# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List from abc import ABC import paddle import paddle.nn as nn import paddle.nn.functional as F from paddle.fluid.data_feeder import convert_dtype from paddle.fluid.layers.utils import map_structure __all__ = ["GenerationMixin"] class BeamHypotheses: def __init__(self, num_beams, length_penalty, early_stopping): """ Initialize n-best list of hypotheses. """ self.length_penalty = length_penalty self.early_stopping = early_stopping self.num_beams = num_beams self.beams = [] self.worst_score = 1e9 def __len__(self): """ Number of hypotheses in the list. """ return len(self.beams) def add(self, hyp, sum_logprobs, origin_len=0): """ Add a new hypothesis to the list. """ score = sum_logprobs / (((hyp.shape[-1] - origin_len + 5) / 6) **self.length_penalty) if len(self) < self.num_beams or score > self.worst_score: self.beams.append((score, hyp)) if len(self) > self.num_beams: sorted_next_scores = sorted( [(s, idx) for idx, (s, _) in enumerate(self.beams)]) del self.beams[sorted_next_scores[0][1]] self.worst_score = sorted_next_scores[1][0] else: self.worst_score = min(score, self.worst_score) def is_done(self, best_sum_logprobs, cur_len, origin_len=0): """ If there are enough hypotheses and that none of the hypotheses being generated can become better than the worst one in the heap, then we are done with this sentence. """ if len(self) < self.num_beams: return False elif self.early_stopping: return True else: cur_score = best_sum_logprobs / ( (cur_len - origin_len + 5) / 6)**self.length_penalty ret = self.worst_score >= cur_score return ret class BeamSearchScorer(object): """ implementing standard beam search decoding. """ def __init__(self, batch_size, max_length, num_beams, length_penalty=1.0, do_early_stopping=False, num_beam_hyps_to_keep=1, num_beam_groups=1): self.max_length = max_length self.num_beams = num_beams self.length_penalty = length_penalty self.do_early_stopping = do_early_stopping self.num_beam_hyps_to_keep = num_beam_hyps_to_keep self.num_beam_groups = num_beam_groups self.group_size = self.num_beams // self.num_beam_groups self._is_init = False self._beam_hyps = [ BeamHypotheses( num_beams=self.num_beams, length_penalty=self.length_penalty, early_stopping=self.do_early_stopping) for _ in range(batch_size) ] self._done = paddle.to_tensor( [0 for _ in range(batch_size)], dtype='int64') if not isinstance(num_beams, int) or num_beams <= 1: raise ValueError( "`num_beams` has to be an integer strictly greater than 1, but " "received {}. For `num_beams` == 1, one should make use of " "`greedy_search` instead.".format(num_beams)) if not isinstance(num_beam_groups, int) or ( num_beam_groups > num_beams) or ( num_beams % num_beam_groups != 0): raise ValueError( "`num_beam_groups` has to be an integer smaller or equal than " "`num_beams` and `num_beams` has to be divisible by " "`num_beam_groups`, but received num_beam_groups={}, num_beams=" "{}.".format(num_beam_groups, num_beams)) @property def is_done(self): return paddle.min(self._done) == 1 def process(self, input_ids, next_scores, next_tokens, next_indices, origin_len=0, pad_token_id=None, eos_token_id=None): cur_len = input_ids.shape[-1] batch_size = len(self._beam_hyps) assert batch_size == (input_ids.shape[0] // self.group_size) next_beam_scores = paddle.zeros( [batch_size, self.group_size], dtype=next_scores.dtype) next_beam_tokens = paddle.zeros( [batch_size, self.group_size], dtype=next_tokens.dtype) next_beam_indices = paddle.zeros( [batch_size, self.group_size], dtype=next_indices.dtype) for batch_idx, beam_hyp in enumerate(self._beam_hyps): if self._done[batch_idx] == 1: assert ( len(beam_hyp) >= self.num_beams ), "Batch can only be done if at least {} beams have been generated".format( self.num_beams) assert ( eos_token_id is not None and pad_token_id is not None ), "generated beams >= num_beams -> eos_token_id and pad_token have to be defined" # pad the batch next_beam_scores[batch_idx, :] = 0 next_beam_tokens[batch_idx, :] = pad_token_id next_beam_indices[batch_idx, :] = 