# AUTOGENERATED! DO NOT EDIT! File to edit: ../../nbs/models.dlinear.ipynb. # %% auto 0 __all__ = ['MovingAvg', 'SeriesDecomp', 'DLinear'] # %% ../../nbs/models.dlinear.ipynb 5 from typing import Optional import torch import torch.nn as nn from ..common._base_windows import BaseWindows from ..losses.pytorch import MAE # %% ../../nbs/models.dlinear.ipynb 8 class MovingAvg(nn.Module): """ Moving average block to highlight the trend of time series """ def __init__(self, kernel_size, stride): super(MovingAvg, self).__init__() self.kernel_size = kernel_size self.avg = nn.AvgPool1d(kernel_size=kernel_size, stride=stride, padding=0) def forward(self, x): # padding on the both ends of time series front = x[:, 0:1].repeat(1, (self.kernel_size - 1) // 2) end = x[:, -1:].repeat(1, (self.kernel_size - 1) // 2) x = torch.cat([front, x, end], dim=1) x = self.avg(x) return x class SeriesDecomp(nn.Module): """ Series decomposition block """ def __init__(self, kernel_size): super(SeriesDecomp, self).__init__() self.MovingAvg = MovingAvg(kernel_size, stride=1) def forward(self, x): moving_mean = self.MovingAvg(x) res = x - moving_mean return res, moving_mean # %% ../../nbs/models.dlinear.ipynb 10 class DLinear(BaseWindows): """DLinear *Parameters:*
`h`: int, forecast horizon.
`input_size`: int, maximum sequence length for truncated train backpropagation. Default -1 uses all history.
`futr_exog_list`: str list, future exogenous columns.
`hist_exog_list`: str list, historic exogenous columns.
`stat_exog_list`: str list, static exogenous columns.
`exclude_insample_y`: bool=False, the model skips the autoregressive features y[t-input_size:t] if True.
`moving_avg_window`: int=25, window size for trend-seasonality decomposition. Should be uneven.
`loss`: PyTorch module, instantiated train loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).
`max_steps`: int=1000, maximum number of training steps.
`learning_rate`: float=1e-3, Learning rate between (0, 1).
`num_lr_decays`: int=-1, Number of learning rate decays, evenly distributed across max_steps.
`early_stop_patience_steps`: int=-1, Number of validation iterations before early stopping.
`val_check_steps`: int=100, Number of training steps between every validation loss check.
`batch_size`: int=32, number of different series in each batch.
`valid_batch_size`: int=None, number of different series in each validation and test batch, if None uses batch_size.
`windows_batch_size`: int=1024, number of windows to sample in each training batch, default uses all.
`inference_windows_batch_size`: int=1024, number of windows to sample in each inference batch.
`start_padding_enabled`: bool=False, if True, the model will pad the time series with zeros at the beginning, by input size.
`scaler_type`: str='robust', type of scaler for temporal inputs normalization see [temporal scalers](https://nixtla.github.io/neuralforecast/common.scalers.html).
`random_seed`: int=1, random_seed for pytorch initializer and numpy generators.
`num_workers_loader`: int=os.cpu_count(), workers to be used by `TimeSeriesDataLoader`.
`drop_last_loader`: bool=False, if True `TimeSeriesDataLoader` drops last non-full batch.
`alias`: str, optional, Custom name of the model.
`optimizer`: Subclass of 'torch.optim.Optimizer', optional, user specified optimizer instead of the default choice (Adam).
`optimizer_kwargs`: dict, optional, list of parameters used by the user specified `optimizer`.
`**trainer_kwargs`: int, keyword trainer arguments inherited from [PyTorch Lighning's trainer](https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch_lightning.trainer.trainer.Trainer.html?highlight=trainer).
*References*
- Zeng, Ailing, et al. "Are transformers effective for time series forecasting?." Proceedings of the AAAI conference on artificial intelligence. Vol. 37. No. 9. 2023." """ # Class attributes SAMPLING_TYPE = "windows" def __init__( self, h: int, input_size: int, stat_exog_list=None, hist_exog_list=None, futr_exog_list=None, exclude_insample_y=False, moving_avg_window: int = 25, loss=MAE(), valid_loss=None, max_steps: int = 5000, learning_rate: float = 1e-4, num_lr_decays: int = -1, early_stop_patience_steps: int = -1, val_check_steps: int = 100, batch_size: int = 32, valid_batch_size: Optional[int] = None, windows_batch_size=1024, inference_windows_batch_size=1024, start_padding_enabled=False, step_size: int = 1, scaler_type: str = "identity", random_seed: int = 1, num_workers_loader: int = 0, drop_last_loader: bool = False, optimizer=None, optimizer_kwargs=None, **trainer_kwargs ): super(DLinear, self).__init__( h=h, input_size=input_size, hist_exog_list=hist_exog_list, stat_exog_list=stat_exog_list, futr_exog_list=futr_exog_list, exclude_insample_y=exclude_insample_y, loss=loss, valid_loss=valid_loss, max_steps=max_steps, learning_rate=learning_rate, num_lr_decays=num_lr_decays, early_stop_patience_steps=early_stop_patience_steps, val_check_steps=val_check_steps, batch_size=batch_size, windows_batch_size=windows_batch_size, valid_batch_size=valid_batch_size, inference_windows_batch_size=inference_windows_batch_size, start_padding_enabled=start_padding_enabled, step_size=step_size, scaler_type=scaler_type, num_workers_loader=num_workers_loader, drop_last_loader=drop_last_loader, random_seed=random_seed, optimizer=optimizer, optimizer_kwargs=optimizer_kwargs, **trainer_kwargs ) # Architecture self.futr_input_size = len(self.futr_exog_list) self.hist_input_size = len(self.hist_exog_list) self.stat_input_size = len(self.stat_exog_list) if self.stat_input_size > 0: raise Exception("DLinear does not support static variables yet") if self.hist_input_size > 0: raise Exception("DLinear does not support historical variables yet") if self.futr_input_size > 0: raise Exception("DLinear does not support future variables yet") if moving_avg_window % 2 == 0: raise Exception("moving_avg_window should be uneven") self.c_out = self.loss.outputsize_multiplier self.output_attention = False self.enc_in = 1 self.dec_in = 1 # Decomposition self.decomp = SeriesDecomp(moving_avg_window) self.linear_trend = nn.Linear( self.input_size, self.loss.outputsize_multiplier * h, bias=True ) self.linear_season = nn.Linear( self.input_size, self.loss.outputsize_multiplier * h, bias=True ) def forward(self, windows_batch): # Parse windows_batch insample_y = windows_batch["insample_y"] # insample_mask = windows_batch['insample_mask'] # hist_exog = windows_batch['hist_exog'] # stat_exog = windows_batch['stat_exog'] # futr_exog = windows_batch['futr_exog'] # Parse inputs batch_size = len(insample_y) seasonal_init, trend_init = self.decomp(insample_y) trend_part = self.linear_trend(trend_init) seasonal_part = self.linear_season(seasonal_init) # Final forecast = trend_part + seasonal_part forecast = forecast.reshape(batch_size, self.h, self.loss.outputsize_multiplier) forecast = self.loss.domain_map(forecast) return forecast