from math import pi, cos, log, floor from torch.optim.lr_scheduler import _LRScheduler class CosineWarmupLR(_LRScheduler): ''' Cosine lr decay function with warmup. Ref: https://github.com/PistonY/torch-toolbox/blob/master/torchtoolbox/optimizer/lr_scheduler.py https://github.com/Randl/MobileNetV3-pytorch/blob/master/cosine_with_warmup.py Lr warmup is proposed by `Accurate, Large Minibatch SGD:Training ImageNet in 1 Hour` `https://arxiv.org/pdf/1706.02677.pdf` Cosine decay is proposed by `Stochastic Gradient Descent with Warm Restarts` `https://arxiv.org/abs/1608.03983` Args: optimizer (Optimizer): optimizer of a model. iter_in_one_epoch (int): number of iterations in one epoch. epochs (int): number of epochs to train. lr_min (float): minimum(final) lr. warmup_epochs (int): warmup epochs before cosine decay. last_epoch (int): init iteration. In truth, this is last_iter Attributes: niters (int): number of iterations of all epochs. warmup_iters (int): number of iterations of all warmup epochs. cosine_iters (int): number of iterations of all cosine epochs. ''' def __init__(self, optimizer, epochs, iter_in_one_epoch, lr_min=0, warmup_epochs=0, last_epoch=-1): self.lr_min = lr_min self.niters = epochs * iter_in_one_epoch self.warmup_iters = iter_in_one_epoch * warmup_epochs self.cosine_iters = iter_in_one_epoch * (epochs - warmup_epochs) super(CosineWarmupLR, self).__init__(optimizer, last_epoch) def get_lr(self): if self.last_epoch < self.warmup_iters: return [(self.lr_min + (base_lr - self.lr_min) * self.last_epoch / self.warmup_iters) for base_lr in self.base_lrs] else: return [(self.lr_min + (base_lr - self.lr_min) * (1 + cos(pi * (self.last_epoch - self.warmup_iters) / self.cosine_iters)) / 2) for base_lr in self.base_lrs] class CosineAnnealingWarmRestarts(_LRScheduler): ''' copied from https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#CosineAnnealingWarmRestarts Set the learning rate of each parameter group using a cosine annealing schedule, where :math:`\eta_{max}` is set to the initial lr, :math:`T_{cur}` is the number of epochs since the last restart and :math:`T_{i}` is the number of epochs between two warm restarts in SGDR: .. math:: \eta_t = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})(1 + \cos(\frac{T_{cur}}{T_{i}}\pi)) When :math:`T_{cur}=T_{i}`, set :math:`\eta_t = \eta_{min}`. When :math:`T_{cur}=0`(after restart), set :math:`\eta_t=\eta_{max}`. It has been proposed in `SGDR: Stochastic Gradient Descent with Warm Restarts`_. Args: optimizer (Optimizer): Wrapped optimizer. T_0 (int): Number of iterations for the first restart. T_mult (int, optional): A factor increases :math:`T_{i}` after a restart. Default: 1. eta_min (float, optional): Minimum learning rate. Default: 0. last_epoch (int, optional): The index of last epoch. Default: -1. .. _SGDR\: Stochastic Gradient Descent with Warm Restarts: https://arxiv.org/abs/1608.03983 ''' def __init__(self, optimizer, T_0, T_mult=1, eta_min=0, last_epoch=-1, warmup_epochs=0, decay_rate=0.5): if T_0 <= 0 or not isinstance(T_0, int): raise ValueError("Expected positive integer T_0, but got {}".format(T_0)) if T_mult < 1 or not isinstance(T_mult, int): raise ValueError("Expected integer T_mult >= 1, but got {}".format(T_mult)) if warmup_epochs < 0 or not isinstance(warmup_epochs, int): raise ValueError("Expected positive integer warmup_epochs, but got {}".format(warmup_epochs)) self.T_0 = T_0 self.T_i = T_0 self.T_mult = T_mult self.eta_min = eta_min self.warmup_epochs = warmup_epochs self.decay_rate = decay_rate self.decay_power = 0 super(CosineAnnealingWarmRestarts, self).__init__(optimizer, last_epoch) self.T_cur = self.last_epoch def get_lr(self): if self.last_epoch < self.warmup_epochs: return [(self.eta_min + (base_lr - self.eta_min) * self.T_cur / self.warmup_epochs) for base_lr in self.base_lrs] else: return [self.eta_min + (base_lr * (self.decay_rate**self.decay_power) - self.eta_min) * (1 + cos(pi * self.T_cur / self.T_i)) / 2 for base_lr in self.base_lrs] def step(self, epoch=None): '''Step could be called after every batch update Example: >>> scheduler = CosineAnnealingWarmRestarts(optimizer, T_0, T_mult) >>> iters = len(dataloader) >>> for epoch in range(20): >>> for i, sample in enumerate(dataloader): >>> inputs, labels = sample['inputs'], sample['labels'] >>> scheduler.step(epoch + i / iters) >>> optimizer.zero_grad() >>> outputs = net(inputs) >>> loss = criterion(outputs, labels) >>> loss.backward() >>> optimizer.step() This function can be called in an interleaved way. Example: >>> scheduler = CosineAnnealingWarmRestarts(optimizer, T_0, T_mult) >>> for epoch in range(20): >>> scheduler.step() >>> scheduler.step(26) >>> scheduler.step() # scheduler.step(27), instead of scheduler(20) ''' if epoch is None: epoch = self.last_epoch + 1 self.T_cur = self.T_cur + 1 if self.T_cur >= self.T_i: self.T_cur = self.T_cur - self.T_i self.T_i = self.T_i * self.T_mult else: if epoch < 0: raise ValueError("Expected non-negative epoch, but got {}".format(epoch)) if epoch < self.warmup_epochs: self.T_cur = epoch else: epoch_cur = epoch - self.warmup_epochs if epoch_cur >= self.T_0: if self.T_mult == 1: self.T_cur = epoch_cur % self.T_0 self.decay_power = epoch_cur // self.T_0 else: n = int(log((epoch_cur / self.T_0 * (self.T_mult - 1) + 1), self.T_mult)) self.T_cur = epoch_cur - self.T_0 * (self.T_mult ** n - 1) / (self.T_mult - 1) self.T_i = self.T_0 * self.T_mult ** (n) self.decay_power = n else: self.T_i = self.T_0 self.T_cur = epoch_cur self.last_epoch = floor(epoch) for param_group, lr in zip(self.optimizer.param_groups, self.get_lr()): param_group['lr'] = lr