"""Test script for torch module""" import torch import time import tvm from tvm.contrib.torch import compile import torch.onnx as onnx device = torch.device("cuda" if torch.cuda.is_available() else "cpu") x = torch.rand([1, 3, 224, 224]).to(device) #checkpoint = torch.load("./yolov8n.pt") #model.load(weights='yolov8n.pt') #torch.onnx.export(model.predictor.model, x, "./yolov8n.onnx") #model.export(format='onnx',imgsz=[384, 640], device="cuda") model_jit = torch.jit.load("./model.pt") option = { "input_infos": [ ("x", (1, 3, 224, 224)), ], "default_dtype": "float32", "export_dir": "pytorch_compiled", "num_outputs": 1, "tuning_n_trials": 0, # set zero to skip tuning "tuning_log_file": "tuning.log", "target": "rocm --libs=miopen,rocblas", "device": tvm.rocm(), } pytorch_tvm_module = compile(model_jit, option) print("Run PyTorch...") for i in range(1): t = time.time() # module = torch.jit.load("./model_tvm.pt"); # outputs=module([x]) outputs = pytorch_tvm_module.forward([x]) torch.cuda.synchronize() print(1000 * (time.time() - t)) print(outputs[0].shape)