0 continue # next tokens for this sentence beam_idx = 0 for beam_token_rank, (next_token, next_score, next_index) in enumerate( zip(next_tokens[batch_idx], next_scores[ batch_idx], next_indices[batch_idx])): batch_beam_idx = batch_idx * self.group_size + next_index # add to generated hypotheses if end of sentence if (eos_token_id is not None) and ( next_token.numpy().item() == eos_token_id): # If beam_token does not belong to top num_beams tokens, # it should not be added is_beam_token_worse_than_top_num_beams = ( beam_token_rank >= self.group_size) if is_beam_token_worse_than_top_num_beams: continue beam_hyp.add( input_ids[batch_beam_idx.numpy().item()].clone(), next_score.numpy().item(), origin_len) else: # add next predicted token since it is not eos_token next_beam_scores[batch_idx, beam_idx] = next_score next_beam_tokens[batch_idx, beam_idx] = next_token.numpy( ).item() next_beam_indices[batch_idx, beam_idx] = batch_beam_idx.numpy().item() beam_idx += 1 # once the beam for next step is full, don't add more tokens to it. if beam_idx == self.group_size: break if beam_idx < self.group_size: raise ValueError( "At most {} tokens in `next_tokens[batch_idx]` can be equal " "to `eos_token_id: {}`. Make sure `next_tokens[batch_idx]` " "are corrected.".format(self.group_size, eos_token_id)) # Check if we are done so that we can save a pad step if all(done) if beam_hyp.is_done(next_scores[batch_idx].max().numpy().item(), cur_len, origin_len): self._done[batch_idx] = 1 return { "next_beam_scores": next_beam_scores.reshape([-1]), "next_beam_tokens": next_beam_tokens.reshape([-1]), "next_beam_indices": next_beam_indices.reshape([-1]) } def finalize(self, input_ids, final_beam_scores, final_beam_tokens, final_beam_indices, pad_token_id=None, eos_token_id=None): batch_size = len(self._beam_hyps) # finalize all open beam hypotheses and add to generated hypotheses for batch_idx, beam_hyp in enumerate(self._beam_hyps): if self._done[batch_idx] == 1: continue # all open beam hypotheses are added to the beam hypothesis # beam hypothesis class automatically keeps the best beams for beam_id in range(self.num_beams): batch_beam_idx = batch_idx * self.num_beams + beam_id final_score = final_beam_scores[batch_beam_idx].numpy().item() final_tokens = input_ids[batch_beam_idx] beam_hyp.add(final_tokens, final_score) # select the best hypotheses sent_lengths = paddle.zeros( [batch_size * self.num_beam_hyps_to_keep], dtype=input_ids.dtype) best = [] # retrieve best hypotheses for i, beam_hyp in enumerate(self._beam_hyps): sorted_hyps = sorted(beam_hyp.beams, key=lambda x: x[0]) for j in range(self.num_beam_hyps_to_keep): best_score, best_hyp = sorted_hyps.pop() sent_lengths[self.num_beam_hyps_to_keep * i + j] = len(best_hyp) best.append([best_hyp, best_score]) # prepare for adding eos sent_max_len = min(sent_lengths.max().numpy().item() + 1, self.max_length) decoded = paddle.zeros( [batch_size * self.num_beam_hyps_to_keep, sent_max_len], dtype=input_ids.dtype) # shorter batches are padded if needed if sent_lengths.min().numpy().item() != sent_lengths.max().numpy().item( ): assert pad_token_id is not None, "`pad_token_id` has to be defined" decoded[:, :] = pad_token_id decoded_score = paddle.zeros( [batch_size * self.num_beam_hyps_to_keep, 1]) # fill with hypotheses and eos_token_id if the latter fits in for i, (hypo, score) in enumerate(best): decoded[i, :sent_lengths[i].numpy().item()] = hypo.numpy() decoded_score[i] = score if sent_lengths[i] < self.max_length: decoded[i, sent_lengths[i].numpy().item()] = eos_token_id return decoded, decoded_score class GenerationMixin(object): r""" This class implements the interface for generation task. It's used as the base class of `paddlenlp.transformers.PretrainedModel `__. """ @staticmethod def prepare_input_ids_for_generation(bos_token_id, encoder_output=None): batch_size = 1 if bos_token_id is None: raise ValueError("`bos_token_id` should be defined when no " "`input_ids` are provided.") if encoder_output is not None: batch_size = encoder_output.shape[0] return paddle.ones([batch_size, 