# AUTOGENERATED! DO NOT EDIT! File to edit: ../../nbs/models.mlpmultivariate.ipynb. # %% auto 0 __all__ = ['MLPMultivariate'] # %% ../../nbs/models.mlpmultivariate.ipynb 5 import torch import torch.nn as nn from ..losses.pytorch import MAE from ..common._base_multivariate import BaseMultivariate # %% ../../nbs/models.mlpmultivariate.ipynb 6 class MLPMultivariate(BaseMultivariate): """MLPMultivariate Simple Multi Layer Perceptron architecture (MLP) for multivariate forecasting. This deep neural network has constant units through its layers, each with ReLU non-linearities, it is trained using ADAM stochastic gradient descent. The network accepts static, historic and future exogenous data, flattens the inputs and learns fully connected relationships against the target variables. **Parameters:**
`h`: int, forecast horizon.
`input_size`: int, considered autorregresive inputs (lags), y=[1,2,3,4] input_size=2 -> lags=[1,2].
`n_series`: int, number of time-series.
`stat_exog_list`: str list, static exogenous columns.
`hist_exog_list`: str list, historic exogenous columns.
`futr_exog_list`: str list, future exogenous columns.
`n_layers`: int, number of layers for the MLP.
`hidden_size`: int, number of units for each layer of the MLP.
`loss`: PyTorch module, instantiated train loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).
`valid_loss`: PyTorch module=`loss`, instantiated valid loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).
`max_steps`: int=1000, maximum number of training steps.
`learning_rate`: float=1e-3, Learning rate between (0, 1).
`num_lr_decays`: int=-1, Number of learning rate decays, evenly distributed across max_steps.
`early_stop_patience_steps`: int=-1, Number of validation iterations before early stopping.
`val_check_steps`: int=100, Number of training steps between every validation loss check.
`batch_size`: int=32, number of different series in each batch.
`step_size`: int=1, step size between each window of temporal data.
`scaler_type`: str='identity', type of scaler for temporal inputs normalization see [temporal scalers](https://nixtla.github.io/neuralforecast/common.scalers.html).
`random_seed`: int=1, random_seed for pytorch initializer and numpy generators.
`num_workers_loader`: int=os.cpu_count(), workers to be used by `TimeSeriesDataLoader`.
`drop_last_loader`: bool=False, if True `TimeSeriesDataLoader` drops last non-full batch.
`alias`: str, optional, Custom name of the model.
`optimizer`: Subclass of 'torch.optim.Optimizer', optional, user specified optimizer instead of the default choice (Adam).
`optimizer_kwargs`: dict, optional, list of parameters used by the user specified `optimizer`.
`**trainer_kwargs`: int, keyword trainer arguments inherited from [PyTorch Lighning's trainer](https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch_lightning.trainer.trainer.Trainer.html?highlight=trainer).
""" # Class attributes SAMPLING_TYPE = "multivariate" def __init__( self, h, input_size, n_series, futr_exog_list=None, hist_exog_list=None, stat_exog_list=None, num_layers=2, hidden_size=1024, loss=MAE(), valid_loss=None, max_steps: int = 1000, learning_rate: float = 1e-3, num_lr_decays: int = -1, early_stop_patience_steps: int = -1, val_check_steps: int = 100, batch_size: int = 32, step_size: int = 1, scaler_type: str = "identity", random_seed: int = 1, num_workers_loader: int = 0, drop_last_loader: bool = False, optimizer=None, optimizer_kwargs=None, **trainer_kwargs ): # Inherit BaseMultivariate class super(MLPMultivariate, self).__init__( h=h, input_size=input_size, n_series=n_series, futr_exog_list=futr_exog_list, hist_exog_list=hist_exog_list, stat_exog_list=stat_exog_list, loss=loss, valid_loss=valid_loss, max_steps=max_steps, learning_rate=learning_rate, num_lr_decays=num_lr_decays, early_stop_patience_steps=early_stop_patience_steps, val_check_steps=val_check_steps, batch_size=batch_size, step_size=step_size, scaler_type=scaler_type, num_workers_loader=num_workers_loader, drop_last_loader=drop_last_loader, random_seed=random_seed, optimizer=optimizer, optimizer_kwargs=optimizer_kwargs, **trainer_kwargs ) # Architecture self.num_layers = num_layers self.hidden_size = hidden_size self.futr_input_size = len(self.futr_exog_list) self.hist_input_size = len(self.hist_exog_list) self.stat_input_size = len(self.stat_exog_list) input_size_first_layer = n_series * ( input_size + self.hist_input_size * input_size + self.futr_input_size * (input_size + h) + self.stat_input_size ) # MultiLayer Perceptron layers = [ nn.Linear(in_features=input_size_first_layer, out_features=hidden_size) ] for i in range(num_layers - 1): layers += [nn.Linear(in_features=hidden_size, out_features=hidden_size)] self.mlp = nn.ModuleList(layers) # Adapter with Loss dependent dimensions self.out = nn.Linear( in_features=hidden_size, out_features=h * self.loss.outputsize_multiplier * n_series, ) def forward(self, windows_batch): # Parse windows_batch x = windows_batch[ "insample_y" ] # [batch_size (B), input_size (L), n_series (N)] hist_exog = windows_batch["hist_exog"] # [B, hist_exog_size (X), L, N] futr_exog = windows_batch["futr_exog"] # [B, futr_exog_size (F), L + h, N] stat_exog = windows_batch["stat_exog"] # [N, stat_exog_size (S)] # Flatten MLP inputs [B, C, L+H, N] -> [B, C * (L+H) * N] # Contatenate [ Y^1_t, ..., Y^N_t | X^1_{t-L},..., X^1_{t}, ..., X^N_{t} | F^1_{t-L},..., F^1_{t+H}, ...., F^N_{t+H} | S^1, ..., S^N ] batch_size = x.shape[0] x = x.reshape(batch_size, -1) if self.hist_input_size > 0: x = torch.cat((x, hist_exog.reshape(batch_size, -1)), dim=1) if self.futr_input_size > 0: x = torch.cat((x, futr_exog.reshape(batch_size, -1)), dim=1) if self.stat_input_size > 0: x = torch.cat((x, stat_exog.reshape(batch_size, -1)), dim=1) for layer in self.mlp: x = torch.relu(layer(x)) x = self.out(x) x = x.reshape(batch_size, self.h, -1) forecast = self.loss.domain_map(x) # domain_map might have squeezed the last dimension in case n_series == 1 # Note that this fails in case of a tuple loss, but Multivariate does not support tuple losses yet. if forecast.ndim == 2: return forecast.unsqueeze(-1) else: return forecast