputs [B, L+H, C] -> [B, (L+H)*C] # Contatenate [ Y_t, | X_{t-L},..., X_{t} | F_{t-L},..., F_{t+H} | S ] batch_size = len(insample_y) if self.hist_input_size > 0: insample_y = torch.cat( (insample_y, hist_exog.reshape(batch_size, -1)), dim=1 ) if self.futr_input_size > 0: insample_y = torch.cat( (insample_y, futr_exog.reshape(batch_size, -1)), dim=1 ) if self.stat_input_size > 0: insample_y = torch.cat( (insample_y, stat_exog.reshape(batch_size, -1)), dim=1 ) # Compute local projection weights and projection theta = self.layers(insample_y) if isinstance(self.basis, ExogenousBasis): if self.futr_input_size > 0 and self.stat_input_size > 0: futr_exog = torch.cat((futr_exog, stat_exog), dim=2) elif self.futr_input_size > 0: futr_exog = futr_exog elif self.stat_input_size > 0: futr_exog = stat_exog else: raise ( ValueError( "No stats or future exogenous. ExogenousBlock not supported." ) ) backcast, forecast = self.basis(theta, futr_exog) return backcast, forecast else: backcast, forecast = self.basis(theta) return backcast, forecast # %% ../../nbs/models.nbeatsx.ipynb 10 class NBEATSx(BaseWindows): """NBEATSx The Neural Basis Expansion Analysis with Exogenous variables (NBEATSx) is a simple and effective deep learning architecture. It is built with a deep stack of MLPs with doubly residual connections. The NBEATSx architecture includes additional exogenous blocks, extending NBEATS capabilities and interpretability. With its interpretable version, NBEATSx decomposes its predictions on seasonality, trend, and exogenous effects. **Parameters:**
`h`: int, Forecast horizon.
`input_size`: int, autorregresive inputs size, y=[1,2,3,4] input_size=2 -> y_[t-2:t]=[1,2].
`stat_exog_list`: str list, static exogenous columns.
`hist_exog_list`: str list, historic exogenous columns.
`futr_exog_list`: str list, future exogenous columns.
`exclude_insample_y`: bool=False, the model skips the autoregressive features y[t-input_size:t] if True.
`n_harmonics`: int, Number of harmonic oscillations in the SeasonalityBasis [cos(i * t/n_harmonics), sin(i * t/n_harmonics)]. Note that it will only be used if 'seasonality' is in `stack_types`.
`n_polynomials`: int, Number of polynomial terms for TrendBasis [1,t,...,t^n_poly]. Note that it will only be used if 'trend' is in `stack_types`.
`stack_types`: List[str], List of stack types. Subset from ['seasonality', 'trend', 'identity'].
`n_blocks`: List[int], Number of blocks for each stack. Note that len(n_blocks) = len(stack_types).
`mlp_units`: List[List[int]], Structure of hidden layers for each stack type. Each internal list should contain the number of units of each hidden layer. Note that len(n_hidden) = len(stack_types).
`dropout_prob_theta`: float, Float between (0, 1). Dropout for N-BEATS basis.
`activation`: str, activation from ['ReLU', 'Softplus', 'Tanh', 'SELU', 'LeakyReLU', 'PReLU', 'Sigmoid'].
`loss`: PyTorch module, instantiated train loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).
`valid_loss`: PyTorch module=`loss`, instantiated valid loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).
`max_steps`: int=1000, maximum number of training steps.
`learning_rate`: float=1e-3, Learning rate between (0, 1).
`num_lr_decays`: int=3, Number of learning rate decays, evenly distributed across max_steps.
`early_stop_patience_steps`: int=-1, Number of validation iterations before early stopping.
`val_check_steps`: int=100, Number of training steps between every validation loss check.
`batch_size`: int=32, number of different series in each batch.
`valid_batch_size`: int=None, number of different series in each validation and test batch, if None uses batch_size.
