#!/bin/bash # Change for multinode config NNODES=1 NODE_RANK=0 GPUS_PER_NODE=2 MASTER_ADDR=127.0.0.1 MASTER_PORT=29513 CUDA_VISIBLE_DEVICES=0,1 # GPUS_PER_NODE=1 DISTRIBUTED_ARGS="--nproc_per_node $GPUS_PER_NODE --nnodes $NNODES --node_rank $NODE_RANK --master_addr $MASTER_ADDR --master_port $MASTER_PORT" # change LOAD to your local path of DocOwl1.5-Omni # batch size = per_device_train_batch_size x GPUS_PER_NODE x NNODES x gradient_accumulation_steps torchrun $DISTRIBUTED_ARGS mplug_docowl/train/train_docowl.py \ --deepspeed '/home/wanglch/projects/mPLUG-DocOwl1.5-Omni/scripts/zero2.json' \ --model_name_or_path '/home/wanglch/projects/mPLUG-DocOwl1.5-Omni/DocOwl1.5-Omni-base' \ --version v1 \ --data_path '/home/wanglch/projects/mPLUG-DocOwl1.5-Omni/DocLocal4K/mini_imges.jsonl' \ --image_folder '/home/wanglch/projects/mPLUG-DocOwl1.5-Omni/DocLocal4K' \ --image_size 448 \ --crop_anchors 'grid_9' \ --add_global_img True \ --add_textual_crop_indicator True \ --fp16 True \ --output_dir '/home/wanglch/projects/saves/DocOwl1.5/train_multi_dcu' \ --num_train_epochs 10 \ --per_device_train_batch_size 1 \ --per_device_eval_batch_size 1 \ --gradient_accumulation_steps 8 \ --evaluation_strategy "no" \ --save_strategy "steps" \ --save_steps 500 \ --save_total_limit 4 \ --learning_rate 1e-4 \ --weight_decay 0. \ --warmup_ratio 0.03 \ --lr_scheduler_type "cosine" \ --logging_steps 1 \ --tf32 False \ --model_max_length 3600 \ --gradient_checkpointing True \ --tune_vision2text True \ --freeze_vision_model True \ --freeze_backbone True \ --dataloader_num_workers 4 \ --lazy_preprocess True \ --report_to tensorboard