import dataclasses import warnings from typing import Dict, Generator, Iterator, List, Optional, Union import numpy as np import torch from torch.utils.data import BatchSampler, DataLoader from torch.utils.data.distributed import DistributedSampler from nanotron import distributed as dist from nanotron import logging from nanotron.config import Config from nanotron.parallel import ParallelContext from nanotron.parallel.pipeline_parallel.tensor_pointer import TensorPointer from nanotron.random import set_random_seed from nanotron.sanity_checks import ( assert_fail_except_rank_with, assert_tensor_synced_across_pg, ) try: import datasets from datasets import ( Dataset, DatasetDict, Features, Sequence, Value, concatenate_datasets, load_dataset, ) from transformers import PreTrainedTokenizerBase from transformers.trainer_pt_utils import DistributedSamplerWithLoop except ImportError: warnings.warn("Datasets and/or Transformers not installed, you'll be unable to use the dataloader.") logger = logging.get_logger(__name__) def sanity_check_dataloader( dataloader: Iterator[Dict[str, Union[torch.Tensor, TensorPointer]]], parallel_context: ParallelContext, config: Config, ) -> Iterator[Dict[str, Union[torch.Tensor, TensorPointer]]]: for batch in dataloader: micro_batch = { k: v if isinstance(v, TensorPointer) else v.to("cuda", memory_format=torch.contiguous_format) for k, v in batch.items() } if not config.general.ignore_sanity_checks: # SANITY CHECK: Check input are not the same across DP for key, value in sorted(micro_batch.items(), key=lambda x: x[0]): if isinstance(value, TensorPointer): continue if "mask" in key: # It's fine if mask is the same across DP continue with assert_fail_except_rank_with(AssertionError, rank_exception=0, pg=parallel_context.dp_pg): assert_tensor_synced_across_pg( tensor=value, pg=parallel_context.dp_pg, msg=lambda err: f"{key} {err}" ) # SANITY CHECK: Check input are synchronized throughout TP for key, value in sorted(micro_batch.items(), key=lambda x: x[0]): if isinstance(value, TensorPointer): continue assert_tensor_synced_across_pg( tensor=value, pg=parallel_context.tp_pg, msg=lambda err: f"{key} are not synchronized throughout TP {err}", ) # SANITY CHECK: Check that input are synchronized throughout PP # TODO @thomasw21: That's really hard to test as input gets sharded across the PP, let's assume it works for now. # SANITY CHECK: Check that an input only exists on the PP rank responsible for it # TODO @nouamanetazi: add this test yield micro_batch # Adapted from h4/src/h4/data/loading.py def get_datasets( hf_dataset_or_datasets: Union[dict, str], hf_dataset_config_name: str, splits: Optional[Union[List[str], str]] = ["train", "test"], ) -> "DatasetDict": """ Function to load dataset directly from DataArguments. Args: hf_dataset_or_datasets (Union[dict, str]): dict or string. When all probabilities are 1, we concatenate the datasets instead of sampling from them. splits (Optional[List[str]], optional): Section of the dataset to load, defaults to "train", "test" Can be one of `train_ift`, `test_rl`, or `..._rm` etc. H4 datasets are divided into 6 subsets for training / testing. Returns DatasetDict: DatasetDict object containing the dataset of the appropriate section with test + train parts. """ if isinstance(splits, str): splits = [splits] if isinstance(hf_dataset_or_datasets, dict): # Structure of the config to read the datasets and their mix # datasets_mixer: # - 'dataset1': 0.5 # - 'dataset2': 0.3 # - 'dataset3': 0.2 raw_datasets = _get_dataset_mix(hf_dataset_or_datasets, splits=splits) elif isinstance(hf_dataset_or_datasets, str): # e.g. Dataset = "HuggingFaceH4/testing_alpaca_small" # Note this returns things other than just train/test, which may not be intended raw_datasets = DatasetDict() for split in splits: raw_datasets[split] = load_dataset( hf_dataset_or_datasets, hf_dataset_config_name, split=split, ) else: raise ValueError(f"hf_dataset_or_datasets must be a dict or string but is {type(hf_dataset_or_datasets)}") return raw_datasets # Adapted from h4/src/h4/data/loading.py def _get_dataset_mix(dataset_dict: dict, splits: List[str] = None, seed=42) -> "DatasetDict": """ Helper function to load dataset mix from dict configuration. Args: dataset_dict (dict): Dictionary containing the dataset names and their training proportions. By default, all test proportions are 1. splits (Optional[List[str]], optional): Section of the dataset to load, defaults to "train", "test" Can be one of `train_{ift,rm,rl}` and `test_{ift,rm,rl}`. Our datasets are typically divided into 6 subsets for training / testing. """ raw_datasets = DatasetDict() raw_train_datasets = [] raw_test_datasets = [] fracs = [] for ds, frac in dataset_dict.items(): if frac < 0: raise ValueError(f"Dataset fraction for dataset {ds} is negative. (= {frac})") fracs.append(frac) for split in splits: if "train" in split: raw_train_datasets.append( load_dataset( ds, split=split, ) ) elif "test" in split: raw_test_datasets.append( load_dataset( ds, split=split, ) ) else: raise ValueError(f"Split type {split} not recognized as one of test or train.") if len(raw_train_datasets) > 0: train_subsets = [] for dataset, frac in zip(raw_train_datasets, fracs): train_subset = dataset.select(range(int(frac * len(dataset)))) train_subsets.append(train_subset) raw_datasets["train"] = concatenate_datasets(train_subsets).shuffle(seed=seed) # No subsampling for test datasets to enable fair comparison across models if len(raw_test_datasets) > 0: raw_datasets["test"] = concatenate_datasets(raw_test_datasets).shuffle(seed=seed) if len(raw_datasets) == 0: raise ValueError( f"Dataset {dataset_dict} not recognized with split {split}. Check the dataset has been correctly formatted." ) return raw_datasets def dummy_infinite_data_generator( micro_batch_size: int, sequence_length: int, input_pp_rank: int, output_pp_rank: int, vocab_size: int, seed: int, parallel_context: ParallelContext, ): def data_generator() -> Generator[Dict[str, Union[torch.Tensor, TensorPointer]], None, None]: # Random generator generator = torch.Generator(device="cuda") # Make sure that TP are synced always generator.manual_seed( seed * (1 + dist.get_rank(parallel_context.dp_pg)) * (1 + dist.get_rank(parallel_context.pp_pg)) ) while True: yield { "input_ids": torch.randint( 0, vocab_size, (micro_batch_size, sequence_length), dtype=torch.long, device="cuda", generator=generator, ) if dist.get_rank(parallel_context.pp_pg) == input_pp_rank else TensorPointer(group_rank=input_pp_rank), "input_mask": torch.ones( micro_batch_size, sequence_length, dtype=torch.bool, device="cuda", ) if dist.get_rank(parallel_context.pp_pg) == input_pp_rank else TensorPointer(group_rank=input_pp_rank), "label_ids": torch.randint( 0, vocab_size, (micro_batch_size, sequence_length), dtype=torch.long, device="cuda", generator=generator, ) if dist.get_rank(parallel_context.pp_pg) == output_pp_rank else TensorPointer(group_rank=output_pp_rank), "label_mask": torch.ones( micro_batch_size, sequence_length, dtype=torch.bool, device="cuda", ) if dist.get_rank(parallel_context.pp_pg) == output_pp_rank else TensorPointer(group_rank=output_pp_rank), } return data_generator # Adapted from https://github.com/huggingface/accelerate/blob/a73898027a211c3f6dc4460351b0ec246aa824aa/src/accelerate/data_loader.py#L781C1-L824C28 class SkipBatchSampler(BatchSampler): """ A `torch.utils.data.BatchSampler` that skips the first `n` batches of another `torch.utils.data.BatchSampler`. Note that in case of DDP, we skip batches on each rank, so