# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle from bert_padding import generate_mask # test for generate_mask # [3, 4] attention_mask = [[0, 1, 1, 0], [0, 1, 1, 1], [1, 1, 1, 1]] attention_mask_tensor = paddle.to_tensor(attention_mask) indices, attention_mask, seqlen, ntokens, cu_seqlens, seqlen, maxseqlen = generate_mask( attention_mask_tensor, True) print("indices", indices) print("attention_mask", attention_mask) print("seqlen", seqlen) print("ntokens", ntokens) print("cu_seqlens", cu_seqlens) print("maxseqlen", maxseqlen) # test for unpad(gather) and pad(scatter) embed_dim = 3 input = [[0, 0, 0], [1, 1, 1], [0, 0, 0], [3, 3, 3], [4, 4, 4]] index = [1, 3, 4] input = paddle.to_tensor(input) index = paddle.to_tensor(index) out = paddle.gather(input, index) print(input) print(index) print("gather out", out) batch_size = 1 max_seq_len = 5 scatter_shape = [batch_size * max_seq_len, embed_dim] zero_tensor = paddle.zeros(scatter_shape, dtype='int64') scatter_out = paddle.scatter(zero_tensor, index, out) print("scatter_out: ", scatter_out) # error: #out_1 = paddle.scatter_nd(index, out, scatter_shape) #print("scatter_nd out: ", out_1)