# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from paddle.optimizer.lr import LRScheduler __all__ = ['LinearWarmupPolyDecayScheduler', ] class LinearWarmupPolyDecayScheduler(LRScheduler): def __init__(self, startup_warmup_steps, warmup_steps, total_steps, base_lr, end_lr=0.0, degree=1.0, last_epoch=-1): self.startup_warmup_steps = startup_warmup_steps self.offset_step = int(startup_warmup_steps == 0) self.warmup_steps = warmup_steps self.total_steps = total_steps self.base_lr = base_lr self.end_lr = end_lr self.degree = degree super(LinearWarmupPolyDecayScheduler, self).__init__( learning_rate=base_lr, last_epoch=last_epoch) def get_lr(self): step = self.last_epoch + 1 mod_step = step - self.offset_step - self.startup_warmup_steps if mod_step < self.warmup_steps: p = mod_step / (self.warmup_steps + 1e-6) lr = self.base_lr * p else: p = min(1, (step - self.offset_step) / self.total_steps) lr = (self.base_lr - self.end_lr) * (1 - p )**self.degree + self.end_lr return lr