{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#| default_exp models.hint"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# HINT"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"The Hierarchical Mixture Networks (HINT) are a highly modular framework that combines SoTA neural forecast architectures with task-specialized mixture probability and advanced hierarchical reconciliation strategies. This powerful combination allows HINT to produce accurate and coherent probabilistic forecasts.\n",
"\n",
"HINT's incorporates a `TemporalNorm` module into any neural forecast architecture, the module normalizes inputs into the network's non-linearities operating range and recomposes its output's scales through a global skip connection, improving accuracy and training robustness. HINT ensures the forecast coherence via bootstrap sample reconciliation that restores the aggregation constraints into its base samples.\n",
"\n",
"**References**
\n",
"- [Kin G. Olivares, David Luo, Cristian Challu, Stefania La Vattiata, Max Mergenthaler, Artur Dubrawski (2023). \"HINT: Hierarchical Mixture Networks For Coherent Probabilistic Forecasting\". Neural Information Processing Systems, submitted. Working Paper version available at arxiv.](https://arxiv.org/abs/2305.07089)
\n",
"- [Kin G. Olivares, O. Nganba Meetei, Ruijun Ma, Rohan Reddy, Mengfei Cao, Lee Dicker (2022).\"Probabilistic Hierarchical Forecasting with Deep Poisson Mixtures\". International Journal Forecasting, accepted paper available at arxiv.](https://arxiv.org/pdf/2110.13179.pdf)
\n",
"- [Kin G. Olivares, Federico Garza, David Luo, Cristian Challu, Max Mergenthaler, Souhaib Ben Taieb, Shanika Wickramasuriya, and Artur Dubrawski (2022). \"HierarchicalForecast: A reference framework for hierarchical forecasting in python\". Journal of Machine Learning Research, submitted, abs/2207.03517, 2022b.](https://arxiv.org/abs/2207.03517)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#| hide\n",
"from nbdev.showdoc import show_doc\n",
"from neuralforecast.losses.pytorch import GMM\n",
"from neuralforecast import NeuralForecast\n",
"from neuralforecast.models import NHITS\n",
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#| export\n",
"from typing import Optional\n",
"\n",
"import numpy as np\n",
"import torch"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Reconciliation Methods"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#| export\n",
"def get_bottomup_P(S: np.ndarray):\n",
" \"\"\"BottomUp Reconciliation Matrix.\n",
"\n",
" Creates BottomUp hierarchical \\\"projection\\\" matrix is defined as:\n",
" $$\\mathbf{P}_{\\\\text{BU}} = [\\mathbf{0}_{\\mathrm{[b],[a]}}\\;|\\;\\mathbf{I}_{\\mathrm{[b][b]}}]$$ \n",
"\n",
" **Parameters:**
\n",
" `S`: Summing matrix of size (`base`, `bottom`).
\n",
"\n",
" **Returns:**
\n",
" `P`: Reconciliation matrix of size (`bottom`, `base`).
\n",
"\n",
" **References:**
\n",
" - [Orcutt, G.H., Watts, H.W., & Edwards, J.B.(1968). \\\"Data aggregation and information loss\\\". The American \n",
" Economic Review, 58 , 773(787)](http://www.jstor.org/stable/1815532). \n",
" \"\"\"\n",
" n_series = len(S)\n",
" n_agg = n_series-S.shape[1]\n",
" P = np.zeros_like(S)\n",
" P[n_agg:,:] = S[n_agg:,:]\n",
" P = P.T\n",
" return P\n",
"\n",
"def get_mintrace_ols_P(S: np.ndarray):\n",
" \"\"\"MinTraceOLS Reconciliation Matrix.\n",
"\n",
" Creates MinTraceOLS reconciliation matrix as proposed by Wickramasuriya et al.\n",
"\n",
" $$\\mathbf{P}_{\\\\text{MinTraceOLS}}=\\\\left(\\mathbf{S}^{\\intercal}\\mathbf{S}\\\\right)^{-1}\\mathbf{S}^{\\intercal}$$\n",
"\n",
" **Parameters:**
\n",
" `S`: Summing matrix of size (`base`, `bottom`).
