# Adopted from https://github.com/lm-sys/FastChat. Below is the original copyright: # Adopted from tatsu-lab@stanford_alpaca. Below is the original copyright: # Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Make it more memory efficient by monkey patching the LLaMA model with FlashAttn. ## if you fail to import mplug_docowl, try adding absolute path of the mPLUG-DocOwl1.5 directory import os import copy from dataclasses import dataclass, field import json import jsonlines import logging import pathlib from typing import Dict, Optional, Sequence, List import torch import transformers from transformers.models.clip.image_processing_clip import CLIPImageProcessor from torch.utils.data import Dataset from PIL import Image from icecream import ic import sys sys.path.append('/home/wanglch/projects/mPLUG-DocOwl1.5-Omni') print(sys.path) # Need to call this before importing transformers. from mplug_docowl.train.llama_flash_attn_monkey_patch import replace_llama_attn_with_flash_attn replace_llama_attn_with_flash_attn() from mplug_docowl.train.mplug_docowl_trainer import MPLUGDocOwlTrainer from mplug_docowl.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN from mplug_docowl import conversation as conversation_lib from mplug_docowl.model import * from mplug_docowl.mm_utils import tokenizer_image_token from mplug_docowl.processor import DocProcessor local_rank = None def read_jsonl(filename): lines = [] with open(filename, 'r', encoding='utf-8') as f: for line in jsonlines.Reader(f): lines.append(line) return lines def rank0_print(*args): if local_rank == 0: print(*args) @dataclass class ModelArguments: model_name_or_path: Optional[str] = field(default="facebook/opt-125m") version: Optional[str] = field(default="v0") freeze_backbone: bool = field(default=False) @dataclass class DataArguments: data_path: str = field(default=None, metadata={"help": "Path to the training data."}) lazy_preprocess: bool = False is_multimodal: bool = False image_folder: Optional[str] = field(default=None) image_aspect_ratio: str = 'square' image_grid_pinpoints: Optional[str] = field(default=None) image_size: int = 448 crop_anchors: str = 'grid_9' add_global_img: bool = True add_textual_crop_indicator: bool = True @dataclass class TrainingArguments(transformers.TrainingArguments): cache_dir: Optional[str] = field(default=None) optim: str = field(default="adamw_torch") remove_unused_columns: bool = field(default=False) tune_vision2text: bool = field(default=True) freeze_vision_model: bool = field(default=True) model_max_length: int = field( default=512, metadata={ "help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)." }, ) double_quant: bool = field( default=True, metadata={"help": "Compress the quantization statistics through double quantization."} ) quant_type: str = field( default="nf4", metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."} ) bits: int = field( default=16, metadata={"help": "How many bits to use."} ) lora_enable: bool = False lora_r: int = 64 lora_alpha: int = 16 lora_dropout: float = 0.05 lora_weight_path: str = "" lora_bias: str = "none" vision2text_lr: Optional[float] = None group_by_modality_length: bool = field(default=False) def maybe_zero_3(param, ignore_status=False, name=None): from deepspeed import zero from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus if hasattr(param, "ds_id"): if param.ds_status == ZeroParamStatus.NOT_AVAILABLE: if not ignore_status: logging.warning(f"{name}: param.ds_status != ZeroParamStatus.NOT_AVAILABLE: {param.ds_status}") with zero.GatheredParameters([param]): param = param.data.detach().cpu().clone() else: param = param.detach().cpu().clone() return param # Borrowed from peft.utils.get_peft_model_state_dict def get_peft_state_maybe_zero_3(named_params, bias): if bias == "none": to_return = {k: t for k, t in named_params if "lora_" in k} elif bias == "all": to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k} elif bias == "lora_only": to_return = {} maybe_lora_bias = {} lora_bias_names = set() for k, t in named_params: if "lora_" in k: to_return[k] = t bias_name = k.split("lora_")[0] + "bias" lora_bias_names.add(bias_name) elif "bias" in k: maybe_lora_bias[k] = t for k, t in maybe_lora_bias: if bias_name in