`windows_batch_size`: int=1024, number of windows to sample in each training batch, default uses all.
`inference_windows_batch_size`: int=-1, number of windows to sample in each inference batch, -1 uses all.
`start_padding_enabled`: bool=False, if True, the model will pad the time series with zeros at the beginning, by input size.
`step_size`: int=1, step size between each window of temporal data.
`scaler_type`: str='identity', type of scaler for temporal inputs normalization see [temporal scalers](https://nixtla.github.io/neuralforecast/common.scalers.html).
`random_seed`: int, random seed initialization for replicability.
`num_workers_loader`: int=os.cpu_count(), workers to be used by `TimeSeriesDataLoader`.
`drop_last_loader`: bool=False, if True `TimeSeriesDataLoader` drops last non-full batch.
`alias`: str, optional, Custom name of the model.
`optimizer`: Subclass of 'torch.optim.Optimizer', optional, user specified optimizer instead of the default choice (Adam).
`optimizer_kwargs`: dict, optional, list of parameters used by the user specified `optimizer`.
`**trainer_kwargs`: int, keyword trainer arguments inherited from [PyTorch Lighning's trainer](https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch_lightning.trainer.trainer.Trainer.html?highlight=trainer).
**References:**
-[Kin G. Olivares, Cristian Challu, Grzegorz Marcjasz, RafaƂ Weron, Artur Dubrawski (2021). "Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx".](https://arxiv.org/abs/2104.05522) """ # Class attributes SAMPLING_TYPE = "windows" def __init__( self, h, input_size, futr_exog_list=None, hist_exog_list=None, stat_exog_list=None, exclude_insample_y=False, n_harmonics=2, n_polynomials=2, stack_types: list = ["identity", "trend", "seasonality"], n_blocks: list = [1, 1, 1], mlp_units: list = 3 * [[512, 512]], dropout_prob_theta=0.0, activation="ReLU", shared_weights=False, loss=MAE(), valid_loss=None, max_steps: int = 1000, learning_rate: float = 1e-3, num_lr_decays: int = 3, early_stop_patience_steps: int = -1, val_check_steps: int = 100, batch_size=32, valid_batch_size: Optional[int] = None, windows_batch_size: int = 1024, inference_windows_batch_size: int = -1, start_padding_enabled: bool = False, step_size: int = 1, scaler_type: str = "identity", random_seed: int = 1, num_workers_loader: int = 0, drop_last_loader: bool = False, optimizer=None, optimizer_kwargs=None, **trainer_kwargs, ): # Protect horizon collapsed seasonality and trend NBEATSx-i basis if h == 1 and (("seasonality" in stack_types) or ("trend" in stack_types)): raise Exception( "Horizon `h=1` incompatible with `seasonality` or `trend` in stacks" ) # Inherit BaseWindows class super(NBEATSx, self).__init__( h=h, input_size=input_size, futr_exog_list=futr_exog_list, hist_exog_list=hist_exog_list, stat_exog_list=stat_exog_list, exclude_insample_y=exclude_insample_y, loss=loss, valid_loss=valid_loss, max_steps=max_steps, learning_rate=learning_rate, num_lr_decays=num_lr_decays, early_stop_patience_steps=early_stop_patience_steps, val_check_steps=val_check_steps, batch_size=batch_size, valid_batch_size=valid_batch_size, windows_batch_size=windows_batch_size, inference_windows_batch_size=inference_windows_batch_size, start_padding_enabled=start_padding_enabled, step_size=step_size, scaler_type=scaler_type, num_workers_loader=num_workers_loader, drop_last_loader=drop_last_loader, random_seed=random_seed, optimizer=optimizer, optimizer_kwargs=optimizer_kwargs, **trainer_kwargs, ) # Architecture self.futr_input_size = len(self.futr_exog_list) self.hist_input_size = len(self.hist_exog_list) self.stat_input_size = len(self.stat_exog_list) blocks = self.create_stack( h=h, input_size=input_size, futr_input_size=self.futr_input_size, hist_input_size=self.hist_input_size, stat_input_size=self.stat_input_size, stack_types=stack_types, n_blocks=n_blocks, mlp_units=mlp_units, dropout_prob_theta=dropout_prob_theta, activation=activation, shared_weights=shared_weights, n_polynomials=n_polynomials, n_harmonics=n_harmonics, ) self.blocks = torch.nn.ModuleList(blocks) # Adapter with Loss dependent dimensions if self.loss.outputsize_multiplier > 1: self.out = nn.Linear( in_features=h, out_features=h * self.loss.outputsize_multiplier ) def create_stack( self, h, input_size, stack_types, n_blocks, mlp_units, dropout_prob_theta, activation, shared_weights, n_polynomials, n_harmonics, futr_input_size, hist_input_size, stat_input_size, ): block_list = [] for i in range(len(stack_types)): for block_id in range(n_blocks[i]): # Shared weights if shared_weights and block_id > 0: nbeats_block = block_list[-1] else: if stack_types[i] == "seasonality": n_theta = ( 2 * (self.loss.outputsize_multiplier + 1) * int(np.ceil(n_harmonics / 2 * h) - (n_harmonics - 1)) ) basis = SeasonalityBasis( harmonics=n_harmonics, backcast_size=input_size, forecast_size=h, out_features=self.loss.outputsize_multiplier, ) elif stack_types[i] == "trend": n_theta = (self.loss.outputsize_multiplier + 1) * ( n_polynomials + 1 ) basis = TrendBasis( degree_of_polynomial=n_polynomials, backcast_size=input_size, forecast_size=h, out_features=self.loss.outputsize_multiplier, ) elif stack_types[i] == "identity": n_theta = input_size + self.loss.outputsize_multiplier * h basis = IdentityBasis( backcast_size=input_size, forecast_size=h, out_features=self.loss.outputsize_multiplier, ) elif stack_types[i] == "exogenous": if futr_input_size + stat_input_size > 0: n_theta = 2 * (futr_input_size + stat_input_size) basis = ExogenousBasis(forecast_size=h) else: raise ValueError(f"Block type {stack_types[i]} not found!") nbeats_block = NBEATSBlock( input_size=input_size, h=h, futr_input_size=futr_input_size, hist_input_size=hist_input_size, stat_input_size=stat_input_size, n_theta=n_theta, mlp_units=mlp_units, basis=basis, dropout_prob=dropout_prob_theta, activation=activation, ) # Select type of evaluation and apply it to all layers of block block_list.append(nbeats_block) return block_list def forward(self, windows_batch): # Parse windows_batch insample_y = windows_batch["insample_y"] insample_mask = windows_batch["insample_mask"] futr_exog = windows_batch["futr_exog"] hist_exog = windows_batch["hist_exog"] stat_exog = windows_batch["stat_exog"] # NBEATSx' forward residuals = insample_y.flip(dims=(-1,)) # backcast init insample_mask = insample_mask.flip(dims=(-1,)) forecast = insample_y[:, -1:, None] # Level with Naive1 block_forecasts = [forecast.repeat(1, self.h, 1)] for i, block in enumerate(self.blocks): backcast, block_forecast = block( insample_y=residuals, futr_exog=futr_exog, hist_exog=hist_exog, stat_exog=stat_exog, ) residuals = (residuals - backcast) * insample_mask forecast = forecast + block_forecast if self.decompose_forecast: block_forecasts.append(block_forecast) # Adapting output's domain forecast = self.loss.domain_map(forecast) if self.decompose_forecast: # (n_batch, n_blocks, h) block_forecasts = torch.stack(block_forecasts) block_forecasts = block_forecasts.permute(1, 0, 2, 3) block_forecasts = block_forecasts.squeeze(-1) # univariate output return block_forecasts else: return forecast