\n",
" \n",
" **Returns:**
\n",
" `P`: Reconciliation matrix of size (`bottom`, `base`).
\n",
"\n",
" **References:**
\n",
" - [Wickramasuriya, S.L., Turlach, B.A. & Hyndman, R.J. (2020). \\\"Optimal non-negative\n",
" forecast reconciliation\". Stat Comput 30, 1167–1182,\n",
" https://doi.org/10.1007/s11222-020-09930-0](https://robjhyndman.com/publications/nnmint/).\n",
" \"\"\"\n",
" n_hiers, n_bottom = S.shape\n",
" n_agg = n_hiers - n_bottom\n",
"\n",
" W = np.eye(n_hiers)\n",
"\n",
" # We compute reconciliation matrix with\n",
" # Equation 10 from https://robjhyndman.com/papers/MinT.pdf\n",
" A = S[:n_agg,:]\n",
" U = np.hstack((np.eye(n_agg), -A)).T\n",
" J = np.hstack((np.zeros((n_bottom,n_agg)), np.eye(n_bottom)))\n",
" P = J - (J @ W @ U) @ np.linalg.pinv(U.T @ W @ U) @ U.T\n",
" return P\n",
"\n",
"def get_mintrace_wls_P(S: np.ndarray):\n",
" \"\"\"MinTraceOLS Reconciliation Matrix.\n",
"\n",
" Creates MinTraceOLS reconciliation matrix as proposed by Wickramasuriya et al.\n",
" Depending on a weighted GLS estimator and an estimator of the covariance matrix of the coherency errors $\\mathbf{W}_{h}$.\n",
"\n",
" $$ \\mathbf{W}_{h} = \\mathrm{Diag}(\\mathbf{S} \\mathbb{1}_{[b]})$$\n",
"\n",
" $$\\mathbf{P}_{\\\\text{MinTraceWLS}}=\\\\left(\\mathbf{S}^{\\intercal}\\mathbf{W}_{h}\\mathbf{S}\\\\right)^{-1}\n",
" \\mathbf{S}^{\\intercal}\\mathbf{W}^{-1}_{h}$$ \n",
"\n",
" **Parameters:**
\n",
" `S`: Summing matrix of size (`base`, `bottom`).
\n",
" \n",
" **Returns:**
\n",
" `P`: Reconciliation matrix of size (`bottom`, `base`).
\n",
"\n",
" **References:**
\n",
" - [Wickramasuriya, S.L., Turlach, B.A. & Hyndman, R.J. (2020). \\\"Optimal non-negative\n",
" forecast reconciliation\". Stat Comput 30, 1167–1182,\n",
" https://doi.org/10.1007/s11222-020-09930-0](https://robjhyndman.com/publications/nnmint/).\n",
" \"\"\"\n",
" n_hiers, n_bottom = S.shape\n",
" n_agg = n_hiers - n_bottom\n",
" \n",
" W = np.diag(S @ np.ones((n_bottom,)))\n",
"\n",
" # We compute reconciliation matrix with\n",
" # Equation 10 from https://robjhyndman.com/papers/MinT.pdf\n",
" A = S[:n_agg,:]\n",
" U = np.hstack((np.eye(n_agg), -A)).T\n",
" J = np.hstack((np.zeros((n_bottom,n_agg)), np.eye(n_bottom)))\n",
" P = J - (J @ W @ U) @ np.linalg.pinv(U.T @ W @ U) @ U.T\n",
" return P\n",
"\n",
"def get_identity_P(S: np.ndarray):\n",
" # Placeholder function for identity P (no reconciliation).\n",
" pass"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"show_doc(get_bottomup_P, title_level=3)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"show_doc(get_mintrace_ols_P, title_level=3)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"show_doc(get_mintrace_wls_P, title_level=3)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## HINT"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#| export\n",
"class HINT:\n",
" \"\"\" HINT\n",
"\n",
" The Hierarchical Mixture Networks (HINT) are a highly modular framework that \n",
" combines SoTA neural forecast architectures with a task-specialized mixture \n",
" probability and advanced hierarchical reconciliation strategies. This powerful \n",
" combination allows HINT to produce accurate and coherent probabilistic forecasts.\n",
"\n",
" HINT's incorporates a `TemporalNorm` module into any neural forecast architecture, \n",
" the module normalizes inputs into the network's non-linearities operating range \n",
" and recomposes its output's scales through a global skip connection, improving \n",
" accuracy and training robustness. HINT ensures the forecast coherence via bootstrap \n",
" sample reconciliation that restores the aggregation constraints into its base samples.\n",
"\n",
" Available reconciliations:
\n",
" - BottomUp
\n",
" - MinTraceOLS
\n",
" - MinTraceWLS
\n",
" - Identity\n",
"\n",
" **Parameters:**
\n",
" `h`: int, Forecast horizon.