lora_bias_names: to_return[bias_name] = t else: raise NotImplementedError to_return = {k: maybe_zero_3(v, ignore_status=True) for k, v in to_return.items()} return to_return def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True): to_return = {k: t for k, t in named_params if "lora_" not in k} if require_grad_only: to_return = {k: t for k, t in to_return.items() if t.requires_grad} to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()} return to_return def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match): to_return = {k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)} to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()} return to_return def find_all_linear_names(model): cls = torch.nn.Linear lora_module_names = set() multimodal_keywords = ['vision_model', 'vision2text'] for name, module in model.named_modules(): if any(mm_keyword in name for mm_keyword in multimodal_keywords): continue if isinstance(module, cls): lora_module_names.add(name) if 'lm_head' in lora_module_names: # needed for 16-bit lora_module_names.remove('lm_head') return list(lora_module_names) def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str): """Collects the state dict and dump to disk.""" if trainer.deepspeed: torch.cuda.synchronize() trainer.save_model(output_dir) return state_dict = trainer.model.state_dict() if trainer.args.should_save: cpu_state_dict = { key: value.cpu() for key, value in state_dict.items() } del state_dict trainer._save(output_dir, state_dict=cpu_state_dict) # noqa def smart_tokenizer_and_embedding_resize( special_tokens_dict: Dict, tokenizer: transformers.PreTrainedTokenizer, model: transformers.PreTrainedModel, ): """Resize tokenizer and embedding. Note: This is the unoptimized version that may make your embedding size not be divisible by 64. """ num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict) model.resize_token_embeddings(len(tokenizer)) if num_new_tokens > 0: input_embeddings = model.get_input_embeddings().weight.data output_embeddings = model.get_output_embeddings().weight.data input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( dim=0, keepdim=True) output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( dim=0, keepdim=True) input_embeddings[-num_new_tokens:] = input_embeddings_avg output_embeddings[-num_new_tokens:] = output_embeddings_avg def _tokenize_fn(strings: Sequence[str], tokenizer: transformers.PreTrainedTokenizer) -> Dict: """Tokenize a list of strings.""" tokenized_list = [ tokenizer( text, return_tensors="pt", padding="longest", max_length=tokenizer.model_max_length, truncation=True, ) for text in strings ] input_ids = labels = [ tokenized.input_ids[0] for tokenized in tokenized_list ] input_ids_lens = labels_lens = [ tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item() for tokenized in tokenized_list ] return dict( input_ids=input_ids, labels=labels, input_ids_lens=input_ids_lens, labels_lens=labels_lens, ) def _mask_targets(target, tokenized_lens, speakers): # cur_idx = 0 cur_idx = tokenized_lens[0] tokenized_lens = tokenized_lens[1:] target[:cur_idx] = IGNORE_INDEX for tokenized_len, speaker in zip(tokenized_lens, speakers): if speaker == "human": target[cur_idx+2:cur_idx + tokenized_len] = IGNORE_INDEX cur_idx += tokenized_len def _add_speaker_and_signal(header, source, get_conversation=True): """Add speaker and start/end signal on each round.""" BEGIN_SIGNAL = "### " END_SIGNAL = "\n" conversation = header for sentence in source: from_str = sentence["from"] if from_str.lower() == "human": from_str = conversation_lib.default_conversation.roles[0] elif from_str.lower() == "gpt": from_str = conversation_lib.default_conversation.roles[1] else: from_str = 'unknown' sentence["value"] = (BEGIN_SIGNAL + from_str + ": " + sentence["value"] + END_SIGNAL) if get_conversation: conversation += sentence["value"] conversation += BEGIN_SIGNAL return conversation """def preprocess_multimodal( sources: Sequence[str], data_args: DataArguments ) -> Dict: is_multimodal = data_args.is_multimodal if not is_multimodal: return sources for source in sources: for sentence in source: if DEFAULT_IMAGE_TOKEN in sentence['value']: sentence['value'] = sentence['value'].replace(DEFAULT_IMAGE_TOKEN, '').strip() sentence['value'] = DEFAULT_IMAGE_TOKEN + '\n' + sentence['value'] sentence['value'] = sentence['value'].strip() replace_token = DEFAULT_IMAGE_TOKEN sentence["value"] = sentence["value"].replace(DEFAULT_IMAGE_TOKEN, replace_token) return sources""" def docowl_text_preprocess_v1( source, tokenizer: transformers.PreTrainedTokenizer, has_image: bool = False ) -> Dict: """ source: list of {'role':'user'/'assistant', 'content':xxxx} """ conv = conversation_lib.default_conversation.copy() # conv.roles: ("USER", "ASSISTANT") roles = {"user": conv.roles[0], "assistant": conv.roles[1]} # Apply prompt templates conversations = [] # Skip the first one if it is not from human if roles[source[0]["role"]] != conv.roles[0]: source = source[1:] conv.messages = [] for j, sentence in enumerate(source): role = roles[sentence["role"]] assert role == conv.roles[j % 2] conv.append_message(role, sentence["content"]) # conv.get_prompt(): USER: {content} ASSISTANT: {content}USER: {content} ASSISTANT: {content}... conversations.append(conv.get_prompt()) # Tokenize conversations if has_image: input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations], dim=0) else: input_ids = tokenizer( conversations, return_tensors="pt", padding="longest", max_length=tokenizer.model_max_length, truncation=True, ).input_ids targets = input_ids.clone() assert conv.sep_style == conversation_lib.SeparatorStyle.TWO or conv.sep_style == conversation_lib.SeparatorStyle.TWO_NO_SYS # Mask targets sep = conv.sep + conv.roles[1] + ": " # ' ASSISTANT: ' for conversation, target in zip(conversations, targets): total_len = int(target.ne(tokenizer.pad_token_id).sum()) rounds = conversation.split(conv.sep2) # split by cur_len = 1 target[:cur_len] = IGNORE_INDEX for i, rou in enumerate(rounds): if rou == "": break parts = rou.split(sep) # split each round by ' ASSISTANT: ' if len(parts) != 2: break parts[0] += sep # input query, ignore for loss if has_image: round_len = len(tokenizer_image_token(rou, tokenizer)) instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2 else: round_len = len(tokenizer(rou).input_ids) instruction_len = len(tokenizer(parts[0]).input_ids) - 2 target[cur_len : cur_len + instruction_len] = IGNORE_INDEX cur_len += round_len target[cur_len:] = IGNORE_INDEX if cur_len < tokenizer.model_max_length: # ignore padding if cur_len != total_len: target[:] = IGNORE_INDEX print( f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." f" (ignored)" ) return dict( input_ids=input_ids, labels=targets, ) def preprocess_plain( sources: Sequence[str], tokenizer: transformers.PreTrainedTokenizer, ) -> Dict: # add end signal and concatenate together conversations = [] for source in sources: assert len(source) == 2 assert DEFAULT_IMAGE_TOKEN in source[0]['value'] source[0]['value'] = DEFAULT_IMAGE_TOKEN conversation = source[0]['value'] + source[1]['value'] + conversation_lib.default_conversation.sep conversations.append(conversation) # tokenize conversations input_ids = [tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations] targets = copy.deepcopy(input_ids) for target, source in zip(targets, sources): tokenized_len = len(tokenizer_image_token(source[0]['value'], tokenizer)) target[:tokenized_len] = IGNORE_INDEX return dict(input_ids=input_ids, labels=targets) class LazySupervisedDataset(Dataset): """Dataset for supervised fine-tuning.""" def __init__(self, data_path: str, tokenizer: transformers.PreTrainedTokenizer, data_args: DataArguments): super(LazySupervisedDataset, self).__init__() list_data_dict = read_jsonl(data_path) rank0_print("Formatting inputs...Skip in lazy mode") self.tokenizer = tokenizer self.list_data_dict = list_data_dict self.data_args = data_args self.doc_image_processor = DocProcessor(image_size=self.data_args.image_size, anchors=self.data_args.crop_anchors, add_global_img=self.data_args.add_global_img, add_textual_crop_indicator=self.data_args.add_textual_crop_indicator) def __len__(self): return len(self.list_data_dict) """@property def lengths(self): length_list = [] for sample in self.list_data_dict: img_tokens = 128 if 'image' in sample else 0 length_list.append(sum(len(conv['value'].split()) for conv in sample['conversations']) + img_tokens) return length_list""" """@property def