title={Microsoft coco: Common objects in context},
author={Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence},
booktitle={European conference on computer vision},
Top-down methods divide the task into two stages: object detection, followed by single-object pose estimation given object bounding boxes. At the 2nd stage, SimCC based methods reformulate human pose estimation as two classification tasks for horizontal and vertical coordinates, and uniformly divide each pixel into several bins, thus obtain the keypoint coordinates given the features extracted from the bounding box area, following the paradigm introduced in [SimCC: a Simple Coordinate Classification Perspective for Human Pose Estimation](https://arxiv.org/abs/2107.03332).
title={Microsoft coco: Common objects in context},
author={Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence},
booktitle={European conference on computer vision},
pages={740--755},
year={2014},
organization={Springer}
}
```
</details>
Results on COCO val2017 with detector having human AP of 56.4 on COCO val2017 dataset
| Arch | Input Size | AP | AP<sup>50</sup> | AP<sup>75</sup> | AR | AR<sup>50</sup> | ckpt | log |
title={Microsoft coco: Common objects in context},
author={Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence},
booktitle={European conference on computer vision},
pages={740--755},
year={2014},
organization={Springer}
}
```
</details>
Results on COCO val2017 with detector having human AP of 56.4 on COCO val2017 dataset
| Arch | Input Size | AP | AP<sup>50</sup> | AP<sup>75</sup> | AR | AR<sup>50</sup> | ckpt | log |
title={Microsoft coco: Common objects in context},
author={Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence},
booktitle={European conference on computer vision},
pages={740--755},
year={2014},
organization={Springer}
}
```
</details>
Results on COCO val2017 with detector having human AP of 56.4 on COCO val2017 dataset
| Arch | Input Size | AP | AP<sup>50</sup> | AP<sup>75</sup> | AR | AR<sup>50</sup> | ckpt | log |
Top-down methods divide the task into two stages: object detection, followed by single-object pose estimation given object bounding boxes. Instead of estimating keypoint coordinates directly, the pose estimator will produce heatmaps which represent the likelihood of being a keypoint, following the paradigm introduced in [Simple Baselines for Human Pose Estimation and Tracking](http://openaccess.thecvf.com/content_ECCV_2018/html/Bin_Xiao_Simple_Baselines_for_ECCV_2018_paper.html).