\n",
" `model`: NeuralForecast model, instantiated model class from [architecture collection](https://nixtla.github.io/neuralforecast/models.pytorch.html).
\n",
" `S`: np.ndarray, dumming matrix of size (`base`, `bottom`) see HierarchicalForecast's [aggregate method](https://nixtla.github.io/hierarchicalforecast/utils.html#aggregate).
\n",
" `reconciliation`: str, HINT's reconciliation method from ['BottomUp', 'MinTraceOLS', 'MinTraceWLS'].
\n",
" `alias`: str, optional, Custom name of the model.
\n",
" \"\"\"\n",
" def __init__(self,\n",
" h: int,\n",
" S: np.ndarray,\n",
" model,\n",
" reconciliation: str,\n",
" alias: Optional[str] = None):\n",
" \n",
" if model.h != h:\n",
" raise Exception(f\"Model h {model.h} does not match HINT h {h}\")\n",
" \n",
" if not model.loss.is_distribution_output:\n",
" raise Exception(f\"The NeuralForecast model's loss {model.loss} is not a probabilistic objective\")\n",
" \n",
" self.h = h\n",
" self.model = model\n",
" self.early_stop_patience_steps = model.early_stop_patience_steps\n",
" self.S = S\n",
" self.reconciliation = reconciliation\n",
" self.loss = model.loss\n",
"\n",
" available_reconciliations = dict(\n",
" BottomUp=get_bottomup_P,\n",
" MinTraceOLS=get_mintrace_ols_P,\n",
" MinTraceWLS=get_mintrace_wls_P,\n",
" Identity=get_identity_P,\n",
" )\n",
"\n",
" if reconciliation not in available_reconciliations:\n",
" raise Exception(f\"Reconciliation {reconciliation} not available\")\n",
"\n",
" # Get SP matrix\n",
" self.reconciliation = reconciliation\n",
" if reconciliation== 'Identity':\n",
" self.SP = None\n",
" else:\n",
" P = available_reconciliations[reconciliation](S=S)\n",
" self.SP = S @ P\n",
"\n",
" qs = torch.Tensor((np.arange(self.loss.num_samples)/self.loss.num_samples))\n",
" self.sample_quantiles = torch.nn.Parameter(qs, requires_grad=False)\n",
" self.alias = alias\n",
" \n",
" def __repr__(self):\n",
" return type(self).__name__ if self.alias is None else self.alias\n",
"\n",
"\n",
" def fit(self, dataset, val_size=0, test_size=0, random_seed=None, distributed_config=None):\n",
" \"\"\" HINT.fit\n",
"\n",
" HINT trains on the entire hierarchical dataset, by minimizing a composite log likelihood objective.\n",
" HINT framework integrates `TemporalNorm` into the neural forecast architecture for a scale-decoupled \n",
" optimization that robustifies cross-learning the hierachy's series scales.\n",
"\n",
" **Parameters:**
\n",
" `dataset`: NeuralForecast's `TimeSeriesDataset` see details [here](https://nixtla.github.io/neuralforecast/tsdataset.html)
\n",
" `val_size`: int, size of the validation set, (default 0).
