""" Example python script to generate a YAML config file which can be used to run a training with nanotron. Refer to "examples" section in the `/README.md` for more information.""" import os from nanotron.config import ( AdamWOptimizerArgs, CheckpointsArgs, Config, DataArgs, DatasetStageArgs, GeneralArgs, LlamaConfig, LoggingArgs, LRSchedulerArgs, ModelArgs, OptimizerArgs, ParallelismArgs, PretrainDatasetsArgs, RandomInit, TokenizerArgs, TokensArgs, ) from nanotron.logging import human_format model_config = LlamaConfig( # Config for a tiny model model with 1.62M parameters bos_token_id=1, eos_token_id=2, hidden_act="silu", hidden_size=16, initializer_range=0.02, intermediate_size=64, max_position_embeddings=256, num_attention_heads=4, num_hidden_layers=2, num_key_value_heads=4, pretraining_tp=1, rms_norm_eps=1e-05, rope_scaling=None, tie_word_embeddings=True, use_cache=True, vocab_size=256, ) num_params = human_format( model_config.vocab_size * model_config.hidden_size * 2 + model_config.num_hidden_layers * ( 3 * model_config.hidden_size * model_config.intermediate_size + 4 * model_config.hidden_size * model_config.hidden_size ) ).replace(".", "p") print(f"Model has {num_params} parameters") seed = 42 learning_rate = LRSchedulerArgs( learning_rate=3e-4, lr_warmup_steps=2, lr_warmup_style="linear", lr_decay_style="cosine", min_decay_lr=1e-5 ) optimizer = OptimizerArgs( zero_stage=0, weight_decay=0.01, clip_grad=1.0, accumulate_grad_in_fp32=True, learning_rate_scheduler=learning_rate, optimizer_factory=AdamWOptimizerArgs( adam_eps=1e-08, adam_beta1=0.9, adam_beta2=0.95, torch_adam_is_fused=True, ), ) parallelism = ParallelismArgs( dp=2, pp=2, tp=2, pp_engine="1f1b", tp_mode="REDUCE_SCATTER", tp_linear_async_communication=True, ) tokens = TokensArgs(sequence_length=256, train_steps=15, micro_batch_size=2, batch_accumulation_per_replica=1) data_stages = [ DatasetStageArgs( name="Stable Training Stage", start_training_step=1, data=DataArgs( dataset=PretrainDatasetsArgs(hf_dataset_or_datasets="stas/openwebtext-10k", text_column_name="text"), seed=seed, ), ), DatasetStageArgs( name="Annealing Phase", start_training_step=10, data=DataArgs( dataset=PretrainDatasetsArgs(hf_dataset_or_datasets="stas/openwebtext-10k", text_column_name="text"), seed=seed, ), ), ] checkpoints_path = "./checkpoints" os.makedirs(checkpoints_path, exist_ok=True) config = Config( general=GeneralArgs(project="debug", run="tiny_llama_%date_%jobid", seed=seed), checkpoints=CheckpointsArgs(checkpoints_path=checkpoints_path, checkpoint_interval=10), parallelism=parallelism, model=ModelArgs(init_method=RandomInit(std=0.025), model_config=model_config), tokenizer=TokenizerArgs("robot-test/dummy-tokenizer-wordlevel"), optimizer=optimizer, logging=LoggingArgs(), tokens=tokens, data_stages=data_stages, profiler=None, ) if __name__ == "__main__": dir = os.path.dirname(__file__) # Save config as YAML file config.save_as_yaml(f"{dir}/config_tiny_llama.yaml") # You can now train a model with this config using `/run_train.py`