""" DoReMi training script. Usage: export CUDA_DEVICE_MAX_CONNECTIONS=1 # important for some distributed operations torchrun --nproc_per_node=4 examples/doremi/train_doremi.py --config-file examples/doremi/configs/config_280m_llama.yaml """ import argparse import torch from doremi.config import DoReMiConfig from doremi.dataloader import get_dataloader, get_datasets from doremi.trainer import ReferenceTrainer from doremi.utils import compute_domain_weights_based_on_token_count from nanotron.config import get_config_from_file def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--config-file", type=str, required=True, help="Path to the YAML or python config file") return parser.parse_args() if __name__ == "__main__": args = get_args() config_file = args.config_file config = get_config_from_file(config_file, config_class=DoReMiConfig) dataset_paths = [f"{config.data.dataset.hf_dataset_or_datasets}/{name}" for name in config.doremi.domain_names] datasets = get_datasets(dataset_paths) # TODO(xrsrke): add retrieving domain weights from config # or calculate it in the trainer if config.doremi.domain_weights is None: initial_domain_weights = compute_domain_weights_based_on_token_count(datasets) else: initial_domain_weights = torch.tensor(config.doremi.domain_weights) assert torch.allclose(initial_domain_weights.sum(), torch.tensor(1.0), rtol=1e-3) domain_names = config.doremi.domain_names trainer = ReferenceTrainer(initial_domain_weights, domain_names, config_file, config_class=DoReMiConfig) dataloader = get_dataloader(trainer, datasets) trainer.train(dataloader)