\n",
" `test_size`: int, size of the test set, (default 0).
\n",
" `random_seed`: int, random seed for the prediction.
\n",
"\n",
" **Returns:**
\n",
" `self`: A fitted base `NeuralForecast` model.
\n",
" \"\"\"\n",
" model = self.model.fit(dataset=dataset,\n",
" val_size=val_size,\n",
" test_size=test_size,\n",
" random_seed=random_seed,\n",
" distributed_config=distributed_config)\n",
"\n",
" # Added attributes for compatibility with NeuralForecast core\n",
" self.futr_exog_list = self.model.futr_exog_list\n",
" self.hist_exog_list = self.model.hist_exog_list\n",
" self.stat_exog_list = self.model.stat_exog_list\n",
" return model\n",
"\n",
" def predict(self, dataset, step_size=1, random_seed=None, **data_module_kwargs):\n",
" \"\"\" HINT.predict\n",
"\n",
" After fitting a base model on the entire hierarchical dataset.\n",
" HINT restores the hierarchical aggregation constraints using \n",
" bootstrapped sample reconciliation.\n",
"\n",
" **Parameters:**
\n",
" `dataset`: NeuralForecast's `TimeSeriesDataset` see details [here](https://nixtla.github.io/neuralforecast/tsdataset.html)
\n",
" `step_size`: int, steps between sequential predictions, (default 1).
\n",
" `random_seed`: int, random seed for the prediction.
\n",
" `**data_kwarg`: additional parameters for the dataset module.
\n",
"\n",
" **Returns:**
\n",
" `y_hat`: numpy predictions of the `NeuralForecast` model.
\n",
" \"\"\"\n",
" # Non-reconciled predictions\n",
" if self.reconciliation=='Identity':\n",
" forecasts = self.model.predict(dataset=dataset, \n",
" step_size=step_size,\n",
" random_seed=random_seed,\n",
" **data_module_kwargs)\n",
" return forecasts\n",
"\n",
" num_samples = self.model.loss.num_samples\n",
"\n",
" # Hack to get samples by simulating quantiles (samples will be ordered)\n",
" # Mysterious parsing associated to default [mean,quantiles] output\n",
" quantiles_old = self.model.loss.quantiles\n",
" names_old = self.model.loss.output_names\n",
" self.model.loss.quantiles = self.sample_quantiles\n",
" self.model.loss.output_names = ['1'] * (1 + num_samples)\n",
" samples = self.model.predict(dataset=dataset, \n",
" step_size=step_size,\n",
" random_seed=random_seed,\n",
" **data_module_kwargs)\n",
" samples = samples[:,1:] # Eliminate mean from quantiles\n",
" self.model.loss.quantiles = quantiles_old\n",
" self.model.loss.output_names = names_old\n",
"\n",
" # Hack requires to break quantiles correlations between samples\n",
" idxs = np.random.choice(num_samples, size=samples.shape, replace=True)\n",
" aux_col_idx = np.arange(len(samples))[:,None] * num_samples\n",
" idxs = idxs + aux_col_idx\n",
" samples = samples.flatten()[idxs]\n",
" samples = samples.reshape(dataset.n_groups, -1, self.h, num_samples)\n",
" \n",
" # Bootstrap Sample Reconciliation\n",
" # Default output [mean, quantiles]\n",
" samples = np.einsum('ij, jwhp -> iwhp', self.SP, samples)\n",
"\n",
" sample_mean = np.mean(samples, axis=-1, keepdims=True)\n",
" sample_mean = sample_mean.reshape(-1, 1)\n",
"\n",
" forecasts = np.quantile(samples, self.model.loss.quantiles, axis=-1)\n",
" forecasts = forecasts.transpose(1,2,3,0) # [...,samples]\n",
" forecasts = forecasts.reshape(-1, len(self.model.loss.quantiles))\n",
"\n",
" forecasts = np.concatenate([sample_mean, forecasts], axis=-1)\n",
" return forecasts\n",
"\n",
" def set_test_size(self, test_size):\n",
" self.model.test_size = test_size\n",
"\n",
" def get_test_size(self):\n",
" return self.model.test_size\n",
"\n",
" def save(self, path):\n",
" \"\"\" HINT.save\n",
"\n",
" Save the HINT fitted model to disk.\n",
"\n",
" **Parameters:**
\n",
" `path`: str, path to save the model.