1], dtype="int64") * bos_token_id @staticmethod def prepare_attention_mask_for_generation(input_ids, pad_token_id, eos_token_id): is_pad_token_in_inputs_ids = (pad_token_id is not None) and paddle.any( input_ids == pad_token_id).numpy().item() is_pad_token_not_equal_to_eos_token_id = (eos_token_id is None) or ( (eos_token_id is not None) and (pad_token_id != eos_token_id)) if is_pad_token_in_inputs_ids and is_pad_token_not_equal_to_eos_token_id: attention_mask = (input_ids == pad_token_id ).astype(paddle.get_default_dtype()) * -1e9 else: attention_mask = paddle.zeros_like( input_ids, dtype=paddle.get_default_dtype()) return paddle.unsqueeze(attention_mask, axis=[1, 2]) @staticmethod def get_logits_processor(min_length=None, eos_token_id=None, repetition_penalty=None): processors = LogitsProcessorList() if min_length is not None and eos_token_id is not None and min_length > -1: processors.append( MinLengthLogitsProcessor(min_length, eos_token_id)) if repetition_penalty is not None and repetition_penalty != 1.0: processors.append( RepetitionPenaltyLogitsProcessor(penalty=repetition_penalty)) # TODO # Add more pre_processing for distribution return processors @staticmethod def expand_inputs_for_generation(input_ids, expand_size, attention_mask=None, **model_kwargs): index = paddle.tile( paddle.arange(input_ids.shape[0]).unsqueeze(-1), [1, expand_size]).reshape([-1]) input_ids = paddle.index_select(input_ids, index) if attention_mask is not None: model_kwargs["attention_mask"] = paddle.index_select(attention_mask, index) if "token_type_ids" in model_kwargs: token_type_ids = model_kwargs["token_type_ids"] model_kwargs["token_type_ids"] = paddle.index_select(token_type_ids, index) if "position_ids" in model_kwargs: position_ids = model_kwargs["position_ids"] model_kwargs["position_ids"] = paddle.index_select(position_ids, index) if "seq_len" in model_kwargs: seq_len = model_kwargs["seq_len"] model_kwargs["seq_len"] = paddle.index_select(seq_len, index) if "encoder_output" in model_kwargs: encoder_output = model_kwargs["encoder_output"] model_kwargs["encoder_output"] = paddle.index_select(encoder_output, index) return input_ids, model_kwargs @staticmethod def update_model_kwargs_for_generation(outputs, model_kwargs, is_encoder_decoder=False): # Update the model inputs during generation. # Note that If `token_type_ids` and `attention_mask` in `model_kwargs` # and they contain pad value, the result vectors updated by this method # may be different from expected. In this case, you need to rewrite the # method. # update cache if isinstance(outputs, tuple): model_kwargs["cache"] = outputs[1] # update token_type_ids with last value if "token_type_ids" in model_kwargs: token_type_ids = model_kwargs["token_type_ids"] model_kwargs["token_type_ids"] = paddle.concat( [token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], axis=-1) # update position_ids if "position_ids" in model_kwargs: position_ids = model_kwargs["position_ids"] model_kwargs["position_ids"] = paddle.concat( [position_ids, position_ids[:, -1].reshape((-1, 1)) + 1], axis=-1) # update attention_mask if not is_encoder_decoder and "attention_mask" in model_kwargs: attention_mask = model_kwargs["attention_mask"] # nn.Pad2D don't support the data type `bool` if convert_dtype(attention_mask.dtype) == 'bool': attention_mask = paddle.cast(attention_mask, 'int64') attention_mask = nn.Pad2D( [0, 0, 0, 1], mode='replicate')(attention_mask) attention_mask = nn.Pad2D([0, 1, 0, 0], value=-1e9)(attention_mask) dtype = convert_dtype(attention_mask.dtype) if 'int' in dtype: attention_mask[:, :, -1, -1] = 1 elif 'float' in dtype: attention_mask[:, :, -1, -1] = 0.0 else: raise ValueError('The data type of input `attention_mask` must ' 'be bool, int or float') model_kwargs["attention_mask"] = attention_mask return model_kwargs @staticmethod def update_scores_for_generation(scores, next_scores, length, unfinished_flag): # update scores unfinished_scores = (scores * length + next_scores) / (length + 1) scores = paddle.where(unfinished_flag, unfinished_scores, scores) return