a total of `skip_batches * parallel_context.dp_pg.size()` batches """ def __init__(self, batch_sampler: BatchSampler, skip_batches: int, dp_size: int): self.batch_sampler = batch_sampler # In case of DDP, we skip batches on each rank, so a total of `skip_batches * parallel_context.dp_pg.size()` batches self.skip_batches = skip_batches // dp_size def __iter__(self): for index, samples in enumerate(self.batch_sampler): if index >= self.skip_batches: yield samples @property def total_length(self): return len(self.batch_sampler) def __len__(self): return len(self.batch_sampler) - self.skip_batches def set_tensor_pointers( input_dict: Dict[str, Union[torch.Tensor, TensorPointer]], group: dist.ProcessGroup, group_rank: int ) -> Dict[str, Union[torch.Tensor, TensorPointer]]: """Make sure only the group_rank rank has the data, others have TensorPointers.""" return { k: v if dist.get_rank(group) == group_rank else TensorPointer(group_rank=group_rank) for k, v in input_dict.items() } ### CAUSAL LANGUAGE MODELING ### def clm_process( raw_dataset: "Dataset", tokenizer: "PreTrainedTokenizerBase", text_column_name: str, dataset_processing_num_proc_per_process: int, dataset_overwrite_cache: bool, sequence_length: int, ): """Concatenate all texts from raw_dataset and generate chunks of `sequence_length + 1`, where chunks overlap by a single token.""" # Adapted from https://github.com/huggingface/transformers/blob/47e1676255e5dd86b9541f734cd4f4bdcbb50f4a/examples/pytorch/language-modeling/run_clm.py#L391-L439 def group_texts(examples: Dict[str, List[np.ndarray]]) -> Dict[str, List[np.ndarray]]: # Concatenate all texts. concatenated_examples = {k: np.concatenate(v) for k, v in examples.items()} total_length = len(concatenated_examples[next(iter(examples.keys()))]) # WARNING: We drop the small remainder, we could add padding if the model supported it instead of this drop, you can # customize this part to your needs. if total_length >= sequence_length + 1: total_length = ((total_length - 1) // sequence_length) * sequence_length + 1 # Split by chunks of sequence_length. result = { k: [ t[i : i + sequence_length + 1] for i in range(0, total_length - (sequence_length + 1), sequence_length) ] for k, t in concatenated_examples.items() } return result def _tokenize_and_group_texts(texts: List[str]) -> Dict[str, List[np.ndarray]]: tokenized_batch = tokenizer.batch_encode_plus(texts, return_attention_mask=False, return_token_type_ids=False) tokenized_batch = {k: [np.array(tokenized_texts) for tokenized_texts in v] for k, v in tokenized_batch.items()} return group_texts(tokenized_batch) train_dataset = raw_dataset.map( _tokenize_and_group_texts, input_columns=text_column_name, remove_columns=raw_dataset.column_names, features=Features({"input_ids": Sequence(feature=Value(dtype="int64"), length=sequence_length + 1)}), batched=True, num_proc=dataset_processing_num_proc_per_process, load_from_cache_file=not dataset_overwrite_cache, desc=f"Grouping texts in chunks of {sequence_length+1}", ) return train_dataset # Adapted from: https://github.com/huggingface/transformers/blob/47e1676255e5dd86b9541f734cd4f4bdcbb50f4a/src/transformers/data/data_collator.py#L607 @dataclasses.dataclass class DataCollatorForCLM: """ Data collator used for causal language modeling. - input_pp_rank: Discards last input id token - output_pp_rank: Discards first label id token - other pp ranks: Don't have data. Instead, we use `TensorPointer` to point to the rank having the data. """ sequence_length: int input_pp_rank: int output_pp_rank: int parallel_context: ParallelContext def __call__(self, examples: List[Dict[str, List[np.ndarray]]]) -> Dict[str, Union[torch.Tensor, TensorPointer]]: # Process the case when current rank doesn't require data. We return `TensorPointer` that