\n",
" \"\"\"\n",
" self.model.save(path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"show_doc(HINT, title_level=3)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"show_doc(HINT.fit, title_level=3)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"show_doc(HINT.predict, title_level=3)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# | hide\n",
"# Unit test to check hierarchical coherence\n",
"# Probabilistic coherent => Sample coherent => Mean coherence\n",
"\n",
"def sort_df_hier(Y_df, S_df):\n",
" # NeuralForecast core, sorts unique_id lexicographically\n",
" # by default, this class matches S_df and Y_hat_df order. \n",
" Y_df.unique_id = Y_df.unique_id.astype('category')\n",
" Y_df.unique_id = Y_df.unique_id.cat.set_categories(S_df.index)\n",
" Y_df = Y_df.sort_values(by=['unique_id', 'ds'])\n",
" return Y_df\n",
"\n",
"# -----Create synthetic dataset-----\n",
"np.random.seed(123)\n",
"train_steps = 20\n",
"num_levels = 7\n",
"level = np.arange(0, 100, 0.1)\n",
"qs = [[50-lv/2, 50+lv/2] for lv in level]\n",
"quantiles = np.sort(np.concatenate(qs)/100)\n",
"\n",
"levels = ['Top', 'Mid1', 'Mid2', 'Bottom1', 'Bottom2', 'Bottom3', 'Bottom4']\n",
"unique_ids = np.repeat(levels, train_steps)\n",
"\n",
"S = np.array([[1., 1., 1., 1.],\n",
" [1., 1., 0., 0.],\n",
" [0., 0., 1., 1.],\n",
" [1., 0., 0., 0.],\n",
" [0., 1., 0., 0.],\n",
" [0., 0., 1., 0.],\n",
" [0., 0., 0., 1.]])\n",
"\n",
"S_dict = {col: S[:, i] for i, col in enumerate(levels[3:])}\n",
"S_df = pd.DataFrame(S_dict, index=levels)\n",
"\n",
"ds = pd.date_range(start='2018-03-31', periods=train_steps, freq='Q').tolist() * num_levels\n",
"# Create Y_df\n",
"y_lists = [S @ np.random.uniform(low=100, high=500, size=4) for i in range(train_steps)]\n",
"y = [elem for tup in zip(*y_lists) for elem in tup]\n",
"Y_df = pd.DataFrame({'unique_id': unique_ids, 'ds': ds, 'y': y})\n",
"Y_df = sort_df_hier(Y_df, S_df)\n",
"\n",
"# ------Fit/Predict HINT Model------\n",
"# Model + Distribution + Reconciliation\n",
"nhits = NHITS(h=4,\n",
" input_size=4,\n",
" loss=GMM(n_components=2, quantiles=quantiles, num_samples=len(quantiles)),\n",
" max_steps=5,\n",
" early_stop_patience_steps=2,\n",
" val_check_steps=1,\n",
" scaler_type='robust',\n",
" learning_rate=1e-3)\n",
"model = HINT(h=4, model=nhits, S=S, reconciliation='BottomUp')\n",
"\n",
"# Fit and Predict\n",
"nf = NeuralForecast(models=[model], freq='Q')\n",
"forecasts = nf.cross_validation(df=Y_df, val_size=4, n_windows=1)\n",
"\n",
"# ---Check Hierarchical Coherence---\n",
"parent_children_dict = {0: [1, 2], 1: [3, 4], 2: [5, 6]}\n",
"# check coherence for each horizon time step\n",
"for _, df in forecasts.groupby('ds'):\n",
" hint_mean = df['HINT'].values\n",
" for parent_idx, children_list in parent_children_dict.items():\n",
" parent_value = hint_mean[parent_idx]\n",
" children_sum = hint_mean[children_list].sum()\n",