scores def prepare_encoder_decoder_kwargs_for_generation(self, input_ids, model_kwargs): if "encoder_output" not in model_kwargs: # retrieve encoder hidden states encoder = self.get_encoder() encoder_kwargs = { argument: value for argument, value in model_kwargs.items() if not (argument.startswith("decoder_") or argument.startswith( "cross_attn")) } model_kwargs["encoder_output"] = encoder(input_ids, **encoder_kwargs) return model_kwargs def prepare_inputs_for_generation(self, input_ids, **kwargs): # Implement in subclasses for custom behavior to prepare inputs in the # generate method. return {"input_ids": input_ids} def adjust_logits_during_generation(self, logits): # Implement in subclasses for custom behavior to adjust the logits in # the generate method. return logits @paddle.no_grad() def generate(self, input_ids=None, max_length=20, min_length=0, decode_strategy='greedy_search', temperature=1.0, top_k=0, top_p=1.0, repetition_penalty=1.0, num_beams=1, length_penalty=0.0, early_stopping=False, bos_token_id=None, eos_token_id=None, pad_token_id=None, num_return_sequences=1, diversity_rate=0.0, use_cache=True, **model_kwargs): r""" The interface for generation task. This method can generate sequences by using decoding strategy. Currently, there are three decoding strategies supported: "greedy_search", "sampling" and "beam_search". Args: input_ids (Tensor, optional): The input sequence ids for the generation. It is a Tensor with shape [batch_size, sequence_length]. The data type should be int32 or int64. Default to None, which we will initialize it as a Tensor with shape [1, 1], filled with the value `bos_token_id`. max_length (int, optional): The maximum length of the sequence to be generated. Default to 20. min_length (int, optional): The minimum length of the sequence to be generated. Default to 0. decode_strategy (str, optional): The decoding strategy in generation. Currently, there are three decoding strategies supported: "greedy_search", "sampling" and "beam_search". Default to "greedy_search". temperature (float, optional): The value used to module the next token probabilities in the "sampling" strategy. Default to 1.0, which means no effect. top_k (int, optional): The number of highest probability tokens to keep for top-k-filtering in the "sampling" strategy. Default to 0, which means no effect. top_p (float, optional): The cumulative probability for top-p-filtering in the "sampling" strategy. The value should satisfy :math:`0 <= top\_p < 1`. Default to 1.0, which means no effect. repetition_penalty (float, optional): The parameter for repetition penalty. 1.0 means no penalty. See `this paper `__ for more details. Defaults to 1.0. num_beams (int, optional): The number of beams in the "beam_search" strategy. Default to 1. length_penalty (float, optional): The exponential penalty to the sequence length in the "beam_search" strategy. The larger this param is, the more that the model would generate shorter sequences. Default to 0.0, which means no penalty. early_stopping (bool, optional): Whether to stop searching in the "beam_search" strategy when at least `num_beams` sentences are finished per batch or not. Default to False. bos_token_id (int, optional): The id of the `bos_token`. Default to None. eos_token_id (int, optional): The id of the `eos_token`. Default to None. pad_token_id (int, optional): The id of the `pad_token`. Default to None. num_return_sequences (int, optional): The number of returned sequences for each sequence in the batch. Default to 1. diversity_rate (float, optional): The diversity_rate for diverse siblings search. See this paper for more details. `https://arxiv.org/abs/1611.08562`. use_cache: (bool, optional): Whether or not use the model cache to speed up decoding. Default to True. model_kwargs (dict): It can be used to specify additional kwargs passed to the model. Returns: tuple[Tensor]: It is a tuple contains two elements: ids and scores. Each element is a Tensor. With the fields: - ids (Tensor): The ids of the generated sequences. It