points to ranks having the data. current_pp_rank = dist.get_rank(self.parallel_context.pp_pg) if current_pp_rank not in [ self.input_pp_rank, self.output_pp_rank, ]: assert all(len(example) == 0 for example in examples) return { "input_ids": TensorPointer(group_rank=self.input_pp_rank), "input_mask": TensorPointer(group_rank=self.input_pp_rank), "label_ids": TensorPointer(group_rank=self.output_pp_rank), "label_mask": TensorPointer(group_rank=self.output_pp_rank), } # Make sure we load only what's necessary, ie we only load a `input_ids` column. assert all(list(example.keys()) == ["input_ids"] for example in examples) # TODO @nouamanetazi: Is it better to have examples as np.array or torch.Tensor? input_ids = np.vstack([examples[i]["input_ids"] for i in range(len(examples))]) # (b, s) batch_size, expanded_input_length = input_ids.shape result: Dict[str, Union[np.ndarray, TensorPointer]] = {} result["input_ids"] = TensorPointer(group_rank=self.input_pp_rank) result["input_mask"] = TensorPointer(group_rank=self.input_pp_rank) result["label_ids"] = TensorPointer(group_rank=self.output_pp_rank) result["label_mask"] = TensorPointer(group_rank=self.output_pp_rank) assert ( expanded_input_length == self.sequence_length + 1 ), f"Samples should be of length {self.sequence_length + 1} (seq_len+1), but got {expanded_input_length}" # Process inputs: last token is the label if current_pp_rank == self.input_pp_rank: result["input_ids"] = input_ids[:, :-1] result["input_mask"] = np.ones((batch_size, self.sequence_length), dtype=np.bool_) # Process labels: shift them to the left if current_pp_rank == self.output_pp_rank: result["label_ids"] = input_ids[:, 1:] result["label_mask"] = np.ones((batch_size, self.sequence_length), dtype=np.bool_) if isinstance(result["input_ids"], torch.Tensor) and result["input_ids"].shape[-1] != self.sequence_length: raise ValueError( f"`labels` are incorrectly preprocessed. `labels` length is {result['input_ids'].shape[-1]}, but should be" f" {self.sequence_length}." ) if isinstance(result["label_ids"], torch.Tensor) and result["label_ids"].shape[-1] != self.sequence_length: raise ValueError( f"`labels` are incorrectly preprocessed. `labels` length is {result['label_ids'].shape[-1]}, but should be" f" {self.sequence_length}." ) # Cast np.array to torch.Tensor result = {k: v if isinstance(v, TensorPointer) else torch.from_numpy(v) for k, v in result.items()} return result # Adapted from https://github.com/huggingface/transformers/blob/47e1676255e5dd86b9541f734cd4f4bdcbb50f4a/src/transformers/trainer.py#L763-L835 def get_sampler( dl_ranks_size: int, dl_rank: int, train_dataset: Union["Dataset", torch.utils.data.Dataset], consumed_train_samples: int, seed: int = 42, use_loop_to_round_batch_size: bool = False, micro_batch_size: Optional[int] = None, drop_last: Optional[bool] = True, shuffle: bool = True, ) -> Optional[torch.utils.data.Sampler]: """returns sampler that restricts data loading to a subset of the dataset proper to the DP rank""" # Build the sampler. # TODO @nouamanetazi: Support group_by_length: https://github.com/huggingface/transformers/blob/47e1676255e5dd86b9541f734cd4f4bdcbb50f4a/src/transformers/trainer.py#L783-L810 if use_loop_to_round_batch_size: assert micro_batch_size is not None # loops at the end back to the beginning of the shuffled samples to make each process have a round multiple of batch_size samples. sampler = DistributedSamplerWithLoop( train_dataset, batch_size=micro_batch_size, num_replicas=dl_ranks_size, rank=dl_rank, seed=seed, drop_last=drop_last, ) else: sampler = DistributedSampler( train_dataset, num_replicas=dl_ranks_size, rank=dl_rank, seed=seed, drop_last=drop_last, shuffle=shuffle ) if consumed_train_samples > 0: sampler = SkipBatchSampler(sampler, skip_batches=consumed_train_samples, dp_size=dl_ranks_size) return sampler # Adapted from https://github.com/huggingface/transformers/blob/47e1676255e5dd86b9541f734cd4f4bdcbb50f4a/src/transformers/trainer.py#L837 def get_train_dataloader( train_dataset: "Dataset", sequence_length: int, parallel_context: ParallelContext, input_pp_rank: int, output_pp_rank: int, micro_batch_size: int, consumed_train_samples: int, dataloader_num_workers: int, seed_worker: int, dataloader_drop_last: bool = True, dataloader_pin_memory: bool = True, use_loop_to_round_batch_size: bool = False, ) -> DataLoader: if not isinstance(train_dataset, datasets.Dataset): raise ValueError(f"training requires a datasets.Dataset, but got {type(train_dataset)}") # Case of ranks requiring data if dist.get_rank(parallel_context.pp_pg) in [ input_pp_rank, output_pp_rank, ]: train_dataset = train_dataset.with_format(type="numpy", columns=["input_ids"], output_all_columns=True) # Case of ranks not requiring data. We give them an infinite dummy dataloader else: # assert train_dataset.column_names == ["input_ids"], ( f"Dataset has to have a single column, with `input_ids` as the column name. " f"Current dataset: {train_dataset}" ) dataset_length = len(train_dataset) train_dataset = train_dataset.remove_columns(column_names="input_ids") assert ( len(train_dataset) == 0 ), f"Dataset has to be empty after removing the `input_ids` column. Current dataset: {train_dataset}" # HACK as if we remove the last column of a train_dataset, it becomes empty and it's number of rows becomes empty. train_dataset = EmptyInfiniteDataset(length=dataset_length) # No need to spawn a lot of workers, we can just use main dataloader_num_workers = 0 data_collator = DataCollatorForCLM( sequence_length=sequence_length, input_pp_rank=input_pp_rank, output_pp_rank=output_pp_rank, parallel_context=parallel_context, ) # Compute size and rank of dataloader workers dp_ranks_size = parallel_context.dp_pg.size() dp_rank = parallel_context.dp_pg.rank() # TODO @nouamanetazi: Remove unused columns: https://github.com/huggingface/transformers/blob/47e1676255e5dd86b9541f734cd4f4bdcbb50f4a/src/transformers/trainer.py#L852 # TODO @nouamanetazi: Support torch.utils.data.IterableDataset: https://github.com/huggingface/transformers/blob/47e1676255e5dd86b9541f734cd4f4bdcbb50f4a/src/transformers/trainer.py#L855-L872 train_sampler = get_sampler( dl_rank=dp_rank, dl_ranks_size=dp_ranks_size, train_dataset=train_dataset, seed=seed_worker, use_loop_to_round_batch_size=use_loop_to_round_batch_size, micro_batch_size=micro_batch_size, drop_last=dataloader_drop_last, consumed_train_samples=consumed_train_samples, ) return DataLoader( train_dataset, batch_size=micro_batch_size, sampler=train_sampler, collate_fn=data_collator, drop_last=dataloader_drop_last, # we also drop_last in `clm_process()` num_workers=dataloader_num_workers, pin_memory=dataloader_pin_memory, worker_init_fn=get_dataloader_worker_init(dp_rank=dp_rank), # TODO @thomasw21: I'm not sure but this doesn't seem to work at all. # pin_memory_device="cuda", ) def get_dataloader_worker_init(dp_rank: int): """Creates random states for each worker in order to get different state in each workers""" def dataloader_worker_init(worker_id): # Dataloader is TP/PP synced in random states seed = 2 ** (1 + worker_id) * 3 ** (1 + dp_rank) % (2**32) set_random_seed(seed) return dataloader_worker_init class EmptyInfiniteDataset: """Hack as removing all columns from a datasets.Dataset makes the number of rows 0.""" def __init__(self, length: int): self._length = length def __getitem__(self, item) -> Dict: if isinstance(item, int): return {} raise NotImplementedError(f"{item} of type {type(item)} is not supported yet") def __len__(self) -> int: return self._length