" np.testing.assert_allclose(children_sum, parent_value)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Usage Example"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"In this example we will use HINT for the hierarchical forecast task, a multivariate regression problem with aggregation constraints. The aggregation constraints can be compactcly represented by the summing matrix $\\mathbf{S}_{[i][b]}$, the Figure belows shows an example.\n",
"\n",
"In this example we will make coherent predictions for the TourismL dataset. \n",
"\n",
"Outline
\n",
"1. Import packages
\n",
"2. Load hierarchical dataset
\n",
"3. Fit and Predict HINT
\n",
"4. Forecast Plot"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#| eval: false\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"\n",
"from neuralforecast.losses.pytorch import GMM, sCRPS\n",
"from datasetsforecast.hierarchical import HierarchicalData\n",
"\n",
"# Auxiliary sorting\n",
"def sort_df_hier(Y_df, S_df):\n",
" # NeuralForecast core, sorts unique_id lexicographically\n",
" # by default, this class matches S_df and Y_hat_df order. \n",
" Y_df.unique_id = Y_df.unique_id.astype('category')\n",
" Y_df.unique_id = Y_df.unique_id.cat.set_categories(S_df.index)\n",
" Y_df = Y_df.sort_values(by=['unique_id', 'ds'])\n",
" return Y_df\n",
"\n",
"# Load TourismSmall dataset\n",
"horizon = 12\n",
"Y_df, S_df, tags = HierarchicalData.load('./data', 'TourismLarge')\n",
"Y_df['ds'] = pd.to_datetime(Y_df['ds'])\n",
"Y_df = sort_df_hier(Y_df, S_df)\n",
"level = [80,90]\n",
"\n",
"# Instantiate HINT\n",
"# BaseNetwork + Distribution + Reconciliation\n",
"nhits = NHITS(h=horizon,\n",
" input_size=24,\n",
" loss=GMM(n_components=10, level=level),\n",
" max_steps=2000,\n",
" early_stop_patience_steps=10,\n",
" val_check_steps=50,\n",
" scaler_type='robust',\n",
" learning_rate=1e-3,\n",
" valid_loss=sCRPS(level=level))\n",
"\n",
"model = HINT(h=horizon, S=S_df.values,\n",
" model=nhits, reconciliation='BottomUp')\n",
"\n",
"# Fit and Predict\n",
"nf = NeuralForecast(models=[model], freq='MS')\n",
"Y_hat_df = nf.cross_validation(df=Y_df, val_size=12, n_windows=1)\n",
"Y_hat_df = Y_hat_df.reset_index()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#| eval: false\n",
"# Plot coherent probabilistic forecast\n",
"unique_id = 'TotalAll'\n",
"Y_plot_df = Y_df[Y_df.unique_id==unique_id]\n",
"plot_df = Y_hat_df[Y_hat_df.unique_id==unique_id]\n",
"plot_df = Y_plot_df.merge(plot_df, on=['ds', 'unique_id'], how='left')\n",
"n_years = 5\n",
"\n",
"plt.plot(plot_df['ds'][-12*n_years:], plot_df['y_x'][-12*n_years:], c='black', label='True')\n",
"plt.plot(plot_df['ds'][-12*n_years:], plot_df['HINT'][-12*n_years:], c='purple', label='mean')\n",
"plt.plot(plot_df['ds'][-12*n_years:], plot_df['HINT-median'][-12*n_years:], c='blue', label='median')\n",
"plt.fill_between(x=plot_df['ds'][-12*n_years:],\n",
" y1=plot_df['HINT-lo-90'][-12*n_years:].values,\n",
" y2=plot_df['HINT-hi-90'][-12*n_years:].values,\n",
" alpha=0.4, label='level 90')\n",
"plt.legend()\n",
"plt.grid()\n",
"plt.plot()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "python3",
"language": "python",
"name": "python3"
}
},
"nbformat": 4,
"nbformat_minor": 4
}