import re import math import torch from torch import nn from functools import partial from timm.layers.norm_act import LayerNormAct2d from torchvision.ops.misc import SqueezeExcitation as SElayer from torchvision.models.mobilenetv3 import InvertedResidual, InvertedResidualConfig class LDPBlock(nn.Module): # Lightweight Downsample Projector Block def __init__(self, config=None): super().__init__() inc, ouc = config.mm_hidden_size, config.hidden_size layer_norm = partial(LayerNormAct2d, act_layer=None) se_layer = partial(SElayer, scale_activation=nn.Hardsigmoid) self.mlp = nn.Sequential( nn.Identity(), nn.Linear(inc, ouc), nn.GELU(), nn.Linear(ouc, ouc) ) self.mb_block = nn.Sequential( nn.Identity(), InvertedResidual(InvertedResidualConfig(ouc, 3, ouc, ouc, True, "HS", 1, 1, 1), layer_norm, se_layer), InvertedResidual(InvertedResidualConfig(ouc, 3, ouc, ouc, True, "HS", 2, 1, 1), layer_norm, se_layer) ) def forward(self, x): b, num_tokens, c = x.shape h = int(math.sqrt(num_tokens)) x = self.mlp(x) x = x.permute(0, 2, 1).reshape(b, -1, h, h) x = self.mb_block(x) x = x.flatten(2).permute(0, 2, 1) return x class FeatureIRLayer(nn.Module): def __init__(self, in_dim: int, out_dim: int) -> None: super().__init__() self.mlp = nn.Sequential( nn.Linear(in_dim, out_dim), nn.GELU(), nn.Linear(out_dim, out_dim) ) def forward(self, x: torch.Tensor) -> torch.Tensor: return self.mlp(x) class TokenDownLayer(nn.Module): def __init__(self, shape) -> None: super().__init__() self.dwn = nn.Sequential( nn.AdaptiveAvgPool2d(shape) ) def forward(self, x: torch.Tensor) -> torch.Tensor: b, num_tokens, c = x.shape h = int(math.sqrt(num_tokens)) assert h * h == num_tokens x = x.permute(0, 2, 1).reshape(b, -1, h, h) x = self.dwn(x) x = x.flatten(2).transpose(1, 2) return x class PosInjectLayer(nn.Module): # https://github.com/Meituan-AutoML/Twins/blob/main/gvt.py def __init__(self, in_dim: int, out_dim: int, stride: int = 1) -> None: super().__init__() self.peg = nn.Sequential( nn.Conv2d(in_dim, out_dim, 3, stride, 1, bias=True, groups=out_dim) ) def forward(self, x: torch.Tensor) -> torch.Tensor: b, num_tokens, c = x.shape h = int(math.sqrt(num_tokens)) assert h * h == num_tokens cnn_feat = x.transpose(1, 2).view(b, c, h, h) x = self.peg(cnn_feat) + cnn_feat x = x.flatten(2).transpose(1, 2) return x class LDPNetProjector(nn.Module): def __init__(self, config=None): super().__init__() self.model = LDPBlock(config) def forward(self, x): return self.model(x) class LDPNetV2Projector(nn.Module): def __init__(self, config=None): super().__init__() inc, ouc = config.mm_hidden_size, config.hidden_size self.mlp = FeatureIRLayer(inc, ouc) self.dwn = TokenDownLayer((12, 12)) self.peg = PosInjectLayer(ouc, ouc, stride=1) def forward(self, x): x = self.mlp(x) x = self.dwn(x) x = self.peg(x) return x def build_vision_projector(config, delay_load=False, **kwargs): projector_type = getattr(config, 'mm_projector_type', 'linear') if projector_type == 'linear': return nn.Linear(config.mm_hidden_size, config.hidden_size) elif projector_type.startswith('mlp'): mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type) if mlp_gelu_match: mlp_depth = int(mlp_gelu_match.group(1)) modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)] for _ in range(1, mlp_depth): modules.append(nn.GELU()) modules.append(nn.Linear(config.hidden_size, config.hidden_size)) return nn.Sequential(*modules) elif projector_type.startswith('ldpnetv2'): return LDPNetV2Projector(config) elif projector_type.startswith('ldpnet'): return LDPNetProjector(config) raise ValueError(f'Unknown projector type: {projector_type}')