import sys import torch import argparse from PIL import Image from pathlib import Path sys.path.append(str(Path(__file__).parent.parent.resolve())) from mobilevlm.model.mobilevlm import load_pretrained_model from mobilevlm.conversation import conv_templates, SeparatorStyle from mobilevlm.utils import disable_torch_init, process_images, tokenizer_image_token, KeywordsStoppingCriteria from mobilevlm.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN def inference_once(args): disable_torch_init() model_name = args.model_path.split('/')[-1] tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.load_8bit, args.load_4bit) images = [Image.open(args.image_file).convert("RGB")] images_tensor = process_images(images, image_processor, model.config).to(model.device, dtype=torch.float16) conv = conv_templates[args.conv_mode].copy() conv.append_message(conv.roles[0], DEFAULT_IMAGE_TOKEN + "\n" + args.prompt) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 # Input input_ids = (tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).cuda()) stopping_criteria = KeywordsStoppingCriteria([stop_str], tokenizer, input_ids) # Inference with torch.inference_mode(): output_ids = model.generate( input_ids, images=images_tensor, do_sample=True if args.temperature > 0 else False, temperature=args.temperature, top_p=args.top_p, num_beams=args.num_beams, max_new_tokens=args.max_new_tokens, use_cache=True, stopping_criteria=[stopping_criteria], ) # Result-Decode input_token_len = input_ids.shape[1] n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item() if n_diff_input_output > 0: print(f"[Warning] {n_diff_input_output} output_ids are not the same as the input_ids") outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0] outputs = outputs.strip() if outputs.endswith(stop_str): outputs = outputs[: -len(stop_str)] print(f"🚀 {model_name}: {outputs.strip()}\n") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--model-path", type=str, default="mtgv/MobileVLM-1.7B") parser.add_argument("--conv-mode", type=str, default="v1") parser.add_argument("--temperature", type=float, default=0.2) parser.add_argument("--top_p", type=float, default=None) parser.add_argument("--num_beams", type=int, default=1) parser.add_argument("--max_new_tokens", type=int, default=512) parser.add_argument("--load_8bit", type=bool, default=False) parser.add_argument("--load_4bit", type=bool, default=False) args = parser.parse_args() inference_once(args)