modality_lengths(self): length_list = [] for sample in self.list_data_dict: cur_len = sum(len(conv['value'].split()) for conv in sample['conversations']) cur_len = cur_len if 'image' in sample else -cur_len length_list.append(cur_len) return length_list""" def next_rand(self): import random return random.randint(0,len(self)-1) def __getitem__(self, i) -> Dict[str, torch.Tensor]: while True: source = self.list_data_dict[i] assert 'image' in source image_file = source['image'][0] image_folder = self.data_args.image_folder from pathlib import Path if not Path(os.path.join(image_folder, image_file)).exists(): i = self.next_rand() continue ## crop image and revise query acccording to the cropping shape image_path=os.path.join(image_folder, image_file) query = source['messages'][0]['content'] # e.g. <|image|>what is the contact person name mentioned in letter?." # image: tensor, [N_crops+1, c, h, w] # patch_positions: tensor, [N_crops+1, 2] # text: string, add textual crop indicators and repeat the <|image|> N_crops+1 times image, patch_positions, processed_query = self.doc_image_processor(images=image_path, query=query) source['messages'][0]['content'] = processed_query ## text tokenization data_dict = docowl_text_preprocess_v1( source['messages'], self.tokenizer, has_image=('image' in self.list_data_dict[i])) if isinstance(i, int): data_dict = dict(input_ids=data_dict["input_ids"][0], labels=data_dict["labels"][0]) # image exist in the data data_dict['image'] = image data_dict['patch_positions'] = patch_positions return data_dict @dataclass class DataCollatorForSupervisedDataset(object): """Collate examples for supervised fine-tuning.""" tokenizer: transformers.PreTrainedTokenizer def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]: input_ids, labels = tuple([instance[key] for instance in instances] for key in ("input_ids", "labels")) input_ids = torch.nn.utils.rnn.pad_sequence( input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id) labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX) input_ids = input_ids[:, :self.tokenizer.model_max_length] labels = labels[:, :self.tokenizer.model_max_length] batch = dict( input_ids=input_ids, labels=labels, attention_mask=input_ids.ne(self.tokenizer.pad_token_id), ) if 'image' in instances[0]: images = [instance['image'] for instance in instances] batch['images'] = torch.cat(images) # Sum(Crop+1) x c x h x w if 'patch_positions' in instances[0]: patch_positions = [instance['patch_positions'] for instance in instances] batch['patch_positions'] = torch.cat(patch_positions) # Sum(Crop+1) x 2 return batch def make_supervised_data_module(tokenizer: transformers.PreTrainedTokenizer, data_args) -> Dict: """Make dataset and collator for supervised fine-tuning.""" train_dataset = LazySupervisedDataset(tokenizer=tokenizer, data_path=data_args.data_path, data_args=data_args) data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer) return dict(train_dataset=train_dataset, eval_dataset=None, data_collator=data_collator) def train(): global local_rank parser = transformers.HfArgumentParser( (ModelArguments, DataArguments, TrainingArguments)) model_args, data_args, training_args = parser.parse_args_into_dataclasses() local_rank = training_args.local_rank compute_dtype = (torch.float16 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32)) bnb_model_from_pretrained_args = {} if training_args.bits in [4, 8]: from transformers import BitsAndBytesConfig bnb_model_from_pretrained_args.update(dict( device_map={"": training_args.device}, load_in_4bit=training_args.bits == 4, load_in_8bit=training_args.bits == 8, quantization_config=BitsAndBytesConfig( load_in_4bit=training_args.bits == 4, load_in_8bit=training_args.bits == 8, llm_int8_threshold=6.0, llm_int8_has_fp16_weight=False, bnb_4bit_compute_dtype=compute_dtype, bnb_4bit_use_double_quant=training_args.double_quant, bnb_4bit_quant_type=training_args.quant_type # {'fp4', 'nf4'} ) )) # model = MPLUGDocOwlLlamaForCausalLM.from_pretrained( model_args.model_name_or_path, cache_dir=training_args.cache_dir, **bnb_model_from_pretrained_args ) model.config.use_cache = False ic(model_args.freeze_backbone) if model_args.freeze_backbone: model.model.requires_grad_(False) if training_args.bits in [4, 8]: from peft import prepare_model_for_kbit_training model.config.torch_dtype=(torch.float32 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32)) model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=training_args.gradient_checkpointing) if training_args.gradient_checkpointing: if hasattr(model, "enable_input_require_grads"): # default true model.enable_input_require_grads() # print('model.enable_input_require_grads()') else: def make_inputs_require_grad(module, input, output): output.requires_grad_(True) model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) if training_args.lora_enable: from peft import LoraConfig, get_peft_model lora_config = LoraConfig( r=training_args.lora_r, lora_alpha=training_args.lora_alpha, target_modules=find_all_linear_names(model), lora_dropout=training_args.lora_dropout, bias=training_args.lora_bias, task_type="CAUSAL_LM", ) if training_args.bits == 16: if training_args.bf16: model.to(torch.bfloat16) if training_args.fp16: model.to(torch.float16) rank0_print("Adding LoRA adapters...") model = get_peft_model(model, lora_config) tokenizer = transformers.AutoTokenizer.from_pretrained( model_args.model_name_or_path, cache_dir=training_args.cache_dir, model_max_length=training_args.model_max_length, padding_side="right", use_fast=False, ) tokenizer.pad_token = tokenizer.unk_token if model_args.version in conversation_lib.conv_templates: conversation_lib.default_conversation = conversation_lib.conv_templates[model_args.version] else: conversation_lib.default_conversation = conversation_lib.conv_templates["vicuna_v1"] if not training_args.freeze_vision_model and training_args.bits in [4, 8]: model.get_model().vision_model.to(dtype=compute_dtype, device=training_args.device) else: vision_tower = model.get_model().vision_model vision_tower.to(dtype=torch.bfloat16 if training_args.bf16 else torch.float16, device=training_args.device) if training_args.tune_vision2text and training_args.bits in [4, 8]: model.get_model().vision2text.to(dtype=compute_dtype, device=training_args.device) else: vision2text = model.get_model().vision2text vision2text.to(dtype=torch.bfloat16 if training_args.bf16 else torch.float16, device=training_args.device) data_args.is_multimodal = True model.config.image_aspect_ratio = data_args.image_aspect_ratio model.config.image_grid_pinpoints = data_args.image_grid_pinpoints model.config.tune_vision2text = model_args.tune_vision2text = training_args.tune_vision2text ic(training_args.tune_vision2text) # model.requires_grad_(True) if training_args.tune_vision2text: # model.requires_grad_(False) for p in model.get_model().vision2text.parameters(): p.requires_grad = True model.config.freeze_vision_model = training_args.freeze_vision_model ic(training_args.freeze_vision_model) if training_args.freeze_vision_model: for p in model.get_model().vision_model.parameters(): p.requires_grad = False model.config.vision2text_lr = training_args.vision2text_lr if training_args.bits in [4, 8]: from peft.tuners.lora import LoraLayer for name, module in model.named_modules(): if isinstance(module, LoraLayer): if training_args.bf16: module = module.to(torch.bfloat16) if 'norm' in name: module = module.to(torch.float32) if 'lm_head' in name or 'embed_tokens' in name: if hasattr(module, 'weight'): if training_args.bf16 and module.weight.dtype == torch.float32: module = module.to(torch.bfloat16) data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args) trainer = MPLUGDocOwlTrainer(model=model, tokenizer=tokenizer, args=training_args, **data_module) trainer.train() trainer.save_state() model.config.use_cache = True if training_args.lora_enable: state_dict = get_peft_state_maybe_zero_3( model.named_parameters(), training_args.lora_bias ) non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3( model.named_parameters() ) if training_args.local_rank == 0 or training_args.local_rank == -1: model.config.save_pretrained(training_args.output_dir) model.save_pretrained(training_args.output_dir, state_dict=state_dict) torch.save(non_lora_state_dict, os.path.join(training_args.output_dir, 'non_lora_trainables.bin')) else: safe_save_model_for_hf_trainer(trainer=trainer, output_dir=training_args.output_dir) if __name__ == "__main__": train()