is a Tensor with shape [batch_size * num_return_sequences, sequence_length]. The data type is same as the input `input_ids`. - scores (Tensor): The scores of the generated sequences. It is a Tensor with shape [batch_size * num_return_sequences, 1]. The data type is float32 or float64, which is the same as the parameters in the model. Example: .. code-block:: import paddle from paddlenlp.transformers import ( UnifiedTransformerLMHeadModel, UnifiedTransformerTokenizer ) paddle.seed(2) # Initialize the model and tokenizer model_name_or_path = 'unified_transformer-12L-cn-luge' model = UnifiedTransformerLMHeadModel.from_pretrained(model_name_or_path) tokenizer = UnifiedTransformerTokenizer.from_pretrained(model_name_or_path) # Prepare the model inputs. history = "早上好,今天空气质量不错。" inputs = tokenizer.dialogue_encode(history, task_type='chitchat', add_start_token_as_response=True, return_tensors=True) .. code-block:: # Generate the sequence by using "greedy_search" strategy ids, scores = model.generate( input_ids=inputs['input_ids'], token_type_ids=inputs['token_type_ids'], position_ids=inputs['position_ids'], attention_mask=inputs['attention_mask'], decode_strategy="greedy_search") print(ids.shape, scores.shape) # [1, 3] [1, 1] sequence_ids = ids.numpy().tolist()[0] sequence_ids = sequence_ids[:sequence_ids.index(tokenizer.sep_token_id)] response = tokenizer.convert_ids_to_string(sequence_ids, keep_space=False) print(response) # 是的 .. code-block:: # Generate 2 sequences by using "sampling" strategy (top_k=5) ids, scores = model.generate( input_ids=inputs['input_ids'], token_type_ids=inputs['token_type_ids'], position_ids=inputs['position_ids'], attention_mask=inputs['attention_mask'], decode_strategy="sampling", top_k=5, num_return_sequences=2) print(ids.shape, scores.shape) # [2, 7] [2, 1] response = [] for sequence_ids in ids.numpy().tolist(): sequence_ids = sequence_ids[:sequence_ids.index(tokenizer.sep_token_id)] text = tokenizer.convert_ids_to_string(sequence_ids, keep_space=False) response.append(text) print(response) # ['天气好,心情也好', '你也是'] .. code-block:: # Generate 2 sequences by using "beam_search" strategy (num_beams=5) ids, scores = model.generate( input_ids=inputs['input_ids'], token_type_ids=inputs['token_type_ids'], position_ids=inputs['position_ids'], attention_mask=inputs['attention_mask'], decode_strategy="beam_search", num_beams=5, num_return_sequences=2) print(ids.shape, scores.shape) # [2, 3] [2, 1] response = [] for sequence_ids in ids.numpy().tolist(): sequence_ids = sequence_ids[:sequence_ids.index(tokenizer.sep_token_id)] text = tokenizer.convert_ids_to_string(sequence_ids, keep_space=False) response.append(text) print(response) # ['是的', '嗯嗯'] """ # params check bos_token_id = bos_token_id if bos_token_id is not None else getattr( self, 'bos_token_id', None) eos_token_id = eos_token_id if eos_token_id is not None else getattr( self, 'eos_token_id', None) pad_token_id = pad_token_id if pad_token_id is not None else getattr( self, 'pad_token_id', None) if input_ids is None: # Init `input_ids` with bos_token_id input_ids = self.prepare_input_ids_for_generation(bos_token_id) if model_kwargs.get("attention_mask", None) is None: # TODO # Init `attention_mask` depending on `pad_token_id` model_kwargs[ "attention_mask"] = self.prepare_attention_mask_for_generation( input_ids, pad_token_id, eos_token_id) self.is_encoder_decoder = hasattr(self, 'encoder') and hasattr( self, 'decoder') if self.is_encoder_decoder: model_kwargs = self.prepare_encoder_decoder_kwargs_for_generation( input_ids, model_kwargs) # set input_ids as decoder_input_ids if "decoder_input_ids" in model_kwargs: input_ids = model_kwargs.pop("decoder_input_ids") else: input_ids = self.prepare_input_ids_for_generation( bos_token_id, model_kwargs["encoder_output"]) if pad_token_id is None and eos_token_id is not None: print("Setting `pad_token_id` to `eos_token_id`:{} for " "open-end generation.".format(eos_token_id)) pad_token_id = eos_token_id model_kwargs["use_cache"] = use_cache max_length += input_ids.shape[-1] min_length += input_ids.shape[-1] logits_processors = self.get_logits_processor(min_length, eos_token_id, repetition_penalty) if decode_strategy == 'greedy_search': if num_return_sequences > 1: raise ValueError( "`num_return_sequences` has to be 1, but is {} " "when doing greedy search.".format(num_return_sequences)) return self.greedy_search(input_ids, logits_processors, max_length, pad_token_id, eos_token_id, **model_kwargs) elif decode_strategy == 'sampling': if num_return_sequences > 1: input_ids, model_kwargs = self.expand_inputs_for_generation( input_ids, expand_size=num_return_sequences, **model_kwargs) return self.sample(input_ids, logits_processors, max_length, pad_token_id, eos_token_id, top_k, top_p, temperature, **model_kwargs) elif decode_strategy == 'beam_search': batch_size = input_ids.shape[0] if num_return_sequences > num_beams: raise ValueError( "`num_return_sequences` has to be smaller or equal to " "`num_beams`. But received `num_return_sequences` is {}, " "`num_beams` is {}".format(num_return_sequences, num_beams)) if num_beams <= 1: raise ValueError( "`num_beams` has to be bigger than 1. But received " "`num_beams` is {}. If `num_beams` is 1, `decode_strategy` " "should be 'greedy_search'".format(num_beams)) beam_scorer = BeamSearchScorer( batch_size=batch_size, max_length=max_length, num_beams=num_beams, length_penalty=length_penalty, do_early_stopping=early_stopping, num_beam_hyps_to_keep=num_return_sequences) input_ids, model_kwargs = self.expand_inputs_for_generation( input_ids, expand_size=num_beams, **model_kwargs) return self.beam_search(input_ids, beam_scorer, logits_processors, max_length, diversity_rate, pad_token_id, eos_token_id, **model_kwargs) else: raise ValueError( '`decode_strategy` must be one of "greedy_search", "sampling" ' 'and "beam_search".') def greedy_search(self, input_ids, logits_processors, max_length, pad_token_id, eos_token_id, **model_kwargs): batch_size, cur_len = input_ids.shape origin_len = cur_len unfinished_flag = paddle.full([batch_size, 1], True, dtype='bool') scores = paddle.full( [batch_size, 1], 0.0, dtype=paddle.get_default_dtype()) while cur_len < max_length: # prepare model inputs & get model output model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs) outputs = self(**model_inputs) logits = outputs[0] if isinstance(outputs, tuple) else outputs # [batch_size, vocab_size] logits = logits[:, -1, :] # pre-process distribution logits = self.adjust_logits_during_generation(logits) logits = logits_processors(input_ids, logits) # greedy probs = F.softmax(logits) probs = paddle.log(probs) next_tokens = paddle.argmax(probs, axis=-1).unsqueeze(-1) next_scores = paddle.index_sample(probs, next_tokens) if eos_token_id is not None: next_tokens = paddle.where(unfinished_flag, next_tokens, paddle.full_like(next_tokens, pad_token_id)) scores = self.update_scores_for_generation( scores, next_scores, cur_len - origin_len, unfinished_flag) cur_len += 1 input_ids = paddle.concat([input_ids, next_tokens], axis=1) if eos_token_id is not None: unfinished_flag = paddle.logical_and( unfinished_flag, next_tokens != eos_token_id) # Stop when there is a in all sentences if not paddle.any(unfinished_flag): break model_kwargs = self.update_model_kwargs_for_generation( outputs, model_kwargs, is_encoder_decoder=self.is_encoder_decoder) return input_ids[:, origin_len:], scores def sample(self, input_ids, logits_processors, max_length, pad_token_id, eos_token_id, top_k=None, top_p=None, temperature=None, min_tokens_to_keep=1, **model_kwargs): def TopKProcess(probs, top_k, min_tokens_to_keep): top_k = min(max(top_k, min_tokens_to_keep), probs.shape[-1]) # Remove all tokens with a probability less than the last token of the top-k topk_probs, _ = paddle.topk(probs, k=top_k) probs = paddle.where(probs >= topk_probs[:, -1:], probs, paddle.full_like(probs, 0.0)) return probs def TopPProcess(probs, top_p, min_tokens_to_keep): sorted_probs = paddle.sort(probs, descending=True) sorted_indices = paddle.argsort(probs, descending=True) cumulative_probs = paddle.cumsum(sorted_probs, axis=-1) # Remove tokens with cumulative probs above the top_p, But keep at # least min_tokens_to_keep tokens sorted_indices_to_remove = cumulative_probs > top_p if min_tokens_to_keep > 1: # Set 'min_tokens_to_keep - 1' because the first token is kept sorted_indices_to_remove[:, :min_tokens_to_keep - 1] = 0 # Keep the first token sorted_indices_to_remove = paddle.cast( sorted_indices_to_remove, dtype='int64') sorted_indices_to_remove[:, 1:] = ( sorted_indices_to_remove[:, :-1].clone()) sorted_indices_to_remove[:, 0] = 0 # Scatter sorted tensors to original indexing sorted_indices = sorted_indices + paddle.arange(probs.shape[ 0]).unsqueeze(-1) * probs.shape[-1] condition = paddle.scatter(sorted_indices_to_remove.flatten(), sorted_indices.flatten(), sorted_indices_to_remove.flatten()) condition = paddle.cast(condition, 'bool').reshape(probs.shape) probs = paddle.where(condition, paddle.full_like(probs, 0.0), probs) return probs batch_size, cur_len = input_ids.shape origin_len = cur_len unfinished_flag = paddle.full([batch_size, 1], True, dtype='bool') scores = paddle.full( [batch_size, 1], 0.0, dtype=paddle.get_default_dtype()) while cur_len < max_length: # prepare model inputs & get model output model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs) outputs = self(**model_inputs) logits = outputs[0] if isinstance(outputs, tuple) else outputs # [batch_size, vocab_size] logits = logits[:, -1, :] # pre-process distribution logits = self.adjust_logits_during_generation(logits) logits = logits_processors(input_ids, logits) # sample origin_probs = F.softmax(logits) origin_probs = paddle.log(origin_probs) if temperature is not None and temperature != 1.0: logits = logits / temperature probs = F.softmax(logits) if top_k is not None and top_k != 0: probs = TopKProcess(probs, top_k, min_tokens_to_keep) if top_p is not None and top_p < 1.0: probs = TopPProcess(probs, top_p, min_tokens_to_keep) next_tokens = paddle.multinomial(probs) next_scores = paddle.index_sample(origin_probs, next_tokens) if eos_token_id is not None: next_tokens = paddle.where(unfinished_flag, next_tokens, paddle.full_like(next_tokens, pad_token_id)) scores = self.update_scores_for_generation( scores, next_scores, cur_len - origin_len, unfinished_flag) cur_len += 1 input_ids = paddle.concat([input_ids, next_tokens], axis=1) if eos_token_id is not None: unfinished_flag = paddle.logical_and( unfinished_flag, next_tokens != eos_token_id) # Stop when there is a in all sentences if not paddle.any(unfinished_flag): break model_kwargs = self.update_model_kwargs_for_generation( outputs, model_kwargs, is_encoder_decoder=self.is_encoder_decoder) return input_ids[:, origin_len:], scores def beam_search(self, input_ids, beam_scorer, logits_processors, max_length, diversity_rate, pad_token_id, eos_token_id, **model_kwargs): batch_size = len(beam_scorer._beam_hyps) num_beams = beam_scorer.num_beams batch_beam_size, cur_len = input_ids.shape origin_len = cur_len assert ( num_beams * batch_size == batch_beam_size ), "Batch dimension of `input_ids` should be {}, but received {}.".format( num_beams * batch_size, batch_beam_size) beam_scores = paddle.zeros( (batch_size, num_beams), dtype=paddle.get_default_dtype()) beam_scores[:, 1:] = -1e9 beam_scores = paddle.reshape(beam_scores, [-1]) while cur_len < max_length: # prepare model inputs & get model output model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs) outputs = self(**model_inputs) logits = outputs[0] if isinstance(outputs, tuple) else outputs # [batch_size, vocab_size] logits = logits[:, -1, :] # pre-process distribution logits = self.adjust_logits_during_generation(logits) logits = logits_processors(input_ids, logits) # beam search # [batch_size * num_beams, vocab_size] next_scores = F.softmax(logits) next_scores = paddle.log(next_scores) next_scores = next_scores + beam_scores.unsqueeze(-1) vocab_size = next_scores.shape[-1] if diversity_rate == 0.0: # reshape for beam search next_scores = next_scores.reshape( [batch_size, num_beams * vocab_size]) next_scores, next_tokens = paddle.topk( next_scores, 2 * num_beams, axis=1) next_indices = next_tokens // vocab_size else: next_scores, next_tokens = paddle.topk( next_scores, 2 * num_beams, axis=1) sibling_score = paddle.tile( paddle.arange(1, 2 * num_beams + 1), repeat_times=[batch_size * num_beams, 1]) * diversity_rate diversed_score = next_scores - sibling_score next_scores = next_scores.reshape( [batch_size, 2 * num_beams * num_beams]) next_tokens = next_tokens.reshape( [batch_size, 2 * num_beams * num_beams]) diversed_score = diversed_score.reshape( [batch_size, 2 * num_beams * num_beams]) diversed_score, diversed_tokens = paddle.topk( diversed_score, 2 * num_beams, axis=1) # TODO # Use gather_nd() to select origan token and score next_scores = paddle.stack([ paddle.index_select(next_scores[i], diversed_tokens[i]) for i in range(next_scores.shape[0]) ]) next_tokens = paddle.stack([ paddle.index_select(next_tokens[i], diversed_tokens[i]) for i in range(next_tokens.shape[0]) ]) next_indices = next_tokens // (2 * num_beams) next_tokens = next_tokens % vocab_size # stateless beam_outputs = beam_scorer.process( input_ids, next_scores, next_tokens, next_indices, origin_len=origin_len, pad_token_id=pad_token_id, eos_token_id=eos_token_id, ) beam_scores = beam_outputs["next_beam_scores"] beam_next_tokens = beam_outputs["next_beam_tokens"] beam_idx = beam_outputs["next_beam_indices"] cur_len += 1 input_ids = paddle.concat( [ paddle.index_select(input_ids, beam_idx), beam_next_tokens.unsqueeze(-1) ], axis=-1) if beam_scorer.is_done: break model_kwargs = self.update_model_kwargs_for_generation( outputs, model_kwargs, is_encoder_decoder=self.is_encoder_decoder) if model_kwargs["cache"] is not None: # reorder the cache model_kwargs["cache"] = map_structure( lambda x: paddle.index_select(x, beam_idx), model_kwargs["cache"]) pred_ids, scores = beam_scorer.finalize( input_ids, beam_scores, next_tokens, next_indices, pad_token_id=pad_token_id, eos_token_id=eos_token_id) return pred_ids[:, origin_len:], scores class LogitsProcessorList(List): def __call__(self, input_ids, logits): for processor in self: logits = processor(input_ids, logits) return logits class LogitsProcessor(ABC): """ Abstract base class for all logit processors that can be applied during generation. """ def __call__(self, input_ids, logits): raise NotImplementedError( f"{self.__class__} is an abstract class. " "Only classes inheriting this class can be called.") class MinLengthLogitsProcessor(LogitsProcessor): r""" Enforcing a min-length by setting EOS probability to 0. Args: min_length (int): The minimum length of generation sequence. eos_token_id (int): The id of the `end-of-sequence` token. """ def __init__(self, min_length, eos_token_id): if not isinstance(min_length, int) or min_length < 0: raise ValueError( "`min_length` should be a positive integer, but get {}".format( min_length)) if not isinstance(eos_token_id, int) or eos_token_id < 0: raise ValueError( "`eos_token_id` should be a positive integer, but get {}". format(eos_token_id)) self.min_length = min_length self.eos_token_id = eos_token_id def __call__(self, input_ids, logits): cur_len = input_ids.shape[-1] if cur_len < self.min_length: logits[:, self.eos_token_id] = -1e9 return logits class RepetitionPenaltyLogitsProcessor(LogitsProcessor): r""" Enforcing an exponential penalty on repeated sequences. Args: repetition_penalty (float): The parameter for repetition penalty. 1.0 means no penalty. See `this paper `__ for more details. """ def __init__(self, penalty: float): if not isinstance(penalty, float) or not (penalty > 0): raise ValueError( f"`penalty` has to be a strictly positive float, but is {penalty}" ) self.penalty = penalty def __call__(self, input_ids, logits): score = paddle.index_sample(logits, input_ids) score = paddle.where(score < 0, score * self.penalty, score / self.penalty) input_ids = input_ids + paddle.arange(logits.shape[0]).unsqueeze( -1) * logits.shape[-1] outputs = paddle.scatter(logits.flatten(), input_ids.flatten(), score.flatten()).reshape(logits.shape) return outputs