# MobileNetV4 MobileNetV4 - Universal Models for the Mobile Ecosystem paper: [http://arxiv.org/abs/2404.10518](http://arxiv.org/abs/2404.10518) offical code: [https://github.com/tensorflow/models/blob/master/official/vision/modeling/backbones/mobilenet.py(tensorflow)](https://github.com/tensorflow/models/blob/master/official/vision/modeling/backbones/mobilenet.py(tensorflow)) # Usage 1. Install timm=0.3.2 ```Shell pip install timm==0.3.2 ``` 2. Train or eval # Train model in MobileNetv4 series (MNV4ConvSmall, MNV4ConvMedium, MNV4ConvLarge, MNV4HybridMedium, MNV4HybridLarge) ```python # train without cache python train.py --gpu 0 python train.py --gpu 0 --arch 'MNV4ConvSmall' --batch_size 16 # 'MNV4ConvSmall, MNV4ConvMedium', 'MNV4ConvLarge', 'MNV4HybridMedium', 'MNV4HybridLarge' # train with resume python train.py --arch MNV4ConvSmall --resume checkpoints/model_MNV4ConvSmall_seed561_best.pt --gpu 0 ``` # Validate ```python # validate python train.py --evaluate --gpu 1 --resume checkpoints/model_MNV4ConvSmall_seed561_best.pt ``` # Predict Modify ```model_name```, ```dataset_name```, ```MODEL_PATH``` and ```CLASS_NUM``` in ```predict.py``` script. Put pictures into ```results``` directory. ```python python predict.py ```